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Dipolar and quadrupolar phase transitions in the spin S 2 cubic crystal-field system
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The dipolar and quadrupolar ordering in the spin S 2 cubic crystal-6eld system of localized
magnetic moments interacting via exchange (dipolar) and biquadratic (quadrupolar) interaction
are studied in the molecular-Seld approximation. One obtains pure quadrupolar ordering (para-
magnetic state) or both dipolar and quadrupolar ordering (ferromagnetic state). The phase tran-
sition between these states is of second order, ~hereas the phase transition between the ferromag-
netic and disordered phase may be of 6rst or second order. A 6rst-order phase transition also ex-
ists between the disordered and paramagnetic states.

Quadrupolar ordering in magnetic crystal has been in-
vestigated theoretically in connection with experimental
results on magnetic and crystallographic phase transitions
in some rare-earth compounds. '2 It is well known that
the character of the phase transitions depends on the value
of spin Sand the symmetry of the system. 3 s

In this paper, we discuss the magnetic system with spin
S 2 of which Hamiltonian contains the cubic single-ion
term. A similar but not identical model has been con-
sidered in Ref. 5 where it has been shown that the
paramagnetic state is stable at low temperatures and for
large quadrupole interaction constants as in the cases of
S 1 and S —', . It has also been shown in Refs. 4 and 5
that for S 1, 2, and for any other value of S except
S —,', the (dipolar) transitions between ferromagnetic
and paramagnetic states are of the first or second order
whereas the vanishing of quadrupolar ordering indicates
the first-order phase (quadrupolar) transition. The Ising-
type model for S —, is exceptional and exhibits a
second-order phase transition in quadrupolar ordering. In

this paper we show that for S 2 there is a possible
second-order phase transition in quadrupolar ordering and
that at low temperature the large quadrupole interactions
do not destroy ferromagnetic ordering as in the model
considered in Ref. 5.

The Hamiltonian under consideration is
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where I (&0) stands for the exchange integral, A" A
(&0)„and A's B (&0) are biquadratic interaction
constants. By applying the molecular-field approximation
which involves the substitution of operators S; with their
average value we find that the Hamiltonian (1) is ex-
pressed as
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and

Ig&S; &=—IM.; ~.=-g~&(S;)'&; B =-QB&(S;)'& . (5)

We consider the system with spin S 2, and therefore the
energy eigenvalues of Pi are the roots of the secular
equation which cannot be solved, of course, by the stan-
dard analytical methods. However, we can solve this
equation when M„M» 0, M, M. In other words, we
reduce our problem to the Ising-type model as in Refs. 3
and 5. This is, of course, related to reducing of the sym-
metry of the system under consideration. According to
Ref. 6 such a procedure is dependent on the constant
V~0. Without a loss of generalization we can assume
M, M» 0, M, M. In this case the secular equation

I

yields the following energy levels:
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where
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ables has the form

F —2OD+IM + 2 E(3X +Y ) ——lnZ,

where
5
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Y x —y 0, (i3)

X-x+y, Y-x —y, D-A+28, E-A —8. (12)
The equilibrium condition 8F/8Y 0 has only one solu-

tion,

a3 8V —6(A"+A") —128'-6(8'+8") .

We introduce new variables a instead of ((S')2):

&(S )'&--,' S(S+1)+n, gn-x+y+s-0 .

(7i)

a„7V—SA' —2(A"+A") —48' —10(8'+Br), (7g)

a22 6V —2A' —5(A +A~) —108'-7(B'—B~), (7h)

which justifies the assumption P (I') —(IY) Y 0
that has been given in Ref. 5, in order to solve the prob-
lem.

The stability configurations and their stability range
may be obtained by solving the necessary conditions and

conditions sufficient for a minimum (10) with respect to
M (S') and X x+y:

(i4)

For the sake of (8),A' and 8' in (5) are

A' 28+Ha, 8' 28+Ba . (9)

The appropriate free energy for (6a)-(6e) in new vari-

2F 2F
o, , o. (5)

In order to obtain analytical solutions of (14) and (15) we

perform the Landau development of the free energy (10)
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where
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Now, the condition (14) 8F/8M 0, leads to
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Solution (18) and the condition 8F/8X 0 yields

Xp 0, (2i)

—9/jEaZp~ (PEZp{81PEa Zp —4A2[Zp —6PE(2+Zp)]]) '/

6p E A2
(22)

The solutions (18) and (21) correspond to the so-called disordered state, the solutions (18) and (23) (X2(0 ( to the
paramagnetic state, and those for (18) and (22) (Xi ~ 0 ( to the metastable paramagnetic state which is metastable
everywhere and therefore out of our interest. From the sufficient conditions (15) for the solutions (18) and (21) and
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(22), the stability boundaries are as follows. For the disordered state and paramagnetic one they are, respectively,

Zo —4' 0,

and

Zo
6(2+Zo)

4~2zo
8 la Zo+24A2(2+Zo)

2ZolbfAz{Zo 4p)+12b{2+Zo)) [2A2y+9ba~2yZo+/2Zo[2Zoy 8(Zo 4p)»»
PE ~

L4g(Zo-4p)+128(2+Zo)I +6Zo[2Agy+98al[3a(Zo —4p) —8y(2+Zo)]
(26)

The phase diagrams for M 0 presented in Figs. 1 and
2 are obtained from inequahties (23)-(26). The region
between the stability curve (straight line) described by
Eq. (25) and the stability curve described by Eq. (26) cor-
responds to that in which paramagnetic state (M 0,
X2 &0) fu1611s conditions for a minimum free energy.
The region between the straight lines [Eqs. (23) and (24)l
corresponds to that in which disordered state (M 0,

Xo 0) ensures a minimum of free energy. As seen in
Figs. 1 and 2 there is a region between straight lines [Eqs.
(24) and (25)J in which the paramagnetic state and disor-
dered one can coexist as metastable states.

Let us consider now the solution (19) M F~sr/88&1'
which concerns the ferromagnetic state. In order to ob-
tain a stability curve for Eqs. (16) and (19) we insert
$2F/8M2~0 (Fsorsr~0) into 8F/8X 0. It turns out

I

/
I

l
/

/
/

/

I

I
l

t
l

1

i ]
l

V

s i

i/
lg

li I,

2

Q
L 0++e7

/
LA

2 3 4 6 7

3
fdirnensionlms ~tsj

FIG. 1. Phase diagram for V 0. The nrst-order phase-
transition line is marked eath broken line.

FIG. 2. Phase diagram for V -4. The 6rst-order phase-
transition line is marked ~ith broken line.
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that the stability boundary of the ferromagnetic phase is
described by two equations already known [(23) and

(26)] and therefore is the second-order phase-transition
line. It is essential that the inequality 6 0 [Eq. (15)] is

satisfied everywhere on the curve (26), but not everywhere
on the curve (23). This means that the inequality h~ 0
cuts off' the line of the second-order phase transition (23).
From Eq. (23) and the condition h~ 0, the point where
the second-order phase transition ends may be obtained:

(27)
6P[Bi(2+Zo) PZoy ]

where Eq. (23) holds.
In order to obtain a full description we ought to find the

curve which represents the points of the first-order phase
transitions from ferromagnetic (MAO, X(0) to disor-
dered phase (M 0, Xo 0). Definitely this curve repre-
sents the stability boundary of ferromagnetic order, and it
may be obtained from 8F/8X 0 and b, ~ 0 [Eq. (16)l.
This procedure leads to a third-order equation, which

ought to be solved numerically. Therefore we choose
another way. Varying X from —2 to 2 and M between 0
and 1.5 for chosen V and E we made a map of free energy.
From this map the end of the ferromagnetic order is seen
as the minimum. Phase diagrams for the single-ion cubic
anisotropy constants V 0, —4 are presented in Figs. 1

and 2. It follows from this that the ferromagnetic state at
low temperatures is stable, which is in contradiction to
previous results. 5

As follows from Eq. (27), the second-order phase tran-
sition along line (23) vanishes for single-ion cubic anisot-

ropy constant V equal to -4 (see Fig. 2). This is related
to the fact that the coefficient Bt at M4 term becomes 0

when V —4 and changes its sign.
As has been shown in Ref. 3, the quadrupolar ordering

induces, in general, a distortion of the lattice and there-
fore the quadrupolar phase transitions can be identified
with structural transitions.

We have studied here the possible phase transitions in
the spin S 2 system involving dipolar and quadrupolar
interactions. This system exhibits the second-order transi-
tion between ferromagnetic and paramagnetic states. The
quadrupolar variable —X z ((S') ) —2 does not
change in this transition. Qn the other hand, the quadru-
polar variable changes in the first-order phase transition
between paramagnetic and disordered states, whereas
magnetization is constant. The phase transition between
the ferromagnetic ordering and disordered state may be of
both first or second order.

The pure dipolar phase transition is of second order
whereas the pure quadrupolar phase transition has to be
of first order. Such a remark explains why the pure qua-
drupolar transition must be of first order: The free energy
F(M O,X) contains a third-order term in quadrupolar
variable Xwhereas there are only even powers of magneti-
zation M in the free-energy expansion. On the other
hand, the free energy F(MAO, X) contains both first- and
third-order terms of variable X, and therefore the phase
transition may be of first or second order, respectively, be-
cause these terms may mutually compensate at phase-
transition points. The second-order phase transition
occurs when two minima and one maximum become iden-
tical. For the function F(X) aX +bX +cX +dX, two
minima degenerate to one minimum if bd —

—, cz. In
our case this condition is fulfilled only by the straight line
defined by Eq. (23) up to the line defined by Eq. (27).
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