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Spin-wave properties have been calculated for multilayered structures consisting of alternating

ferromagnetic and nonmagnetic layers, as well as for all-ferromagnetic structures, fully taking

into account magnetic interface anisotropies and exchange contributions. In the crossing regime

of dipolar modes and exchange modes, the gap width is strongly inAuenced by the amount of in-

terface anisotropy. In the case of all-magnetic multilayered structures, a new type of collective

spin-wave excitation arising from coupled exchange modes is predicted.

Spin waves in magnetic multilayered structures have
spurred increasing interest in the past few years for a
number of reasons: first, they are of conceptual interest
because of finite-size effects (quantization), and the possi-
ble coupling of modes in different layers, which may, for
example, result in new types of collective spin-wave exci-
tations in superlattices second, by measuring the mode
frequencies (e.g. , by means of Brillouin spectroscopy),
many magnetic parameters of the system, which are often
difficult to evaluate otherwise, can be determined. 4 9

Although a large number of publications exist for bulk
materials and single magnetic films, there are only few re-
ports of spin waves in multilayered structures and in su-
perlattices. ' 9 The first calculations were reported by
Camley, Rahman, and Mills, ' Griinberg and Mika, and
by Emtage and Daniel3 in the dipolar limit. This early
work neglected exchange as well as anisotropy contribu-
tions. Although the authors were able to predict the
salient features of the new collective spin-wave modes in
superlattices, recent investigations by Hillebrands etal
show the significance of interface anisotropies for small
layer thicknesses. " All of these calculations are valid
only in a thickness regime where the dipolar modes are
well separated in frequency from the exchange modes,
limiting the applicability of these theories to small layer
thicknesses. Experimental evidence for superlattice spin-
wave modes has been reported by Grimsditch, Khan, and
Schuller and Kueny, Khan, Schuller, and Grimsditchs
for Mo/Ni superlattices. A detailed experimental proof of
the predicted magnetic properties of the collective spin-
wave excitations was presented by Hillebrands et al.

In this paper, results are presented of new theoretical
investigations in which spin waves in multilayered struc-
tures are calculated, properly including both magnetic in-
terface anisotropies and exchange. This work is an exten-
sion of a recently introduced theory for the calculation of
single-layer spin-wave frequencies, including interface an-
isotropies and exchange by Rado and Hicken. ' Three
basic questions are addressed. (1) Do exchange modes
frequency split in multilayered structures, and do they
eventually form a band of collective exchange-dominated
spin waves in superlattices, reminiscent of the band of col-
lective dipolar modes'? (2) How strongly do interface an-
isotropies affect the exchange modes'? (3) What are the

spin-wave properties in the regime where the exchange
modes cross the dipolar modes? The calculations are car-
ried out for two types of multilayered structures: for
conventional-type structures consisting of alternating fer-
romagnetic and nonmagnetic layers, and for what is be-
lieved to be the first time, for all-ferromagnetic multilay-
ered structures consisting of magnetic layers with
different magnetic properties.

The calculations are based on a straightforward solu-
tion of the equations of motion (magnetostatic Maxwell
equations and the Lifshitz torque equation '3) of the mag-
netization M in an applied magnetic field H in the magne-
tostatic limit, as discussed in detail by Rado and Hicken
for the single magnetic layer. '2 It is assumed that the
static part of the magnetization lies in the plane of the
layer and is parallel to the applied field, which can be
achieved by a strong enough external field. The dynamic
parts of the magnetization m and the applied field h are
assumed to be small compared to M and H, respectively,
which allows for a linearization of the equations of motion
and the boundary conditions. The calculations can be
summarized as follows: solving the linearized equations of
motion' in the bulk of each magnetic layer, including
terms resulting from exchange interaction, yields six solu-
tions for m and h, which are classified by the wave-vector
component perpendicular to the layers. In the nonmag-
netic layers (vacuum), there exist two solutions to h,
which exponentially increase or decrease with distance
from the magnetic layer. From the equations of motion,
boundary conditions are derived which couple the bulk
solutions at the interfaces. The boundary conditions con-
sist of the usual Maxwell continuity conditions for the
parallel component of the magnetic field and the perpen-
dicular component of the magnetic induction, as well as
the so-called Rado-Weertman boundary condition, ' for
which the summation over all contributions to the inter-
face torque density is zero at each interface. In the case of
interfaces between two magnetic materials modified
Rado-Weertman boundary conditions have been reported
by Hoffmann and co-workers. ' ' Magnetic interface an-
isotropies are included in a natural way by adding the cor-
responding surface torques to the Rado-Weertman bound-
ary condition. It should be noted that in the special case
of negligible exchange contributions (small layer
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thicknesses) interface anisotropies can also be included as
effective volume anisotropies. In this way, the resulting
numerical procedures are simplified significantly, allowing
for spin-wave calculations in multilayered structures of up
to more than a hundred layers. Writing the boundary
conditions as a system of linear equations with the
coefficients of the different solutions as the unknowns, the
spin-wave frequencies are obtained by solving for the
zeros of the determinant of the boundary condition ma-

trix. The calculations are performed by means of ap-
propriate numerical tools.

First, we will consider the case of a multilayer stack
consisting of single-crystal Fe(110) layers separated by
nonmagnetic layers of equal thickness. This structure
resembles Fe/Pd superlattices where the Fe crystallites
have a preferred (110) orientation, 9 as well as single-
crystal epitaxial Fe films on W(110) substrates. 'o" For
the simulations, the parameters of the latter case are used
for the saturation magnetization 4', and the out-of-
plane anisotropy constant K, (in Gradmann's notation),
i.e., 4aM, 18 kG, K, 2.8 erg/cm . The value of the
in-plane interface anisotropy constant K, ,r 0.024
erg/cm~ has been dropped because it does not affect the
spin-wave frequencies in the layer-thickness regime con-
sidered here. For the other parameters, representative
values have been chosen for the volume anisotropy con-
stant K1 4.5&105 erg/cm3, for the spectroscopic split-
ting factor g 2.1, for the exchange constant A 2x10
erg/cm and for the wave vector q 1.73&10~ cm '. The
wave vector points in the [001] direction. The applied
magnetic field is 1 kG.

Figure 1 shows calculated spin-wave frequencies as a
function of the single-layer thickness for a multilayered
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FIG. 1. Spin-wave frequencies as a function of single-layer
thickness for a multilayer consisting of five layers of Fe(110)
layers and interleaving nonmagnetic layers of same thickness.
The parameters are H 1 kG, 4aM, 18 kG, K, 2.8 erg/cm,
K, ,~ 0. The volume anisotropy constant HI(:I is 4.5x10
erg/cm3, the exchange constant A is 2x10 s erg/cm, and the
spectroscopic splitting factor (g factor) is 2. 1. The dashed line
indicates the thickness position referred to by Fig. 2.
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FIG. 2. Spin-wave frequencies as a function of the out-of-
plane interface anisotropy constant K, for d 630 A (indicated
in Fig. 1 by the dashed line).

structure consisting of five bilayers. The thickness d of
the magnetic layers equals that of the nonmagnetic layers.
Two kinds of modes are observed: between about 18 and
27 GHz there are five dipolar modes (Damon-Eshbach
modes) separated in frequency because of their dipolar in-

teraction across the nonmagnetic spacer layers. The fre-
quency splitting decreases with increasing d because of a
corresponding decrease in the interlayer coupling. For
very small layer thicknesses (d & 30 A), the dipolar
modes exhibit a characteristic increase in frequency, be-
cause interface anisotropies become dominant in this re-
gime. It should be noted that in this regime, the results
are very close to those obtained by an approach in which
the interface anisotropies are treated as effective volume
anisotropies and the exchange contributions are neglect-
ed. The highest-frequency mode is the Damon-Esbach
surface spin-wave mode of the total multilayer stack. For
d 0, all modes with the exception of the highest-
frequency mode become degenerate. An analysis shows

that, as a result of the dominating interface anisotropies,
the dipolar mode in each layer becomes bulk-mode-like,
with minor stray fields in the spacer layers, thus exhibiting
reduced coupling. For d )250 A, the regime of dipolar
modes is crossed by the exchange modes. The latter are
characterized by their typical 1/d behavior. Their stray
fields are very weak into the spacer layers, resulting in vir-

tually no mode splitting apart from the crossing regime.
For small layer thicknesses, a weak but still significant
dependence of the exchange mode frequencies on the in-

terface anisotropy constant was established. In the cross-
ing regime, the dipolar modes and the exchange modes ex-
change their mode type, leading to a pronounced frequen-
cy gap. Although in this thickness regime the energetic
contributions of the interface anisotropies are very small,
the gap width is determined primarily by K,. This is
demonstrated in Fig. 2, where the spin-wave frequencies
are plotted for d 630 A (indicated by the dashed line in
Fig. 1) as a function of the interface anisotropy constant
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E,. For negative values of EC„ the gap width shrinks to
virtually zero and then increases for even smaller values of
E,. A study of the form of the dispersion curves as a func-
tion of the number of bilayers, N, revealed no strong
dependence of the gap width on N. However, because of
numerical instabilities, N could not be chosen larger than
7. An extrapolation of the results implies that the proper-
ties of the crossing regime are much the same for larger 1V

(superlattices), in particular the gap width and the impor-
tance of the interface anisotropy.

Although the method for calculating spin waves in mul-

tilayered structures of alternating magnetic and nonmag-
netic layers is straightforward, special attention must be
given to boundary conditions at the interfaces between
two magnetic layers. It is necessary to introduce an inter-
layer exchange mechanism, described by an interlayer ex-
change constant A iz, which keeps the spins on each side of
the interface aligned either parallel or antiparallel, de-
pending on the sign of A12. The appropriate modified
Rado-Weertman boundary conditions have been reported
by Hoffmann and co-workers. '5'6

Next, a multilayer stack consisting of three Fe layers of
equal thickness interleaved by two Ni layers of the same
thickness is considered. The system Fe-Ni has been
chosen since the single-film dispersion curves of the ex-
change modes of both materials are nearly degenerate for
the lowest-lying mode. The left side of Fig. 3 shows the
spin-wave frequencies as a function of the single-layer
thickness. The parameters used are the bulk literature
values for the exchange constants, the saturation magneti-
zations, and the g factors. Interface anisotropies have
been set to zero; calculations using nonzero values exhibit-
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FIG. 3. Spin-eave frequencies as a function of single-layer
thickness for a Fe-Ni-Fe-Ni-Fe multilayer structure (left side)
and pro6les of the perpendicular component of the dynamic part
of the magnetization for some modes (right side), indicated in

the dispersion curves. DI and D2 indicate the two dipolar
modes, the numbers denote the exchange modes. The parame-
ters are Fe: 4aM, ~21 k6, g~2. 1, A 2X10 6 erg/cm; Ni:
4m~, ~6 kG, g 2.2, A 0.7X 10 6 erg/cm. The applied mag-
netic 6eld is 1 kG.

ed changes close to those discussed above. In order to
determine the case of maximum exchange coupling across
the interfaces the calculations for Fig. 3 are carried out in
the limit of A12 large compared to the product of either
A 1 or A2 with the spin-wave wave vector. The most strik-
ing feature is the lifting of the degeneracy for the ex-
change modes. With the exception of the lowest two
modes (labeled I and 2 in Fig. 3), the observed exchange
modes can be always subdivided into groups of five modes,
and each group can be further subdivided in a two-mode
and a three-mode subgroup. Each subgroup corresponds
to a single-layer exchange mode for either Fe or Ni. For
the lowest-lying group (labeled 3 to 7 in Fig. 3), the
single-layer Fe-exchange mode and the corresponding Ni
exchange mode are nearly degenerate, as reflected by the
nearly equal spacing of all five modes. In the limit of an
infinite number of layers (superlattice structure), the
modes will eventually form a band of collective exchange
modes, similar to the band of collective dipolar modes in
magnetic-nonmagnetic-type superlattices. The frequency
splitting of the exchange modes depends strongly on the
interface exchange constant A12 and becomes zero for
A12 0. Two dipolar modes (labeled Di and D2 in Fig.
3) are identified. They are in frequency regimes of
single-layer Fe and Ni Damon-Eshbach modes, respec-
tively. The right side of Fig. 3 displays the perpendicular
component of the dynamic part of the magnetization as a
function of the location in the multilayer stack, for the
modes indicated in the dispersion curves. Besides the two
dipolar modes, the number of nodes in the field amplitude
increases with increasing mode order. The dipolar mode
D2 clearly shows properties similar to those of a single-
layer Damon-Eshbach mode: the amplitude has a max-
imum on one side of the stack and decreases towards the
other side. The main contribution comes from the Fe lay-
ers. This is in contrast with the mode D1, which has its
largest amplitudes in the Ni layers.

In the crossing regions, the modes exhibit a frequency
gap similar to conventional-type multilayered structures
described above. Simulations show, that the gap width is
strongly influenced by the interface anisotropy constant
ECs

In conclusion, results are presented for spin-wave prop-
erties in conventional-type alternating magnetic-nonmag-
netic-layer multilayers, as well as for all-magnetic mul-
tilayered structures. Both exchange contributions and in-
terface anisotropies are included. In the regime where the
exchange modes cross with dipolar modes, a gap occurs
which is determined primarily by the amount of interface
anisotropy. In the case of all-magnetic multilayered
structures, a new type of collective spin waves, i.e. , cou-
pled exchange modes, are observed, reminiscent to dipolar
collective spin-wave excitations in superlattices of the con-
ventional type. Since their mode splitting depends strongly
on the interface exchange constant A i2, a measurement of
the spin-wave frequencies in the region of interest might
allow for the determination of A ~2. It should be feasible
to test these predictions by means of Brillouin scattering
experiments, with the potential of gaining new ways for
evaluating multilayer specific properties.
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