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Perturbation calculation around the two-dimensional Ising model
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The dispersion expansions for the two-point electric correlation functions in the eight-vertex
model are calculated to first order in the four-spin coupling in the scaling limit. This is a sys-
tematic study of perturbation around the Ising system in the massive regime; features having gen-
eral relevance are emphasized.

The two-dimensional Ising model is the most studied
solvable model which ean model some real physical sys-
tems. This modeling often involves neglecting some weak-
er interactions; therefore, it will be interesting to study
perturbations around the Ising model. Furthermore,
many interesting models such as the axial next-nearest-
neighbor Ising (ANNNI) model, ' which exhibits a fas-
cinating phase diagram, or the Ising model with next-
neighbor interactions, 2 are in the category of Ising models
with extra interactions which can be studied by the exact
technique presented here.

Quite a few nontrivial exactly solved models exist in

statistical mechanics; especially notable is the class of
models solved by the method of commuting transfer ma-
trices. 3 However, most of them have been solved only for
the thermodynamics: the free energy, the critical ex-
ponents, and the bulk expectation values. Despite the im-
portance of the thermodynamics and the spectacular re-
sults which have been found, these models are far from
fully understood, because not much information on their
correlation functions are available. In the last few years,
an important development on the relation between con-
formal algebra and two-dimensional (2D) statistical sys-
tems has given much insight into the universality classes
of many solvable models and has provided their correla-
tion functions at the critical point in terms of some linear
differential equations; however, when there is a mass gap,
correlation functions are not attainable by the method.
The two-dimensional (2D) Ising model is an exception in
this respect. The extent of the available information is
demonstrated in the remarkable work by Bariev, 5 who
computed the dispersion expansion for any correlation
function formed with an arbitrary number of basis opera-
tors in the Kadanoff algebra.

In addition to the general importance of studying per-
turbation calculation around the Ising model, it has an
immediate significance in understanding the connection
between solvable models in statistical mechanics and soli-
ton theory. For the Ising model, it has been established
that the two-point spin-correlation function satisfies Pain-
leve equations, which is an important equation in soliton
theory. For other solvable models in statistical mechan-
ics, some have been widely believed9 to be "equivalent" to
1D quantum field theories, which have been extensively
studied in the framework of classical and quantum inverse
scattering. ' Some examples are the six-vertex model and
the nonlinear Schrodinger equation, the sine-Gordon

model or the Thirring model and the eight-vertex model.
Understanding their "equivalence" at the level of correla-
tion functions will be most fruitful. Since the Ising model
is contained in these statistical models as a special case,
exact results for perturbing around the Ising model gives
valuable information toward this effort to relate these
fields.

A first attempt to do a straightforward perturbation
calculation around the Ising model has been the exact
computation of the two-particle contribution to the two-
point energy-density correlation function in the Ising
model in a magnetic field. " There the lowest-order term
in an expansion in the external magnetic field at T T,+
has been found to be a Bessel function, confirming the
scaling theory. ' A second calculation ' in the same spirit
produces new results for the Baxter eight-vertex model,
which can be formulated as two Ising sublattices coupled
by a four-spin interaction. '4 There the exact results at-
tained are the two-particle contributions to the two-point
electric correlation functions to the first order in the four-
spin cou ling at T T, and T T,+. In both
works, "' the correlation functions are differentiated
with respect to the small parameters and evaluated at the
Ising points. This gives an expression in terms of an in-
tegral of correlation functions in the Ising model for each
case as follows:

dridr2(bsobar 0'r, 0'rq)t

ur, (~,~„aa„)I, (2)

where (. . . )t is the Ising correlation for spin a, and net
energy density ba An apparent reason that such calcula-
tions have not been attempted more may be seen by exam-
ining the calculation in Ref. 11. There the number of in-
tegrals in the four-point Ising correlation which contribute
to the leading exponential order for small magnetic field is
25; it reduces to six integrals after taking into account the
geometric symmetries. That the sum of those integrals is
a Bessel function is by no means obvious. But if the ap-
parent complexity has inhibited calculations, the simplici-
ty of this result is an indication of hidden structures yet to
be exploited. In this paper, we shall present a generaliza-
tion of the work in Ref. 13 from two-particle contributions
to an arbitrary number of particles, and indicate the key
features which are shared by other perturbation calcula-
tion around the Ising model.
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The eight-vertex model can be formulated as two Ising
systems coupled by a four-spin coupling: The lattice con-
sists of two Ising sublattices (1) and (2) with nearest-
neighbor Ising interaction K within each sublattice; in ad-
dition, there is a four-spin interaction K4 which couples
the two Ising lattices. For the scaling limit calculation,
the total energy E can be written as

(3)

where the summation is over the sublattice index R. The
sublattice energy-density operator Q is the product of
two nearest-neighbor spins in an Ising system. We have
not distinguished between the horizontal and vertical en-
ergy density in the four-spin term, which gives the
difference between eight-vertex and Ashkin-Teller mod-
el, '5 because we consider the scaling limit T T„

~, and r R/g fixed. The O(K4) term of the electric
correlation function can be expressed in the form of Etr.
(2), which was first given by Kadanoff and Wegner. 6

The results to all exponential orders in the dispersion ex-
pansions for low- and high-temperature regimes are given
below. The low-temperature part has been reported in
Ref. 17.

et

F (r) = lim P Sx,(op~'&oP3og'&op&&x, p/(opo„&
T T* C

2 dry(opo Ber, &t s„;„,
where P is the spontaneous polarization s it has a K4
dependence which is reflected in the divergence in formula
(2) which can be unambiguously extracted in the present
approach. ' Define

2I

Q;-=(I+q2) '~2, df; (dq;)e '/(2nQ;), I (1, . . . , 21)=- +X~;+(
i~1 , mod2l
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1(k,j)-(—I)'—
g 4 OO

df2tI (1, . . . , 21)[Z (1,2j)+Z (21,2j+1)+Z2(21,2j)+Z2(1,2j+1)

+Z3(2j,21, 1)+Z3(2j+1,1,21)],
I

rules.

(i) Write —2 "(—2e) ' 'Q)-~ f"- dpaPh
where 1 1, 0 for m even, odd; and t is the total number
of segments. Write a factor exp( —re, ) for every long
segment pt, where Pt, = (I+p$) ' . Diagrams related by
right-left or up-down reflection are considered as one dia-
gram.

(ii) Attach a variable to each segment and assign a
direction to each line. For every o-vertex from segments
pi to p2, write (P2+sP~)/i(p~ p2 ie),—whe—re the
prescription e 0+. For a Be vertex, write (I+ip~)'
x(1+ip2)'~ +s(1 —ipt)' (1 ip2)' 2. —The constant
s —1 if the angle is acute, and s + 1 if the angle is ob-
tuse.

(iii) Write B(p~ —p2+p3 —p4) if segments p~ and p3
(p2 and p4) point toward (out of) the be's. Write
(Pq-tspPt, ) ' where every st, +1 for co+„(k,j), and
sp +1,—1 if the segment pt, is short, long for co „(k,j).

The above diagrammatic rules are typical and can be
extended to any perturbation calculation where one is re-
quired to compute certain integrals over all space for the

and the operator A„acts on the formal expression (8),
where for A„(q) set

df„-dq„b(lq. l
-~) and q.

The summation over m, n in (7) is over 1 ~ m ~ 2j and
2j+1 ~n~21, or 1~m, n~2j, and lm —nl even, or
2j+ 1 & m, n & 21, and l m —n even. And we have om-
itted a constant term which gives the dispersion form of
the two-point Ising correlation.

The function 1(k,j ) is the basic unit in this calculation
and contributes to the 21th exponential order to F (r). A—
sketch of a set for k 1,j 2 is given in Fig. l. Each dia-
gram contains two sets of op, o„and Be, with be close to
one of the spins; a line starts and ends at each of the be's
and visits the spins for an arbitrary number of times.
Denote it as co —„(k,j), where 2k, 2j is the total number of
long segments in each part of the diagram, and m, n the
number of short segments. The superscript +, —denotes
the case that the Be's are in positions 0 or r+, 0+ or r
For example, I2~ in Fig. 1 is ra21 (1,2). The integral repre-
senting each diagram can be obtained using the following
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F&G. i. The diagrams in 1(1,2) is a basic set which satisfies rotational invariance in the O(K4) term of the electric correlation
&elbe«f segments between the spins determines the exponentia} order and that of the short ends the number of necessary

integrations.

product of Ising correlation functions such as formulas
(I) and (2): the two sets of pro, cr„, ba are needed because
of the two factors of the three-point function in (2); rules
(i) and (ii) come from the individual Isin correlation,
and rule (iii) accounts for the eff'ect of — dry. And
since the x and y dependence in general has the form
e xp(i xP t+ pq) and epx( yap+ Pq) locally, the opera-
tion f— r always produces factors of 8(gg+ pp) and
(gg + Pp ) ' as in rule (iii) above.

Each of the diagram satisfies local rotational invari-
ance, but has discontinuity as two operators cross along
the y direction. The set of diagrams 1(,kj) is the minimal
set which has a globally rotationally invariant sum in the
calculation. This can be seen by examining the invariance
properties of the Ising correlation functions which can be
roughly stated as follows: A symmetry is preserved by
adding to a diagram another which is obtained by lifting a
relevant o vertex.

To obtain (8) we need to evaluate m+rt integrations
for each I „ in Fig. 1. The computation is independent of
k,j and can be described in the following. Introduce a
symmetric change of variables consistent with

b(p) —p2+p3 —p4) and rationalize the denominator of
(gj~-~sl, Ph) ', the two factors from rule (iii) above.
The integrand of 122 can be separated into terms having
branch points on one complex half-plane only, and the
contour of integration for this variable can be closed on
the poles on the other half-plane. This can also be done
for part of Iz~ and 1~2, the other parts nearly cancel the
residues from 12z except for some pole contributions, and
their sum is given by the residues of these poles. Such
near cancellation happens repeataily and follows closely
the route for preserving symmetries among a set of dia-
grams discussed above. What remains after all the can-
cellations are a few terms from 122+Iz~+I~z which are

related to poles from the denominator (gqsl, PI, ) '. One
is intrigued by the simplicity of the result and wonders if
there is some underlying theory which may enable one to
pick out what remains without any detailed computation.
While this is still an open question, we remark that it is
possible to express the computation in a simple form. '9

The high-temperature result' is closely related to the
low-temperature case, as the expression in (7) suggests;
this we obtain not by repeating the procedure for obtain-
ing F—(r) as one would have proceeded given (2) and the
formulas for Ising correlations in Ref. 5. Indeed the same
procedure for the T T,+ case will involve calculating
the rapidly growing number of diagrams. Instead we ex-
ploit the close relation between the low- and high-
temperature Ising correlation functions which has not
been realized before, namely, the diagrams for the T,+
case can be considered as the T, diagrams with deleted
segments. Then we need only to study the commutation
relations between the operation of deleting a segment and
those used in the calculation for l(k,j), such as evaluat-
ing the residue of a pole. It is found that the eff'ects of
noncommuting operations simply eliminate the possible
ambiguity in the final result, and we only need to add in
(9) the part q„0 to the o~x:rator for deleting a segment.
Therefore, the result for T, can be obtained from the T,
case without much eff'ort. That this simple approach
works not only makes such perturbation calculation prac-
tical but also suggests some underlying regularities yet to
be understood.

We discuss above the rules for the scaling limit calcula-
tion for a first-order perturbation; it is clear that generali-
zation to higher order is straightforward, and lattice gen-
eralization can also be done since the Ising correlations on
the lattice are known. This will lead to exact results valid
for a large portion of phase spaces.
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