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Two-stage feature of Harimann-Hahn cross relaxation in magic-angle sample spinning
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In magic-angle sample-spinning experiments the Hartmann-Hahn cross relaxation between pro-
tonated ' C and protons usually proceeds in two stages, except in fast internal rotating ' CH3.
The protonated ' C magnetization of powder samples changes very rapidly during the first tens of
microseconds due to the fast energy exchange between each protonated "C and its directly bond-

ed 'H spins'; then it approaches at a much slower rate to a quasiequilibrium value via the energy
exchange between these ' CH„subsystems and the remaining 'H spins. This fact means that the
whole 'H spin system is not in a quasiequilibrium state and is not describable by a single spin

temperature at least during the first stage of the cross relaxation. The two-stage feature has been

obviously revealed by the depolarization experiment for ' C magnetization. The expression for
protonated "C magnetization as a function of depolarization time has been deduced, which

reaches agreement with the experiments semiquantitatively. The depolarization experiment oAers

a reliable approach to distinguishing between ' CH and CH2 signals in organic solids.

It is generally accepted that the time dependence of
Hartmann-Hahn cross relaxation ' between rare and
abundant spina in NMR may be described by a single ex-
ponential function. 2 3 The theory most commonly put for-
ward 6 describes the spin system as separate I- and S-
spin reservoirs which are free to exchange energy in arbi-
trarily small units, and assigns a temperature to each of
the two spin reservoirs so that the cross-relaxation process
is describable by a change of spin temperature.

However, non-single-exponential phenomena have also
been noted and analyzed. Hahn and his co-workers' s

have pointed out in their detailed analyses on cross relaxa-
tion that the exponential decay law is not valid for a short
period of time at the beginning, when the relaxation is
diffusion limited. Later Milller, Kumar, Baumann, and
Ernst' observed strong transient oscillations in the polar-
ized "C magnetization as a function of the cross-
polarization time in a static ferrocine single crystaL The
model adopted to explain the transient oscillation is essen-
tially a modification of that proposed by Slusher and
Hahn. It is assumed that the dipolar interactions of the
isolated S spin with the I spina are neglected except for
the coupling to the directly bonded I spin in the SI group.

It is our intention in this paper to report that in

cross-polarization magic-angle sample-spinning (CP-
MASS) ' " experiments protonated ' C magnetization
of powder samples usually undergoes a two-stage change
during the cross polarization except in fast internal rotat-
ing ' CH3. it changes very rapidly during the first tens of
@sec, then approaches at a much slower rate to a
quasiequilibrium value exponentially. This two-stage
feature is very common, not being restricted to those sam-
ples with fast internal molecular motion like ferrocine.

This two-stage feature was first observed in a selective
polarization inversion experiment. ' However, it is more
advisable to reveal the feature with the depolarization
method, where, instead of the polarized S magnetization
in the standard CP-MASS experiment, the depolarized S
magnetization is monitored. The pulse sequence utilized
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FIG. 1. Pulse sequence utilized in the depolarization experi-
ment, where t, l is the polarization time for 5 spins, t; is the de-
phase time for I spins, and t,2 is the depolarization time for S
spins. The development of the 5 magnetization is schematized

by a solid line.

is shown in Fig. 1, which is a simple modification of the
standard CP pulse sequence. Two additional intervals t;
and t, 2 are inserted between the usual polarization time
t, i and detection time tq. Both irradiations Hit and Hiq
are turned on during t,2 as they are during t, i, while only
the irradiation His is turned on during t; As .usual, dur-
ing t, i, I magnetization is locked along Hit, while a polar-
ized S magnetization is created along His. During t;
(which is about 1 msec in our experiment) however, the I
magnetization will gradually disappear due to spin-spin
relaxation, while S magnetization is still locked along Htv
with only a little loss in intensity. During t,2, when Hit is
turned on again, the polarization transfer happens again
after an interruption during t;, but in the reversed direc-
tion with respect to that during t, i, that is, the S magneti-
zation is now depolarized. The time dependence of the S
magnetization as a function of depolarization time t, 2 is
recorded and analyzed.

As is well known, high speed spinning at magic angle
causes a chemical shift powder pattern to become a single
narrow line or a centerband flanked by sideband. ' ' The
intensity of the single line or the centerband is now taken
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as the measure of the S magnetization.
Figure 2 shows the time dependence of intensity of

' COOH and ' CH2 signals in a powder sample glycine,
keeping t, ~ at 5 msec and t; at 1 msec. While the
' COOH signal decreases single exponentially, the ' CH2
obviously decays in two stages with a turning point at
t,2=40@sec. Figure 3 shows the similar situation of
' CH signal in a powder sample terephthatic acid with a
turning point at t,2= 80 @sec. The data shown have been
obtained on the Bruker MSL-300 spectrometer with a
spinning rate of 4 kHz.

The two-stage feature can be explained with the follow-
ing model, which is essentially the same as that proposed
by Miiller et al. : each isolated S spin and its directly
bonded I spins make up a quasi-isolate SI„subsystem,
which is in thermal contact with a reservoir made up of
remaining I spins. The energy exchange in each SI„sub-
system is very fast due to the strong direct dipolar interac-
tion and determines the rapid change of S magnetization
in the first stage of cross polarization. The much slower
one between these subsystems and the remaining I spins
via spin diffusion determines the second stage.

The two-stage feature signifies that the cross relaxation
between protonated ' C and protons belongs to the
diffusion bottleneck limit, ' so that the proton spin system
is not always describable by a single temperature, at least
so during the first stage.

In addition, it is also noted that the turning point of ' C
signal in ' CH„group is just at about (n+1) ' of its ini-
tial value. This fact is by no means occasional and can be
well understood if it is taken into account that the ratio of
heat capacities '5 of the ' C and 'H in the subsystems
'3CH„ is just n ' under the Hartmann-Hahn matching
condition. Besides, this fact offers a reliable approach to
distinguishing between '3CH and '3CH2 signals in organ-
ic solids, because the relative intensity at the turning point
is independent of the relaxation rate to a certain extent.
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FIG. 2. The time dependence of intensity of ' C signals on t, 2

in a powder sample glycine in the depolarization experiment,
keeping t, l at 5 msec and t; at 1 msec. x stands for ' COOH
signal, and ~ stands for ' CH2 signal.
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It is worthwhile here to emphasize that the depolariza-
tion experiment is superior to the standard CP-MASS in
revealing the details of cross relaxation process. With the
latter it is difficult to know the real maximum polarized S
signal and the exact time dependence of S signal to be
determined by cross polarization alone, because the
creation of S polarization depends not only on the cross-
relaxation process itself, but also on some other factors,
such as T ~~ of I spin, and Hartmann-Hahn matching con-
dition. In the depolarization scheme, however, the finite
initial S magnetization at the beginning of t, 2 will certain-
ly reach zero at last and the turning point occurs during
the first tens of psec. Therefore, the depolarization exper-
iment adequately exposes the two-stage feature, and ex-
actly reveals the relative intensity of S signal at turning
point.

The quantitative expression for ' C magnetization in
high-speed spinning powder samples as a function of
depolarization time can be deduced, starting from the for-
mula for static single crystal obtained by Miiller et al. :

M„~M (I ——,
' e ' ——,

' e "' cos —,
'

br ),
where M,„ is the polarized ' C magnetization for ' CH
group, b is dipolar coupling between ' C and its directly
bonded proton, R is the spin diffusion rate among protons,
and t is the polarization time.

It is easy to obtain an expression for depolarized ' C
magnetization under the otherwise same condition:

M» =MD( —,
' e "'+ —,

' e "' cos —,
' bt) .

For a static powder sample, we will get a broadened
powder pattern due to the anisotropic chemical shift.
Each spot in the line corresponds to certain molecular
orientations and may oscillate with a characterized fre-
quency as the function of depolarization time because of
the orientation dependence of b.

As the sample turns, the contributions from all the
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FIG. 3. The time dependence of ' CH signal on t, 2 in a
powder sample terephthalic acid in the depolarization experi-
ment, keeping t, ~ at 5 msec and t; at 1 msec.
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magnetically equivalent ' C spina in the molecules with
different orientations will be added to form a single nar-
row line or a center band ffanked by side bands. The oscil-
lations with different frequencies destructively interfere
with each other, resulting in a rapid exponential decay of
the "C magnetization. The time dependence of the dipo-
lar coupling due to the sample spinning will also have an
effect on the behavior of the ' C magnetization, but it can
be neglected to a first approximation, because the decay
occurs during tens of @sec which is only tens of a percent
of the rotational period of the sample. The expression for
'3C magnetization can thus be obtained from Eq. (2),
after summin~ over all orientations of the crystallines. In-
stead of cos —, bt in Eq. (2), one gets P;(I;cos —,'b;t)/
(g;I;), which can be approximated to exp( —t2/2Tj), 's

where

(tlri) -Xl;(-,' b )'/ Xl,

After the replacement, the depolarized ' C magnetization

in the ' CH group in a high-speed spinning powder sam-
ple at magic angle will be obtained:

( )
+

Rt—+ (
+

—3Rll2+ ( I) (3)

where the second term represents the initial rapid drop.
Roughly speaking, '3C in '3CH2 turns out to be

M ~M (-'e '+ —'e 3+'i2 ' ~)
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Equations (3) and (4) predict not only the basic two-
stage feature of protonated '3C signals, but also the
correct turning point of them in the depolarization experi-
ment, reaching agreement with the experiments semi-
quantitatively.
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