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New solvable model of polymer-chain adsorption at a surface
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%e solve exactly for the polymer adsorption transition in the two- and three-dimensional direct-
ed self-avoiding walk models, by employing a novel transfer-matrix approach. The behavior of
the fraction of adsorbed rnonomers at the threshold and in the high-coverage regime is described

in detail, as is the phase diagram of the adsorption transition.

The properties of polymers in the vicinity of walls and
interfaces are strongly modified relative to their bulk be-
havior. For polymer solutions, the study of substrate
effects has generated considerable research activity both
experimentally and in theory. '2 This interest has been
stimulated by important applications, including lubrica-
tion, adhesion, surface protection, and coating by poly-
mers. ' Various aspects of the single-chain behavior near
walls has also been extensively investigated theoretically
by exact calculations, 3 general scaling considerations, ~

Monte Carlo simulations, 4' and enumeration methods, s'7

although experimental realization of the idealized single-
chain regime seems diScult to accomplish. ' These studies
reveal that for attracting substrates, the chain undergoes
an adsorption-desorption transition. For low tempera-
tures, it is pinned at the wall, whereas at higher tempera-
tures a nonadsorbed behavior prevails. Exactly solvable
models of this transition were limited to the isotropic
Gaussian (non-self-avoiding) random walks. 3

In this work we present the exact solution of directed
self-avoiding walks (SAW) models for the polymer ad-
sorption transition. Although we consider only a single-
chain problem, we believe the results will be useful in scal-
ing studies of dilute polymer solutions as well. In what
follows we describe the models, summarize the results,
and outline the method of their derivation. Details of the
calculations will be published elsewhere.

We define the substrate at the xz plane of the simple
cubic lattice [in three dimensions (3D)]. The chain con-
sists of segments (steps) of unit length and is pinned with
one of its ends at the origin. This corresponds to the
chemically bonded (or grafted4) polymers. Only directed
models will be considered, for which the x steps are al-
ways along the positive x direction. This assumption, re-
stricting the number of chain configurations, yields solv-
able models, while self-avoidance effects are preserved.
Both positive and negative y and z steps are allowed, with
the restriction that the chain cannot penetrate below the
xz plane, i.e., y ~ 0. For an L-step walk with l steps in the
xz plane at y 0, the attracting wall is modeled by assign-
ing energy E/kT —El, with K & 0. This corresponds to
enhanced probability of making a step in the xz plane, by
a factor

x exp( —E/kTl ) e

With the above rules, the projection of a typical walk in
the xy plane is shown in Fig. 1. We consider chains in two
(2D) and three dimensions (3D). For 2D, Fig. 1 repre-
sents a possible walk (in the xy plane).

The behavior of the chains can be analyzed once the
partition function

Z- g to'~t
all walks

is known. Here the fugacity to controls the average chain
length

(L( )) 81nZ

The average number of steps at the substrate is given by

(l(tc, tv)) -a. (4)

We will be interested in the fraction of links (steps) ad-
sorbed at the substrate, in the hmit of long chains,

Z(~) - tim [&i)/&L, )j . (5)
a ~ (r)

Here co (tr) is the value of the fugacity corresponding to
(L) ~. It will be calculated below

In 2D, we evaluated Z for two models. In the unre-
stricted model (UM) the difference of the nearest "height
variables" y„can take on any value, ~ y„+ ~

—y„~
Q, l, . . . , oo, when n Q, l, . . . ,X. The assignment of

heights yt, . . . ,yx for the +x steps in a walk ending at
x X, is illustrated in Fig. 1, with yo and yx+t referring
to the y coordinates of the end points. In the restricted
model (RM) the difference ~y„+~ —y„( can take on only

t ~- Yx.~

0
FIG. 1. SA% of +x and +'y steps, in 20. The walk shown

is restricted, with only a single y step at each x, and pinned with
its starting point at yo 0.
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the values 0 or 1. Figure 2 shows P(x) for both models.
P(x) vanishes linearly as x approaches its critical value
x from the adsorbed region. [For x. (x, P(x.)=0.] In
the limit x ~(T 0), P(x) is given by

PU 1 —3x. 3 —4x 4 —10x 5+

Pn 1
—3x —4x —Sx. 5+

(6a)

for UM and RM, respectively. If Z in (2) is known, the
behavior of the fixed-L partition function Zr, , can be eval-
uated. For large L, in the nonadsorbed regime one ex-
pects

Z)l) mLLti-) Z)ll) mLLy»-) (7)

Here Z j'), Zf") correspond, respectively, to chains with
one or both ends fixed at y 0. Our calculations yield

~ 1 1

$1 2 s )'ll 2 ~ (8)

X X
&- X ly. +) —y. I, =-- Zboy„

n~0 n 1

(11)

For directed walks without a substrate, the "bulk" ex-
ponents y and v~ are 1 and 2, respectively. [Here y is

defined as in (7), while (y2)-L "'.] Thus, the surface
scaling laws

y+» (9)

is satisfied for directed chains. (In the adsorbed regime,
the appropriate relation is y) y)) y(d-)). We find
that all three exponents involved are 1.)

As described above, the UM and RM gave very similar
results in 2D. With this observation in mind, we con-
sidered only the restricted model in 3D. Thus, at most a
single ~y or ~z step is allowed between any two +x
steps, i.e., (y„+)—y„)2+(z„+1—z„)2 0 or 1, where
n 0, 1, . . . , X, and zp, zx+) refer to the end points. Note
that y ~ 0, but any value is allowed for z. We expect that
in 3D, the RM will describe the properties of polymer ad-
sorption similarly to the UM. The result for P(x) is
shownin Fig. 2. Again, itvanisheslinearlyasx x . In
the x oo limit, we find

P3d(x) 1 —2x '+12x —83x + (10)

which is quite different from (6).
In what follows we brieffy outline our method of calcu-

lation. In order to simplify the formulas, we discuss only
the 2D case here. Consider a restricted partition function
Zx for all walks having exactly X steps in the positive x
direction, i.e., endin at x X. Thus, we have Z Zp
+gx-)Zx, where Z co/(1 —ro) or ZIe' ro are not in-
teresting and will be omitted below. For X~ 1, we have,
for the UM,

FIG. 2. The adsorption fraction P(r) for the UM and RM in
2D, as well as for the 3D model (see text). The threshold values

are, respectively, I + 1/J2 = 1.707, 4/3 1.333,
(23 —417)/16 = 1.180 (for UM, RM, and 3D).

Z ~ x(V(t)Tx+ l W) (12)

where the (column) vectors V and W account for the end
effects, while T is a matrix of T„. [The superscript (I)
denotes the transpose. ] Thus, W has entries Wp 1,
W &p 0 (for the pinned end of a chain). For V, we have

Vp x ', V & p 1 (for the dangling end). For chains
pinned at both ends, one uses V & p 0 instead. The
transfer matrix for the RM can be constructed similarly,
it has elements (bo, ]„—~[+b),[„-~()ro " x . In 2D,
both TU and TR are identical with the transfer matrices of
the solid-on-solid models. (However, the thermodynamic
ensemble and Z, are different. ) Finally, we get

Z ro[V ' T (1 —roT) 'W]

Let X denote the eigenvalues of T. For rol. ,„ 1, the
partition function Z develops a singularity. (Here A, ,„is
the largest eigenvalue of T.) This relation defines
ro (x) &1 (see below). For both models, the spectrum
consists of a continuous band of eigenvalues (with oscillat-
ing eigenvectors), and at most one bound-state (BS) ei-
genvalue, corresponding to the exponentially localized
eigenvector of the form e "" (p &0) for n &0. ' The
corresponding equations for p and )j,as are

Here the pinning of the origin of a chain is accomplished
by the factor bpy, . (In order to pin both ends at the sub-

strate, one uses bpy, bpy„„.) The power of ro in the sum
tneasures the length of all the vertical steps, whereas the
power of x is just I for a given configuration. Z~ can be
evaluated by the transfer-matrix method. Indeed, let
T„ro~" ~ x ~, then the summand in (11) can be rep-
resented as

&@+ I
BpyoTy kayo Tyzy, Ty„+,yzx

Thus,

Z(l+ a) ') —(1 —a) ')
cosh@ , A, (1 —roe ") x(1 —ro ) (forUM),

2coA,

A,
—1cosh@, X —x xroe " (for RM) .

2N

(14a)

(14b)
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x(l —ruz)(1+m —xm) 1, (for UM),

(x —l)(1 —xru) -x'rn', (for RM) .

(16a)

(16b)

The intersection of the curves (15) and (16) then gives the
values x,m . The part of the curve (16) for x& x de-
scribes m (x) for the adsorbed state (localized eigenvec-
tor). Figure 3 shows the curve (15), and the appropriate
part of (16), for the UM; the curves for the RM (and in
3D) are similar. For x ~ x» (extended eigenvector), in

the nonadsorbed regime, A,m~ does not depend on x, and
m (x)—=m, see Fig. 3. Note that m are given, respec-
tively, by J2-1=0.414, —,', and (417—1)/8 =0.390,
for the UM, RM, and 3D model.

The substantiation of the above picture, as well as the
results for P(x), y1, and y11 quoted earlier, involves the
use of the spectral representation of T. In the adsorbed
region it is relatively simple since only the bound state
must be considered. In the nonadsorbed regime, the cal-
culation involves the eigenspectrum T for small wave
numbers. 'c These rather lengthy calculations, as well as
additional complications arising in 3D, will be presented
elsewhere. Finally, we note that P(x ) is related to m (x)
V18

dm (x)
P x

m (x) dx
(17)

In summary, we solved exactly for the singlewhain ad-
sorption transition in the 2D and 3D directed SAW mod-
els. The behavior at the onset of adsorption is linear [for
P(x)]. At high coverages, the results for both 2D models
are similar (Fig. 2). However, the comparison with the
3D result shows a remarkable suppression of adsorption in
the latter case, probably due to large "phase space" avail-
able for the chain motion. Our formulation of the adsorp-
tion problem in terms of the transfer matrix running
parallel to the substrate, will find applications for isotropic
SAW models as well, where numerical transfer matrix

One can show that the solution for 1 as with p & 0 exists
provided x & x„where

xU-(I —m) ', xP-(I+2m)/(I+re) .

For all x, the continuous s trum exists'n for the X

ranges (1 —rn)/(I+a) ~Z ~ (I+re)/(I —a)), 1 —2m
~ Z"~ I+2m. For x & x„)III's& (I+ro)/(I —m),

)L.@& I+2m.
When the bound state exists at m (x), it dominates the

singularity in Z (see below), determined then by n1kgs I.
This equation takes the form

0.6 i

K(1-m) i
I

I
I

I
I
I

I

1 2

FIG. 3. Phase diagram for the UM. The solid line depicts the
function m (x). The broken line indicates the boundary of the
adsorbed region (see text).

calculations of bulk properties" proved very successfuL
Directed walk models are relevant for the adsorption of

stretched chains. ' As mentioned, the single-chain regime
is diScult to achieve in practice, ' sec, however, Ref. 13.
In the nonadsorbed regime, for axed x ( x„someof the
directed walk results, e.~., (8), resemble mean-field
(Gaussian-walk) theory. 3 Indeed, the "free space"
directed walks are Gaussian in their transverse correla-
tions (v~ & ). For x&)x„ the adsorbed behavior of
both directed and isotropic SAW must be quite similar.
Near x„as usual in critical phenomena studies, the criti-
cal exponent values (i.e., the linearity of the adsorption
fraction at the threshold) will dim'er for isotropic walks, as
compared to directed models. To our knowledge, there is
no Flory-type theory for the polymer adsorptiondesorp-
tion transition. In this regard we mention that just as for
the bulk (no surface) directed walks, ' no upper critical
dimension exists for the present problem. Studies of other
quantities of interest in polymer applications, as well as
details of the transfer-matrix calculations, will be present-
ed elsewhere. 's
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