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The critical exponents at the glass temperature T, of a spin glass are estimated by making use
of predictions obtained from a phase-space percolation model, in combination with scaling argu-
ments. With this hypothesis, the whole set of exponents for a given system, including the dynam-
ic exponent, can be expressed simply in terms of a single nonuniversal parameter. The model is
checked against data from simulations and from three sets of experiments; agreement is very

satisfactory.

The critical exponents in spin-glass (SG) systems have
attracted considerable attention as they are strikingly
different from values observed at conventional transitions,
in particular, the values obtained from experiment and
simulation for the dynamic exponent zv group around
zv~17, which is spectacularly high. Also, the exponents do
not seem to differ drastically between simulations on Ising
lattices and experiments on basically Heisenberg systems.

Continentino and Malozemoff (CM)! give a simple but
effective discussion using scaling arguments to relate the
form of the nonexponential relaxation above T to certain
critical exponents. Their key assumption is that a cluster
of s correlated spins has an effective relaxation time pro-
portional to s*. They find a stretched-exponential? long-
time relaxation above T, having exponent (1—n)=1/(1
+x), with the relation x =zv/g8. This in itself, however,
does not lead to predictions for the critical exponents
themselves.

Following a different line of approach, we have pro-
posed that the spin-glass transition (and other glassy tran-
sitions) can be considered in terms of a percolation transi-
tion in configuration space.’ This leads to a number of
specific predictions. Those that are relevant here are (a)
(1—n) tends to 3 at Ty, and (b) no specific-heat anoma-
ly at 7.

Prediction (a) can be checked directly by experiments
on relaxation above Tg; results on a number of systems
seem to be in good agreement with it.>* Prediction (b) is
hardly a prediction, as this is one of the best established
characteristics of spin glasses.

If for the sake of argument we accept that these two
predictions are strictly correct, and that the configura-
tion-space picture and the CM scaling approach are alter-
native and complementary ways of representing the same
physics, we conclude from (a) that x =2, i.e., zv=2p6.
The easiest way to satisfy (b) is for a to be a negative even
integer, such as —2; C(T) is then regular at T,. If we
choose a = — 2, through the scaling relation 2 —a =vd, we
have v=1%.

Without these two equations the set of critical ex-
ponents (including the dynamical coefficient z) can be
represented by three independent parameters, the other
being deduced through standard scaling relations [®
=B+ y=88, v=y/(2—n)]. With these two equations,
we can express all critical exponents in terms of a single
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nonuniversal parameter for each system. If we choose & to
be this parameter, we have

B=4/(1+6), y=4(5—1)/(6+1),

O =45/(6+1), zv=85/(6+1) . m

We can now test these relations. In Table I, we give ex-
perimental critical-exponent data for different systems:
the Ising * J spin glass in three dimensions,> CuMn,%’
(Feo.15N10_35)75P|6B6A13,8 and CdIll().;;Cl'l,7S4.9 In each
case we give in the first column the exponents found
directly from simulation or experiment together with
those deduced from these through the standard scaling re-
lations. In the second column, we give the set of ex-
ponents obtained from Eq. (1) above, using as unique in-
put the experimental value of 6. As can be seen, the
agreement is excellent. § varies quite widely (from about
3 to 10) but because of the form of the equations, the oth-
er exponents change much less, in agreement with obser-
vation.

We can also consider the algebraic prefactor z ~* in the
relaxation at Ty.>"® Ogielski® gives, from direct scaling
arguments, A =[d —(2—17)1/2z, and CM give A =p/vz.
Assuming Eq. (1), both of these lead directly to A =1/28.
In Ref. 8, §=10 and A =0.05. In Ref. 9, §=4.1+0.5 and
A=0.105. Thus, agreement also seems good for this pre-
factor.

The overall agreement appears to be very satisfactory
for these four well-studied systems, suggesting that the
two relations given above could have “universal” validity
for spin glasses, whether Ising or Heisenberg, nearest
neighbor or Ruderman, Kittel, Kasuya, and Yosida
(RKKY). Data on the SG AIGd (for which no value of
zv is available) also give good agreement with a= —2.10
However, we should note that some results reported on
certain other SG systems indicate values of a that are
more negative than —2.%!12 In the one case among
these, where zv has also been measured, the rule zv =286
holds within the experimental errors. '2

It should also be pointed out that Rosenblatt, Ra-
boutou, Peyral, and Lebeau !> made the remarkable obser-
vation that the critical exponents they obtained for a ran-
dom granular superconductor array were similar to those
for spin glasses. Their values for the granular array are
also in agreement with a = —2.
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TABLE 1. Values of critical coefficients obtained from simulations and experiments on different
spin-glass systems, compared with values estimated using the model described in the text. In each case,
the only free input parameter used in calculating the numbers in the right-hand column is the value of §;
the asterisks indicate that this has been chosen to be equal to the experimental value (see text).

3D Ising SG* CuMn SG®

Coefficient Simulation Model Coefficient Experiment Model
v 1.3£0.1 $ v 1.3£0.2 3
é 6.7 6.7* . é 3.3%+0.2 3.3*
B 0.5 0.52 B 09+0.2 0.93
Y 29+03 2.96 Y 2.1%0.1 2.14
P 34103 3.48 P 3.0%+0.3 3.07
zv 79%1 7.0 zv 7.0+0.6 6.2

Amorphous Fe-Ni-P-B-Al °© CdCr,(In)S4 ¢

Coefficient Experiment Model Coefficient Experiment Model
v 1.39 t v 1.26+0.2 3
é 10 10* é 41+04 4.1*
B 0.38 0.36 B 0.75+0.1 0.78
y 3.4 3.3 4 23*+04 24
P 3.8 3.6 P 3.1£0.5 3.2
zv 8.2 7.3 zv 7.0+0.2 6.5

2Reference 5.
bReferences 6 and 7.

We should also note'* that the stretched exponential
with exponent (1—n)=35 appears in another context:
the relaxation of one-dimensional (1D) chains with ran-
dom strong pinning.'®> A segment of length N relaxes with
a time constant proportional to N2 This is the exact
equivalent of x =2 in CM. The “cluster relaxation time”
is proportional to the square of the number of spins, which
is a 1D random walk in phase space with the s cluster
spins having to be turned over in a definite order. This
seems to be an essential ingredient which distinguishes
glassy critical behavior from conventional critical behav-
ior.

It is not clear what physical characteristic the non-
universal parameter 6 is linked to. In terms of the discus-

‘Reference 8.
dReference 9.

sion given by CM, it is related to the effective dimen-
sionality of the clusters.

Finally, it would be interesting to find out if similar
rules linking the critical exponents to the nonexponential
relaxation hold in other glassy systems (such as real
glasses), as arguments we have given for the universality
of the percolation approach?® would suggest.

This work forms part of a collaboration with J.-M.
Flesselles, R. Jullien, and R. Botet. I would also like to
thank C. L. Henley, J. Rosenblatt, H. Bouchiat, C. Gio-
vannella, M. Ocio, and J. Hammann for helpful discus-
sions and remarks.

IM. A. Continentino and A. P. Malozemoff, Phys. Rev. B. 33,
3591 (1986).

2(1—n) will be used throughout rather than B for the
stretched-exponential exponent to avoid confusion with the
critical coefficient S.

31. A. Campbell, J. Phys. (Paris) Lett. 46, L1159 (1985); I. A.
Campbell, Phys. Rev. B 33, 3587 (1986); 1. A. Campbell,
J.-M. Flesselles, R. Jullien, and R. Botet, J. Phys. C 20, L47
(1987).

41. A. Campbell, J.-M. Flesselles, R. Jullien, and R. Botet, Phys.
Rev. B 37, 3825 (1988).

SA. T. Ogielski, Phys. Rev. B 32, 7384 (1986).

6N. de Courtenay, H. Bouchiat, H. Hurdequint, and A. Fert, J.
Phys. (Paris) 47, 1507 (1986).

7L. P. Levy and A. T. Ogielski, Phys. Rev. Lett. 57, 3288
(1986). From thin-film data, G. G. Kenning, J. M. Slaughter,
and J. A. Cowan [Phys. Rev. Lett. 59, 2596 (1987)] find in-
dependently v=1% *+0.06 in CuMn.

81.. Lundgren, P. Nordblad, and P. Svendlindh, Phys. Rev. B 34,
8164 (1986).

9P. Refrigier, E. Vincent, M. Ocio, and J. Hammann, Jpn. J.
Appl. Phys. 26, 783 (1987); E. Vincent and J. Hammann, J.
Phys. C 20, 2659 (1987).

108, Barbara, A. P. Malozemoff, and Y. Imry, Phys. Rev. Lett.
47,1852 (1981).

1P, Beauvillain, C. Chappert, J. P. Renard, and J. Seiden, J.
Magn. Magn. Mater. 54-57, 127 (1986).

12p_ Beauvillain, J. P. Renard, M. Matecki, and J. J. Prejean,
Europhys. Lett. 2, 23 (1986).

13]. Rosenblatt, A. Raboutou, P. Peyral, and C. Lebeau, Jpn. J.
Appl. Phys. 26, 1421 (1987).

14 C. L. Henley (private communication).

158, Alexander, J. Bernasconi, and R. Orbach, Phys. Rev. B 17,
4311 (1978); D. Dhar and M. Barma, J. Stat. Phys. 22, 259
(1980); G. Forgacs, D. Mukamel, and R. A. Pelcovits, Phys.
Rev. B 30, 205 (1984).



