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Spin polarons in the two-dimensional Hubbard model: A numerical study
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We study the two-dimensional Hubbard model on a finite lattice. By numerically iterating the
Hartree-Fock equations one obtains baglike polaron solutions for nearly half-filled-band cases.
The profile of the polaron and the interaction potential between the polarons are calculated.
Comparison with analytical results of Schrieffer, Wen, and Zhang is made. We also discuss a
scenario in which the polarons are turned into the superconducting state by their mutual attrac-
tion.

Among the many theoretical models proposed to ex-
plain high-T, superconductivity, the so-called "spin-bag"
mechanism advanced by Schrieffer, Wen, and Zhang'
(SWZ) is particularly attractive. Their idea is closely re-
lated to that of the polaron excitation in polyacetylene.

As is known, polyacetylene is particularly stable at half
filling. The system undergoes a spontaneous distortion to
form a commensurate charge-density wave, i.e., bond al-
ternation. Any attempt to deviate the system from this
stable state results in creating localized excitations so that
the bulk of the condensate remains undisturbed. Thus
doping proceeds by creating solitons or polarons. 2

The two-dimensional Hubbard model is also known to
possess a commensurate spin-density wave (or antiferro-
magnetic ordering) in the half-filled band case. Previous
mean-field calculation3 indicates that SDW persists up to
a certain doping concentration. In such a calculation a
uniform SDW is always assumed. Schrieffer et al. ' made
the analogy with polyacetylene and argued that in this
case light doping should also create spin polarons. Each
spin polaron is accompanied by a local depression of the
SDW order parameter. Two polarons are attracted to-
ward each other by sharing a common area of depression.
Using this as the pairing potential between the Bloch
states in the presence of SDW Schrieffer et al. ' made an
estimate of the superconducting energy gap.

In this paper we solve the Hubbard Hamiltonian by nu-
merically iterating the Hartree-Fock (HF) equations. By
working on a finite lattice with free boundary condition
many quantities of interest can be straightforwardly cal-

culated. Besides confirming some of the ideas in Ref. 1,
the results presented below also yields additional insight.

The Hubbard Hamiltonian is given by

0 t —(c;~t +H c )+U. g. n;tn;1, (1)
&i j ,cr i

where (i,j) denotes nearest neighbors and n; c;~~; are
the number operators. In the HF approximation the in-
teraction term of the above Hamiltonian is linearized to

Ug((n;1)n; 1+(n;1)n;t —(n;1)(n;1)) (2)

The linearized Hamiltonian is then solved self-
consistently. In this paper this is done by numerical itera-
tion. In the following discussion we set t =1 and choose
U 3. At half filling the HF solution is an antiferromag-
netic SDW with a staggered magnetization 0.6. The
single-particle gap is about 1.5, which is a sizable fraction
of the bandwidth St.

To obtain the profile of a spin polaron we iterate the HF
equations on a 10x10 lattice, with 51 spin-up electrons
and 50 spin-down electrons. Starting with a small initial
value, the full SDW pattern develops in about 20 itera-
tions. The negative staggered spin density (after subtract-
ing off the uniform background) is tabulated in Table I.
A strong depression of the SDW is clearly seen at the
center of the lattice. The adoption of free boundary con-
dition makes the center of the lattice a slightly preferred
site for the spin depression. This facilitates the calcula-
tions, but it is not essential, as we have been able to repro-
duce the same results with periodic boundary condition.

Site

TABLE I. Staggered spin density associated with a spin polaron.

10

1

2
3
4
5
6
7
8
9
10

—0.089
—0.002

0.001
0.000
0.001
0.000
0.001
0.000

—0.003
—0.074

—0.002
0.001
0.030
0.025
0.023
0.024
0.023
0.028
0.025

—0.003

0.001
0.030
0.033
0.049
0.040
0.038
0.046
0.078
0.028
0.000

0.000
0.025
0.049
0.047
0.086
0.067
0.146
0.046
0.023
0.001

0.001
0.023
0.040
0.086
0.081
0.365
0.067
0.038
0.024
0.000

0.000
0.024
0.038
0.067
0.365
0.081
0.086
0.040
0.023
0.001

0.001
0.023
0.046
0.146
0.067
0.086
0.047
0.049
0.025
0.000

0.000
0.028
0.078
0.046
0.038
0.040
0.049
0.033
0.030
0.001

—0.003
0.025
0.028
0.023
0.024
0.023
0.025
0.030
0.001

—0.002

—0.074
—0.003

0.000
0.001
0.000
0.001
0.000
0.001

—0.002
—0.089
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TABLE II. Staggered charge density associated with a spin poiaron.

7 10

2

3
4
5

6
7
8

9
10

0.001
0.003
0.001
0.000
0.000
0.000
0.001
0.001
0.002
0.012

0.003
0.001
0.005
0.002
0.001
0.001
0.001
0.003
0.017
0.002

0.001
0.005
0.002
0.011
0.004
0.004
0.007
0.031
0.003
0.001

0.000
0.002
0.011
0.005
0.031
0.013
0.064
0.007
0.001
0.001

0.000
0.001
0.004
0.031
0.016
0.170
0.013
0.004
0.001
0.000

0.000
0.001
0.004
0.013
0.170
0.016
0.031
0.004
0.001
0.000

0.001
0.001
0.007
0.064
0.013
0.031
0.005
0.011
0.002
0.000

0.001
0.003
0.031
0.007
0.004
0.004
0.011
0.002
0.005
0.001

Q.OO2

0.017
0.003
0.001
0.001
0.001
0.002
0.005
0.001
0.003

0.012
Q.Q02

0.001
0.001
0.000
Q.OOO

0.000
0.001
0.003
0.001

The spin density at the corner sites is a boundary elkct. It
is present also in the half-filled band case.

The spin depression has a cigar shape oriented in a di-
agonal direction as anticipated in Ref. 1. The correspond-
ing charge density is shown in Table II. In the single-
particle energy spectrum there is a state located in the
SDW gap, at about 0.1 below the upper band. This is a
localized HF state associated with the spin depression.
The length of the depression extends over several lattice
spacings, which is comparable to the coherence length
defined as the ratio of the bandwidth to the SDW gap.

Once the existence of the spin polarons is established,
the next thing is to study their interactions. It is of critical
importance to determine if the interaction is attractive or
repulsive. To check this we use a 6&20 lattice this time,
with 61 spin-up electrons and 61 spin-down electrons.
The rectangular geometry is so chosen that the two spin
polarons have enough space to keep away from each other
if they want.

The negative staggered spin density of the self-
consistent solution is shown in Table III. The result is
essentially the superposition of two slightly contracted
spin depressions: one spin up, the other spin down. The
two cigars are perpendicular to each other.

The fact that in the minimum energy configuration two
spin depressions lie on top of each other indicates that the
interaction between two depressions with opposite spins is
attractive. To further determine the interaction potential,
we displace one spin depression rigidly with respect to the
other and calculate the change in energy. The change in
energy as a function of the interpolaron separation (in
units of lattice spacing) is shown in Table IV. An attrac-
tive potential well 0.03 deep and a few lattice spacings
wide is clear. The interaction between two similar spin
polarons can be studied in a similar fashion. The result
resembles that of the spin singlet case discussed above.

At this point it is of interest to rescale the energy so that
the above numbers might be relevant to high-T, oxides.

Site

TABLE III. Staggered spin density of a singlet bipolaron.

1

2
3
4
5
6
7
8

9
10
11
12
13
14
}S
16
17
18
19
20

-0.090
-0.007

0.000
0.000
0.003
0.011
0.010
0.048
0.033
0.022
0.022
0.033
0.049
0.010
0.011
0.003
0.000
0.000

—0.007
—0.090

—0.007
—0.001

0.023
0.023
0.026
0.025
0.026
0.050
0.150
0.126
O. i 26
0.153
0.052
0.026
0.025
0.026
0.023
0.023

—0.001
—0.007

-0.001
0.022
0.030
0.036
0.033
0.033
0.036
0.050
0.135
0.465
0.470
0.138
0.050
0.036
0.033
0.033
0.036
0.030
0.022

—0.001

-0.001
0.022
0.030
0.036
0.033
0.033
0.036
0.050
0.135
0.467
0.471
0.136
0.050
0.036
0.033
0.033
0.036
0.030
0.022

—0.001

—0.007
—0.001

0.023
0.023
0.026
0.025
0.026
0.051
Q. 153
0.127
Q. 125
0.151
0.051
0.026
0.025
Q.026
0.023
0.023

—0.001
—0.007

—0.09Q
—0.007

Q.OOQ

0.000
0.003
0.011
0.010
0.049
0.034
0.022
0.022
0.033
0.048
0.010
0.011
0.003
Q.OOO

O.OOO
—0.007
—0.09Q
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Interpolaron separation
(lattice spacing)

0
2
4
6
8

10

Potential
energy

0
0.018
0.030
0.031
0.032
0.032

TABLE IV. Potential energy vs separation between two pola-
rons with opposite spin.

So far we have considered static polaron solutions only.
Just like the polarons in polyacetylene the spin polarons
here can move readily over the lattice. They can thus be
treated like quantum-mechanical particles with an
effective mass rn over a distance scale larger than the
coherence length. The attractive interaction between the
polarons found before corresponds to a short-range in-
teraction between the fermions. The Fermi gas of the spin
polarons becomes superconducting because of the attrac-
tive potential. Details remain to be worked out.

Since the bandwidth of the Cu-0 d-p antibonding band is
about 2 eV, our result above translates into a binding en-
ergy of bipolarons to be about 0.01 eV. The actual value
of U is probably larger than 3t, so is the corresponding
binding energy. Of course the mean-field theory should
be taken only with care, as emphasized by Hirsch. 3
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