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Theory of how to distinguish a scalar from a tensor order parameter in the
high-T, superconductors
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Using generalized Ginzburg-Landau equations, we discuss the possibility that the high-T, su-

perconductors do not have a scalar, but a tensor order parameter. We propose experiments to
distinguish between these two possibilities both with lattice anisotropy included. A tensor order
parameter implies a splitting of the upper critical field for a given setup as well as the appearance
of a transverse magnetic field, when a field is applied parallel to the crystal cell axes. Only for a
single scalar is the product of coherence and penetration lengths an invariant along the cell axes.

The pioneering work of Bednorz and Miiller' and the
subsequent discovery of superconductivity above liquid-
nitrogen temperatures has led to considerable interest in
these materials, especially in their potential applications.
Recently single crystals of sufficient size have been pro-
duced3 and a first few experimental results have ap-
peared. " From an analysis of these investigations the
following picture emerges. The new high-T, materials are
highly anisotropic but do have truly three-dimensional su-
perconductivity and show a large, temperature-dependent
anisotropy of resistivity and critical fields. In addition, the
new materials are strongly type-II superconductors with a
lower critical field of about 102 G and an upper critical
field of the order of 105 G. Therefore a Ginzburg-Landau
(GL) approach can be expected to be extremely important
because of existing spatial variations, vortices, and other
spatial inhomogeneities.

The theoretical attempts to describe high-T, supercon-
ductors have either been purely microscopic or focused on
the application of the GL theory having a single scalar or-
der parameter with lattice anisotropy, s 'n that is if the
mass matrix associated with the gradient part of the free
energy has tensor character.

Here we suggest that the above theory is not sufficient
to describe the strong anisotropy of the oxide supercon-
ductors. Hence we propose that such a strong anisotropy
requires that the macroscopic wave function is of a ten-
sorial nature. "

Since such anisotropies are expected to be more pro-
nounced in the 90 K than in the 40 K superconductors, we
list the experimental evidence for a multicomponent order
parameter for this class of compounds. (a) Atomic re-
placement of Y by magnetic ions such as Gd (Ref. 12) and
Cu by metal such as Zn (Ref. 13) shows that the critical
temperature is not and is severely affected, respectively.
Thus superconductivity is directional in these compounds,
predominantly happening in the Cu-0 planes and chains.
(b) Far-infrared spectroscopy indicates the possibility of

more than one gap'" and tunneling measurements give a
broad range of gap values. ' '6 (c) Nuclear spin-lattice
relaxation on the Cu sites indicates the existence of two
gaps. '7 (d) Temperature behavior of the upper critical
field7 and a large anisotropy are measured for the lower
critical field. ' (e) A possible intermediate critical tem-
perature is obtained from low-field ma, ~netization mea-
surements on small single crystals. 9 (f) Oxygen
stoichiometry versus temperature shows a plateau at oxy-
gen concentration around 8 6.7.2n

Triggered by these observations we compare the results
predicted from a phenomenological theory for a single
scalar order parameter with lattice anisotropy with those
obtained for tensor order parameters. The latter are basi-
cally unknown in the theory of superconductivity, but
their application to other fluids is well established. These
include the superfluid phases of 3He (3He-A, 3He-B,
He-A t, etc.) '2 and superfluid neutron star matter23 24

as well as various classes of liquid crystals, '2 the meso-
phases mediating the solid-to-isotropic liquid transition in

many organic compounds.
The method used in the present analysis is a generalized

GL description27 for the macroscopic wave function sup-
plemented by general symmetry arguments above and
below T,. This approach allows us to make predictions,
which can be tested experimentally and which will allow
for a narrowing down of possible order parameters. Final-
ly, we complement the generalized GL description by an
evaluation of the possibility of new vortices and other de-
fects using group theoretical methods. Measurements on
single crystals are a sine qua non condition if one wants to
distinguish among different options for the order parame-
ter as we show in this Brief Report.

Our main predictions to experimentally distinguish be-
tween a single scalar and a tensor order parameter both
with lattice anisotropy and for spin singlet pairing are the
following.

(a) If an external magnetic field is applied in the direc-
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tion of any of the axes defining the perovskite unit cell in a
single crystal, we show that every tensor order parameter,
except for a scalar, can lead to the occurrence of a trans-
verse magnetic field along with a longitudinal component
of the resulting current density. This is in addition to both
the current density in the plane perpendicular to the vor-
tex line direction and the magnetic field in the vortex line
direction. Hence we predict that the Meissner effect
changes qualitatively for a field along one of the crystal-
line axes.

(b) The measurement of the product of coherence and
penetration length along each of the crystallographic axes
of an orthorhombic or tetragonal lattice is expected to be
invariant only for a single scalar order parameter with lat-
tice anisotropy. Therefore the absence of this invariance
at any temperature, for which the Ginzburg-Landau
theory is valid, implies the existence of a multicomponent
order parameter in the new materials.

(c) The single scalar theory with lattice anisotropy pre-
dicts for the upper critical field an anisotropy similar to
that of the lattice. For the multicomponent theories we
show the appearance of more than one intermediate upper
critical field in a given direction.

The observation of any one of our three main predic-
tions for nonscalar order parameters would immediately
rule out the single scalar order parameter with lattice an-
isotropy, thus demonstrating the power and importance of
a purely macroscopic approach.

Now we discuss our choice of the class of order parame-
ters considered in this note. There is no experimental in-
dication of any long-range magnetic order coexisting with
superconductivity in the new materials close to the normal
superconducting transition. Only at much lower tempera-

tures (of order 2 K) a phase transition to a state, where
antiferromagnetism and superconductivity coexist, has
been observed. Therefore we conclude that the new ma-
terials have most likely spin singlet pairing. From this ob-
servation and the fact that the macroscopic wave function
must be antisymmetric (electrons are fermions), it follows
immediately that the orbit part of the macroscopic wave
function must be symmetric under parity. This in turn
rules out the possibility of a polar vector as the orbit part.
Thus for tensors up to second rank we have three classes:
a scalar (the usual quantity considered for low-tempera-
ture superconduetors), an axial vector, and a symmetric
traceless tensor (also called the deviator). The latter is fa-
miliar as an order parameter in the field of liquid crys-
tals and it is well known to contain uniaxial and biaxial
nematics (long-range orientational order alon~ one or two
directions) as the two possible subclasses. 25 We inter-
pret it as resulting from d-wave components in the elec-
tronic pairing.

In this note we give explicit formulas for the case of the
axial-vector order parameter in a uniaxial environment
(crystal lattice symmetry) and indicate in the text which
results carry over to the ease of the deviator and/or ortho-
rhombic lattices. Explicit results for the latter classes will
be given in a forthcoming publication. The generalized
GL free energy for the axial-vector order parameter with
uniaxial lattice anisotropy is

F F~+ dVfl/2p(jk((D((((k) (Dj(((()+a jy; y,

+Pijkl (((i pj (j(k pl+H /8(r~ (I)
where D; h/i2nV; —2e/cA;, H VxA, and where we
have for the structure of p;jk( and a;~.

pijki -p(4'JC(+p2/2(bÃ~j'f+&'Q&k)
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(2b)

n; characterizes the direction of uniaxial symmetry and bt('

projects into the plane perpendicular to n;: btjr b;( —n;nj.
Above T, fluctuations on the order parameter must be

isotropic and the only anisotropy left is due to the lattice
structure. Hence for T & T„p;jk( and a;j have the form

pi jkl p ~ig ~kl +p ™inj ~kl +p /2 (@;8,(+8k, Sj(). .

(3)

Matching at T T, yields

Pi P4 P Ps P P2 P5 P P3 P +P

a~ u~~ e .

An attractive feature of a tensor order parameter, not
possible in the framework of a single scalar order parame-
ter, is that it allows for structural changes in the order pa-
rameter within the superconducting phase. As the order
parameter becomes more isotropic near the critical tem-
perature, an intermediate transition can take place

(T, & T,) where one of the components begins to fluctu-
ate first. In the context of our working example, an uniax-
ial pseudovector order parameter, this means, say a&

c~(T-T,) and a~~ c~~(T —T, ). For the second rank
symmetric tensor this could mean a d-to-s wave and/or bi-
axial to uniaxial transitions.

Using the abbreviations i((; p;exp(ip), p (p; ) '

hc/2e, and r; p;/p we have for the equations for the
Meissner effect

Ak+c2/[16m(ep) )(~ ')ki(VxA), @0/2(rVky, (6)

where ok( pk( jr;r, and choosin'g n;llz, the existence of
the off-diagonal terms, Q„~ p2r rr, 0» p5r~r, /2, and
or, p5r~r, /2 results.

We see clearly that both the current density and the
magnetic field acquire off-diagonal components due to the
presence of p2 and p5. The main result for the case of a
magnetic field applied perpendicular to the Cu-0 planes is
summarized in Fig. 1. The measurement of any field in
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FIG. 1. An external magnetic field is applied parallel to the
crystallographic axis c. The left and right figures show the re-
sulting current density (solid line) and the total magnetic field
(dash-dotted line) for a scalar and a nonscalsr order parameter,
respectively. For the scalar the total magnetic field is in the
same direction as the external field (dashed line), whereas for
the tensor order parameter this is not the case.

the Cu-0 planes or any current density perpendicular to
them would conclusively rule out a scalar order parame-
ter. The converse is not true, since the off-diagonal contri-
butions might be small. The same conclusion applies for
tetragonal and orthorhombic symmetry of the lattice and
also for the case of the traceless, symmetric second-rank
tensor.

Experimentally one could test these predictions, e.g., via
neutron scattering and torque measurements (whose
feasibility has been demonstrated recently for a granular
sample of the new materials ) on well-aligned single
crystals.

For a single scalar order parameter with anisotropic lat-
tice we have a simple relation for the product of coherence
length and penetration depth in each direction of symme-
try; we find for example for an orthorhombic lattice in the
clean limit

l3(3 hc/[4'� ( y( (2x(a( )' ], (7)

where
~ y ~

is the modulus of the order parameter and a
measures the relative distance from T,. Such invariance
should hold in the dirty limit too because A, g" is indepen-
dent of the mean free path and proportional to the clean
limit product X(.27 Equation (7) is violated as soon as an
order parameter other than a single scalar is considered,
although the deviation might be small close to T, . It is in-

tuitively plausible that (7) does not hold for tensor order
parameters since the London penetration depth depends,
in contrast to the coherence length, on the condensate
density, which varies for an anisotropic tensorial gap as a
function of direction. As it is well known from the aniso-
tropic single scalar theory, s the upper critical fields in the
directions parallel and perpendicular to the Cu-0 planes
are related to the coherence lengths via H, zt @o/2'~
and H,2~ 4'o/2xg~gs.

For the case of an axial-vector order parameter where
the external magnetic field is applied per ndicular to the
Cu-0 planes we get H,(2t~I @o/2x($, H,g @o/2xgt with

—h p4/Sx at and gf —h p~/Sx a&. The upper

critical 6eld that totally destroys the superconducting
state is the largest one of the two mentioned above. How-
ever, there is a second upper critical field for a magnetic
field applied in one direction, in contrast to the case of a
single scalar order parameter. For experimental results
this can lead to the interpretation of a value for H, 2 which
is not sharply defineds close to T„H,)~I =Hg, if Eq. (5)
holds. At lower temperatures one expects an increasing
difference between the two.

If one applies a magnetic 6eld inside the plane, one
finds that one of the upper critical fields is H,g 4o/
2mg~g6 where gf —h ps/Sx ai. For the case p2 p5

0 we can evaluate a second critical field analytically and
obtain Hj& @n/2xgg4 with g) —h p /Sx at. For
nonvanishing p2 and p5 the analogue of H, ~ cannot be
obtained analytically. This can be traced back to the fact
that (a) the external field makes the system biaxial, and
(b) that the terms p2 and ps couple spatial variations in

the plane and perpendicular to the plane.
The upper critical fields have been derived from the

linearized GL equations assuming that for a given direc-
tion the critical fields are nearly equal and so the non-
linearities are simultaneously neglected. If this is not so,
one must take into account that the component associated
to a smaller upper critical field disappears in the presence
of the component related to the maximum upper critical
field which destroys superconductivity. The correspond-
ing equation contains a nonlinear cross coupling to the
other fields and this leads to an effective renormalization
of the critical temperature. Consequently the smaller
upper critical field involves this effective renormalized
temperature T,' & T, . Such an effect might have been ex-
perimentally observed in Fig. 2 of Ref. 7. It seems to us
that this phenomenon is very similar to the 6eld-induced
phase transitions observed in the superfluid phases of 3He.
An alternative scenario for Fig. 2 of Ref. 7 follows once
nonlinearities are neglected simultaneously and there are
two intrinsic critical temperatures in the GL equations as
previously explained. These two scenarios lead to
different consequences whose study will be given else-
where.

Finally, we briefly indicate that the changes in the vor-
tex and defect structure are drastic as one goes from a
scalar to an axial-vector order parameter. In a classical
type-II superconductor the only possible defects are vortex
lines of strength quantized in units of the flux quantum
4p hc/2e. Assuming as above constant modulus for the
order parameter, we predict two additional classes of de-
fects. The first one is disclinations in r of half-integer
strength. The second class corresponds to point defects in
the director field r similar to those observed in uniaxial
nematic liquid crystals. A cross coupling between spa-
tial variations of the director and the modulus, which has
been found before for liquid crystalline phases, superfluid
3He and neutron star matter, o leads to changes in the
core structure. For the deviator two cases emerge; for the
one equivalent to uniaxial nematics the defect structure is
identical to the one for the axial vector, where for the "bi-
axial nematic" case it is different. The derivation of these
results is based on homotopy groups and will be given else-
where.
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In conclusion, we have demonstrated that by careful
evaluation of observable quantities such as the structure
of the upper critical fields, the anisotropy of the Meissner
effect along with the possibility of additional types of de-
fects, a scalar order parameter can be distinguished from
a tensor order parameter. The unequivocal experimental
observation of any one of the predictions made here for a
more structured order parameter would rule out a single
scalar order parameter in the high-T, materials.

Using the Ginzburg criterion3'3~ we can easily show
that mean-field theory (i.e., no Iluctuations) is applicable.
We find, however, that Ginzburg's criterion is not as well
satisfied for the high-T, materials as it is for the classical
low-temperature superconductors. Universality argu-
ments indicate that measurements of critical exponents
can distinguish between a scalar and a nonscalar order pa-
rameter. It will also be easier to observe the critical ex-

ponents in the new materials, since the critical regime is
larger. Corresponding experimental results will then in

turn stimulate further theoretical work to distinguish be-
tween the various options for nonscalar Ginzburg-Landau
theories. Although we have studied here a tensor order
parameter having a single phase, we mention the possibili-

ty of more than one phase leading to an internal Joseph-
son behavior.
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