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%e present numerical simulation results for the XY spin-glass model in two and three dimen-
sions, using stochastic diAerential-equation methods with Fourier acceleration, %e show that the
dynamics of these methods are much faster than Metropolis and sufkr much less from critical
slo~ing down, without changing static quantities. %e also show that renormalized physical quan-
tities are not afkcted by systematic errors. We use this method to show that, in two dimensions,
the Ising-type chiral variables of this model follow thermal activation dynamics.

The Ising spin glass has been studied extensively in two
and three dimensions by means of numerical simulations. '

As is well known, the relaxation time for these simulations
increases very rapidly as the temperature is decreased,
thus limiting the system size and the temperature range
that can be studied. However, one can use the discrete-
ness of the Ising variables to write very eScient codes, and
thus keep the required computer time within reach.
Furthermore, new algorithms have been proposed by
Swendsen' to accelerate the relaxation of these systems.
This is not so for models where the variables take continu-
ous values. For this reason, the XY and Heisenberg spin
glasses are still not very well studied even in two dimen-
S1OAS.

In this Rapid Communication we show how to reduce
drastically the severity of critical slowing down in spin-
glass models with continuous vairables, by simulating the
system using dynamics that are much faster than Metrop-
olis or heat bath. Thus, we were able to conduct (for
d 2) the first study of the dynamics of the chiral degrees
of freedom2 3 (to be defined below), and demonstrate that
they follow a thermal activation law. This lends strong
support to the idea that these degrees of freedom behave
like an Ising spin glass, 2 as a recent simulation by
Kawamura and Tanemura 3 indicated.

To speed up the dynamics of the system, we used
Fourier acceleration which was first studied in lattice field
theories. For such translationally invariant theories,
perturbative calculations show clearly why Fourier ac-
celeration works. 5 These calculations fail for frustrated
models, and so until now it was not known whether our
method is effective in the simulations of such models. We
found that it works very well. We tested the followin~ sto-
chastic differentia equation methods: Langevin, hy-
brid, accelerated Langevin, ' accelerated hybrid, and
found the last method to be the fastest. Therefore, we will
sketch here only the last method leavin the details to the
references and to a future publication. The Hamiltonian
of the model is
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where dt is the time ste, and F is a fast-Fourier-
transform (FFT) operator. To ensure the ergodicity of
molecular dynamics, we "refresh" the momenta periodi-
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where S; (cos8;,sin8;), and 0~8;~2tt. The sum is
over nearest neighbors, i and j, on a square (d 2) or
simple-cubic (d 3) lattice. P is the inverse temperature,
and J;t are the random bonds and have values + 1 with
equal probability. The molecular dpamics Lagrangian,
corresponding to Eq. (1), is given by

7

L -
g gp(i)M(i, j)p(j) H(—18;1), (2)

l,J

where the p(i) are variables conjugate to the angles 8;. M
is an arbitrary but positive-definite matrix, which for sim-

plicity is taken to be diagonal in momentum space, e.g.,

M(k) 1 ——— g cosk„.X X

2 2d p~&

d is the dimensionality of the system, and 0 ~ x ~ 1 is an
acceleration parameter. For x 0, L is local and standard
molecular dynamics is recovered. As x 1, the low-
momentum components of M(k) become increasingly im-
portant making M(i, j), and therefore L, increasingly
nonlocal. The new nonlocal couplings generated by M ac-
celerate the relaxation of the system but can still be shown
to lead the same static limit as for the local case. It has
been shown that this choice of M eliminates critical slow-
ing down in free theories 5 with uniform couplings, and
reduces it near critical points. 7 In this paper we show that
this choice also works very well for spin glasses.

The discretized equations of motion (accurate to order
dt z), corresponding to the above Langrangian, are
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cally, i.e., we replace p(i, t+dt/2) by
q

F 'iM '(k)F ~ t. ,t+ ' (5)

where rt is a Gaussian random variable. This is equivalent
to doing a Langevin step. Note that the dependence on J;j
is through the term Bs,H in Eq. (4a). This mixture of
molecular dynamics and Langevin is what we refer to as
the hybrid method. Clearly, Langevin dynamics is ob-
tained in the limit of refreshing every step, while molecu-
lar dynamics is obtained by not refreshing at all. It can be
shown5 that for large t and arbitrary M(i,j), the ensem-
ble of configurations IH;j has the correct distribution e
(up to order dt2) W.e ran the simulation with the time
step dt =0.1 and the acceleration parameter x 0.99, and
refreshing the momenta every 25 iterations. We found
that these parameters are optimal in the sense that they
give the shortest autocorrelation in the data, and sys-
tematic errors that are very small compared to the statisti-
cal ones.

Using this algorithm, we always start from a disordered
configuration, and typically ignore the first 5 x 104 to 105

sweeps, depending on the temperature, and measure over
the next 10, for both d 2 and d=3. This proved to be
enough to get very good statistics because the relaxation
time for our methods is very short. We have checked that
starting from an ordered configuration, 8; 0, leads to the
same results.

We now describe the various quantities that we mea-
sured. Information about the dynamics are contained in

the autocorrelation function

chiral variables is obtained from

where

qgh(t)dt, (10)
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This is analogous to Eq. (6) and is normalized so that
q.h(0) - l.

We now discuss our results. In Fig. 1(a) [Fig. 1(b)] the

q(t) =—(Zs;(to) s;(t +to))r)z,1 (6)

zsG=& q(t)dt . (7)

We also measured the spin-glass susceptibility given by

where N is the total number of sites on the lattice
(N=162 for d 2, and N 8' for d=3), and tp is the ini-
tial time at which measurements are started. Thermal
averages are denoted by ( &T and sample averages by
( ~ &J. We typically averaged over 10 to 25 samples
which was enough to get good statistics because for each
sample we ran at least of the order of hundreds times the
autocor relation time. The average autocorrelation
time" "rsG is given by
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Aside from these usual spin-glass quantities, we mea-
sured the average relaxation time r,h for the chiral vari-
ables defined by
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where the summation is directed along the contour of pla-
quette a in the counterclockwise direction. Note that N., is
invariant under global rotations but changes sign under
any global reflection, 8; 28p —8;, where 8p defines the
axis of reflection. The average relaxation time for these

FIG. 1. Plots of lnrso vs T in (a) two dimensions and (b)
three dimensions. Here rsG is the number of sweeps multiplied
by dt O. l. The labels on the curves are for accelerated hybrid
(a), hybrid (b), and Langevin (e). The slopes are given in the
text.
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plots of Inzso vs lnT for d 2 (d 3) show that the dy-
namics suffer from ordinary critical slowing down, i.e., '"
rsG~ T """,where v is the correlation length critical ex-
ponent and z, „

is the average dynamic critical exponent.
The same behavior was found by Jain and Young, " who
found that z,„vis 5.16+ 0.18 for d 2, and 8.54+ 0.57
for d 3, using Metropolis dynamics. Using different dy-
namics, we found that for d 2; z,„v 2.79+' 0.06
(Langevin), 2.66~0.10 (hybrid), and 0.82~0.05 (ac-
celerated hybrid) while for d 3, z,„v 4.58+'0.25 (hy-
brid), and 1.41+ 0.08 (accelerated hybrid). So we see
that our slowest dynamics (Langevin) suffers less critical
slowing down than Metropolis, while the Fourier ac-
celerated hybrid method is the fastest and suffers the least
critical slowing down. This important result is the first
numerical verification of the conjecture that Fourier ac-
celeration reduces the dynamic critical exponent. The
values for z,„v,with acceleration, are 3 times smaller than
without, and 6 times smaller than for Metropolis. For the
Langevin method at T 0.5, we found rsG = 5000
sweeps, while for the accelerated hybrid iso = 13, a rela-
tive acceleration factor of about 380 in sweeps and 230 in

cpu time because of the overhead in performing FFT's. 9'2

This gain increases as T decreases.
It is important to note that hybrid dynamics relaxes fas-

ter than Langevin, but that both have the same dynamic
critical exponent [Fig. 1(a)l. In other words, we have es-
tablished that hybrid dynamics forms a large universality
class which contains Langevin and microcanonical (when
ergodic) as limiting cases of the rate at which we random-
ize the momenta. Fourier acceleration reduces the dy-
namic critical exponent and changes the universality class
of the dynamics.

What about systematic errors? After all, our methods
approximate a 'differential equation of motion with a
difference equation which should introduce some sys-
tematic errors in the solutions. This problem has been ad-
dressed in detail both numerically and analytically.
Here we only mention that we expect the discreteness of
the time step not to affect renormalized physical quanti-
ties, such as critical exponents. Our results give the first
numerical confirmation of this. Figure 2(a) shows a plot
of InZso vs lnT for Langevin and for accelerated hybrid.
The data from the accelerated hybrid method are in excel-
lent agreement with the results of Ref. 11. The Langevin
results are in slight disagreement because the systematic
errors for this method are larger, and because Iso is not
measured in renormalized physical units. However, the
slopes of both lines are the same. This means that, to
within our statistical accuracy, the susceptibility exponent
has the same value in both methods independent of sys-
tematic errors. ' We find y 1.85+ 0.04, which agrees
with the results of Refs. 3 and 11. Figure 2(b) shows the
same thing in three dimensions but only for the accelerat-
ed hybrid method.

Now we discuss our results for the dynamics of the
chiral variables [Eq. (9)] on a two-dimensional lattice of
size 16. We measured the relaxation time and found that
it follows a thermal activation law, r, t, ~e s, p T ', as
was found for the Ising spin glass by Young' and McMil-
lan. ' Young' found that AEp=9p, while McMillan'
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FIG. 2. (a) lnzso vs lnT in two dimensions. The slope for ac-
celerated hybrid (0) is y

—1.85~0.04 and Langevin (&) is

y
—1,87+'0.02. (b) Inzso vs ln(T —0.45) for accelerated hy-

brid in three dimensions. The slope is y
—1.58+ 0.01. These

results agree with Refs. 3 and 11.

found Mp 14.16p —6.59+0.785p '. However, the re-
sults of one do not rule out the other. The same holds in
our case, where we can fit the data for z,b using
Mp 0.5p, or ~p 3.8p —8.84+7.96p ', the former
giving a slightly better fit, which we show in Fig. 3. Re-
call that Ref. 3 measured the chiral susceptibility and
found that, for low enough temperature, it can be mapped
onto that of the Ising spin glass by rescaling the tempera-
ture, p 4pr, where pg is the Ising inverse temperature.
With this rescaling our fits become AFp 8pj and
~p 15.2pl —8.84+ 1.99pI '. We see that at low
enough temperatures, i.e., ignoring the pr

' term, our
coefficients of pr and p$ agree very well with the Ising
coefficients of Young and McMillan. We have therefore
shown that both qualitatively and quantitatively, the dy-
namics of the chiral variabies is that of Ising rather than
XY spin-glass variables. These results for the dynamics,
combined with previous results for the statics, strongly
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FIG. 3. A plot of lnr, h (for d-2) vs P, the squared inverse
temperature. The line is from a Z fit and has a slope of 0.5.
Here r,h is the number of sweeps, and the plateau after P =3.5 is
due to finite-size effects.

confirm the idea that for d=2 the chiral variables behave
just like an Ising glass. If the Ising-like behavior of these
chiral variables persists in three dimensions, it would raise
the interesting question of how the finite-temperature
phase transition of the Ising spin glass would manifest it-
self in this XY spin glass where the phase transition is be-
lieved to be at zero temperature. The possibility of chiral
ordering in three dimensions was recently conjectured by
Kawamura and Tanemura. 3

Note that the very long relaxation time of chiral vari-
ables is not due to critical slowing down but to thermal ac-
tivation. In this case, Fourier acceleration did speed up
this relaxation but by decreasing the coefficient multipling

e P, and not by changing the heights of the potential bar-
riers. For this reason we are allowed to compare our re-
sults for BEp with those of Young and McMillan.

We examined finite-size effects by measuring Zso
(d=2, 3) and X,h (d=2) for L =4, 8, 16. Our results for
XsG agree with those of Ref. 11. For example for d=2
and L=16, we found that the finite-size effects become
important for P & 3.5. Measurements of X,h indicate the
onset of these effects at P~ 3.5, which agrees with the
data of Ref. 3. Finally, by studying r,h vs T (Fig. 3), we
see a plateau due to finite-size effects for p & 3.5. So we
have three independent estimates for P where finite-size
effects become important. All estimates give P ~ 3.5 for
d =2 and L =16. This agrees with previous results. "

To summarize, we have found that Fourier acceleration
greatly reduces the dynamic critical exponent, thus great-
ly reducing the relaxation times for both the XYspin-glass
variables and the chiral variables. We were, therefore,
able to conduct the first study (in d=2) of the dynamics
of these chiral variables and to show that they follow
thermal activation over potential barriers. We also
showed that to within our error bars, the systematic errors
due to the discretization of the field equations of motion
do not change renormalized physical quantities such as
critical exponents. Further work is in progress to perform
a detailed study in three dimensions.
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