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%e describe a unitary transformation which eliminates terms coupling states with diNering
numbers of doubly occupied sites from the Hamiltonian of the Hubbard model. The S matrix for
the transformation, and the transformed Hamiltonian, 0', are generated by an iterative procedure
which results in an expansion in powers of the hopping integral t divided by the on-site energy U.
For a half-61led band and in the space with no doubly occupied sites, 0' is equivalent to a spin
Hamiltonian. %e discuss the implications of our results for 0' on theories of high-temperature
superconductivity.
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In Eqs. (3) cr is up for cr down and down for o up,
n; Ct~Ct~, and h; 1 n;; the separa—tion is formally
achieved by multiplying each term in Eq. (1) on the left
by 1 n; +h; and on the -right -by 1 nj +h No-te tha—t.

The Hubbard model' is the simplest possible Hamil-
tonian which captures the essential physics of fermion sys-
tems with short-range repulsive interactions. The Hamil-
tonian of this model is H T+ V where the kinetic part
represents hops between neighboring sites,

T —t+N;i C;t Ct. (1)
ija

and the interaction part gives contributions only from
electrons on the same site,

V Ugtt;(ni . (2)

[In Eq. (1) Nij 1 if i and j are labels for neighboring
sites and equals zero otherwise. ] Despite its apparent sim-
plicity, the properties of the Hubbard model are well un-
derstood only for the case of a one-dimensional lattice. 3

The difIIculty of the model is generally felt to result from
the fact that it does capture the essential elements of the
complex behavior of strongly-correlated Fermi systems
and interest in the model has increased in recent years.
(See, for example, Refs. 4-9.) This has been especially
true since the discovery of high-T, superconductivity in
copper-oxide systems 'p" which are believed to be qualita-
tively described by the Hubbard modeL

Our transformation is based on a separation of the ki-
netic part of H into terms which increase the number of
doubly occupied sites by 1, terms which decrease the num-
ber of doubly occupied sites by 1, and terms which leave
the number of doubly occupied sites unchanged:

Tt T and -that

[VT ] mUT

Equation (4) expresses the fact that the interaction energy
changes by mU after one of the hops in T .

We seek a unitary transformation which eliminates
hops between states with differing numbers of doubly oc-
cupied sites

H( /sH js H + [tS,H] + ftS, [tS,H] ] +
1f

A recursive scheme for determining a transformation
which has this property to any desired order in t/U is de-
scribed below. The last two terms in the untransformed
Hamiltonian,

H—=H' ' ~V+ Tp+ Ti+ T i, — (6)

may be eliminated by choosing

~S-~S")-U '(T —T -)

Substituting Eqs. (7) and (6) into Eq. (5) and using Eq.
(4) gives

H ~(2) —eis"'Heis"'

V+ T()+ U ([Ti T i]+ [Tp T i]

+ [T(,Tp])+0(U ') (8)

To proceed further we define

T"'(mi, m2, . . . , rnk)= T"'[m]-T—
,T, . . . T „(9a)

and note, using Eq. (4), that

[V T"'[ ]]-Ug;T" [)]=—UM")[ ]T"'[m] .
(9b)

H'k' will contain terms of order tkUi kwhich couple-
states with differing numbers of doubly occupied sites, i.e.,
with M [m] aO and which can be expressed in the forin

H~(iki U( —k+C(k)[ ]T(k)[ ] (1O)
fm)

It follows from Eq. (9b) that

0&(k+1)—iS(h) —iS+)08
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will contain M[m] &0 terms only at order t +'U, if we
generalize Eq. (7) by choosing

iS (k) S (k) iS (k —) )

Equation (12) generates an expansion for S in powers of
(t/U) which when truncated at order (k) leaves H' free
of M [m] a0 terms up to order k. For example,

C [m] T [m]
(ml B M(m)ap M [m]

(i2)
iS U ([T(,Tp]+ [T—1, Tp] )

yields

H' V+T()+U '[T(,T-(]+U [T (1,0, —1)+T (—1,0, 1)—[T (0, 1, —1)+T (1, —1,0)

+T"'(- i, i,0)+T"'(0, —i, i)]/2I+ " (i4)

T (l~)c=—0, (is)

where we have dropped the M[m] ~0 at third order which
will be eliminated from H' by S (3).

The expressions for H' and S' rapidly become lengthy
as the order increases'2 but simplify in the most physically
relevant situations. In particular, when t/U is small
enough for the present expansion to be convergent, we
may expect that the ground state and its low-lying excita-
tions lie, after the unitary transformation, entirely within
the subspace with the minimum number of doubly occu-
pied sites. For any state in this subspace, l 0)t., and any
filling of the Hubbard band

Eq. (15) simply expresses the fact that the interaction en-

ergy cannot be lowered below its minimum value and may
be demonstrated explicitly. Equation (15) may be gen-
eralized to higher orders:

T " [m] l e)t, —=0 t (i6a)

k
M(k)[m]—:pm; & 0 (16b)

I~n

for any value of n Equati. ons (16) can be used to elimi-
nate many terms from the expansion for H' so that, in the
minimum (V) subspace, '

HL V+ T() —U 'T(2)( —1,1)+U [T (—1,0, 1)—[T )(—1,1,0)+T )(0, —1, 1)]/2J

+U [T (—1,0, —1,0)+T ( —1,1, —1,1)+T (0, —1,0, 1)—T ( —1,0,0, 1)
—[T (—1, 1,0,0)+T (0,0, 1,1)+T ( —1, —1,1, 1)]/2]+O(U ) .

Further simplification occurs when the Hubbard band is half filled. In this case the minimum (V) subspace has one elec-
tron at each site and no hops are possible without increasing the number of doubly occupied sites, i.e., Tp l eL, )—=0 and,
for higher-order terms,

T [m] l +t.)—=0 if M„[m] & 0 or M„g [m] 0 and m„&1 .

At half filling these considerations lead to'2

HJ) —U 'T (—
1 1)+U T (—1,0, 1)+U [T (—1,1, —1,1,)+T (—1,0,0, 1)——,

' T (—1, —1, 1,1)]

+U [—
2 T 5 ( —1,0, 1, —1, 1)—

—,
' T 5 (—1, 1, —1,0, 1)+T 5 ( —1,0,0,0, 1)+ 2 T 5 ( —1, —1, 1,0, 1)

+ —,
' T ( —1,0, —1, 1,1)+ —,

' T ( —1, —1,0, 1,1)l+

For a half-filled band there is a one-to-one correspon-
dence between states in the (V) 0 subspace of the Hub-
bard model and states in the Hilbert space of spin —

—,
'

objects located on each lattice site

ln», n», n2fn2j ~ ~ ~ nNt nN/)

l (y() '
l (y2) l (y/y)

(i9)

where a;=
l f) for n;1 1 and cr; l J) for n;~ (Recall.

that n;(+n;~ 1.) Similarly, there is a spin Hamiltonian
acting in the spin space which corresponds to HivL acting
in the occupation number subspace. The spin Hamiltoni-

t

an may be expressed as

3 N

where o.o, o~, a2, and o3 are the four Pauli spin matrices.
For example,

Hj$ g N~, ,J,N;, ,J, (h;, ,C;, ,CJ, ,n), ,)——
4A

(2i)

When the right factor in parentheses operates on a state in



BRIEF REPORTS

the &V& 0 subspace it produces zero if sites i) and j) had
the same spin occupied and otherwise gives a state with
site i) doubly occupied and site jt empty and all other
sites singly occupied. The left factor in parentheses gives
zero unless it operates on a state where site j2 is doubly
occupied and site i 2 is empty so that we can setj 2 i t and
i2 J) I.t follows that, using spin notation and noting that

.2. ~N;J

Hj)) gN (I f& ')I &&" + I
l&"'I t&"')

which can be rewritten using Eq. (2) as

This is the familiar result in the large U limit, that the
half-filled-band Hubbard model is equivalent to the
Heisenberg model. We have carried out this procedure
for translating HHL into a spin Hamiltonian to higher or-
der. (The task becomes quite laborious in high order and
we use a computer program to do the bookkeeping. ) We
find that'3

(1 rr —' rr )+t U 2g 1V),2(1 -cr(') a ))+ —'g N N (cr cr( —1)
1,2

[1 ~(l). ~(2) ~(l). (3) (4). (4) (2) (3) (2). (4) (3).~(4)]
1,2, 3,4

+5[(rr()) sr(2))(rr(3) tr(4))+(rr(') rr( ))(rr(2) rr(3)) —(rr()) tr(3))(rr(2) sr(4))] +O(r6U 5) (24)

&0,'&)v —4t /U, (25)

The primes on the sums indicate that they run over sets of
distinct site labels. We emphasize that terms proportional
to odd powers of r in Eq. (24) [which is equivalent to Eq.
(18)] vanish identically. This fact refiects the invariance
of the Hubbard Hamiltonian spectrum at half filling un-
der t tw-hich may be established by making a
particle-hole transformation. Note that 0,' involves sums
only over sets of sites connected by near-neighbor links,
that it is explicitly invariant under rotations in spin-space,
and that it annihilates a ferromagnetic (all spins parallel)
state. This last property follows simply from the Pauli ex-
clusion principle.

We emphasize that Eq. (24) is valid for any lattice in
any number of dimensions. Both Eq. (17) and its s in
version at half filling have been derived previously ' '
for terms up to order t 2/U These .leading-order terms are
the basis upon which much of the theory for high-
temperature superconductivity is based. ' '9 The essen-
tial elements of the resonating valence bond (RVB)
theory, developed by Anderson and co-workers's 2o 22 and
by others' are the natural favoring of nearest-neighbor
singlet pairing of the spins which gives &sr(t) rr(2)&

and the separation of spin and charge degrees of freedom,
which is intimately connected to the r/U expansion. We
define a valence-bond state as one in which the spin on
each site (i) forms a spin singlet with one of its neighbors
on site j (I g&

'
I j& J —

I j&
'

I f& 1 )/K2). For such a
state, &rr(') rr(J)& —3 if sites i and j are connected by a
"spin bond" and is zero otherwise. The RVB state, pro-
posed as the underlying cause of high-T, superconductivi-
ty, is a linear combination of all possible valence-bond
states. We are interested here in how the higher-order
terms in Eq. (24) might affect the RVB state for the case
relevant to high-T, superconductivity, that of a two-
dimensional square lattice. The classical ground state in
this case is the Neel state, illustrated schematically in Fig.
l(a). Including for now only the r 2/U term the expecta-
tion value of H,' in the corresponding quantum state is

which may be compared with the expectation value for
any valence-bond (VB) state

&H,'&yt) -—7t '/2U, (26)

and with the ground-state energy,

&0,&,= -4 sr'/U, (27)

estimated from numerical calculations24 25 for the Heisen-
berg model. The huge degeneracy of valence-bond states
[several valence bond states are illustrated schematically
in Figs. 1(b)-1(d)] allows fiuctuations in the RVB state
which will lower its energy below —7t 2/U. Existing nu-
merical evidence suggests that the ground state is closer to

(a)

&c&

FIG. 1. Schematic illustration of some states of a spin- 2 sys-

tem on a square lattice. (a) Ising state with antiferromagnetic
order. (b)- (d) Three diH'erent valence-bond states. Note that
states (b) and (d) have no elementary plaquettes with more
than one bond on the perimeter.
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a Neel state and, unlike the RVB state, has a nonzero
staggered moment. (However, the evidence is not yet con-
clusive. 2s) This expectation has been a principal source of
reservations about the RVB theory for high-T, supercon-
ductivity. When the r /U terms are included

(H,')Iv - 4t—'/U+24r '/U'+ . (25')

More significantly, the degeneracy among valence-bond
states is lifted! The largest effect comes from the last of
the terms in large parentheses in Eq. (24), which gives a
large positive contribution to the energy whenever two
bonds exist along the perimeter of an elementary pla-

quette of the square lattice. Arrangements of the valence
bonds which entirely avoid having two bonds on the per-
imeter of an elementary plaquette, are illustrated
schematically in Figs. 1(b) and 1(c). These states are the
lowest energy VB states when t 4/U3 terms are included,
and for them we find that for the valence-band lattice

states

(H,'}vaL —7t /2U+12t /U +.. . (26')

These VB states have lower energy than the Ising state
for r/U) 1J24=Q.2. For comparison, (H'), for the
valence-bond lattice depicted in Fig. 1(d) is —7t /U
+69t 4/2U3 F.or the high-T, superconductors t/U is now
known precisely but it is generally believed that
1Q 2&(t/U) & IQ '. The higher-order terms discussed
above certainly play a role in favoring valence-bond states
over Neel states. Moreover, by breaking the degeneracy
among valence-bond states they can have a profound
effect both on the nature of the RVB state and on the na-
ture of its low-lying excitations.

Note added in proof. After this work was completed,
we learned that some of our results for the half-filled case
have been obtained previously. See Ref. 27 and work
quoted therein.
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