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Gap-exponent evolution near the upper critical dimension of directed percolation
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Exact series expansions from perimeter polynomials are used for direct estimation of the gap ex-

ponent for d =3 to d =6 in fully directed site percolation. The critical concentrations are estimated
at p, =0.303+0.0015 (d =4), p, =0.231+0.003 (d =5), and p, =0.187+0.002 (d =6). The ap-
proach to d = 5 (the upper critical dimension) is also discussed.

INTRODUCTION

Directed percolation, where a fixed orientation of one
(or more) lattice directions rules the cluster connectivity
and buildup, is a model which has received some atten-
tion ever since the first numerical studies were published
by Blease. ' It is considered to belong to the same univer-
sality class as Reggeon field theory and possesses two
correlation-length exponents as opposed to undirected
percolation. However, for a different universality class,
with such distinctive features, the amount of numerical
work on it (both on Monte Carlo and exact series studies)
has remained rather limited. This is only partly due to
the fact that the most significant advances on the elucida-
tion of the percolation phase transition were made on un-
directed systems and must also be related to the initial
difhculties in formulating the Monte Carlo simulations
correctly.

Numerical work has thus relied mostly on series, and
the critical exponents P and y have been estimated in two
and three dimensions. The susceptibility exponent y
was also estimated by Blease, ' using expansions for hy-
percubic bond percolation, before Obukhov established

d, =5 as the upper critical dimension for the problem

(d, =6 for undirected percolation), but a reanalysis of the
data by standard methods (mostly Fade approximants}
left the earlier set of estimates substantially unaltered.

Recent efforts have tried to get a more complete pic-
ture through the simultaneous study of both dominant
and subdominant (confluent) singularities, ' on the basis
of a range of various lattice series for two and three di-
rnensions. The overall conclusion seems to be that,
beyond d =2, some cautious narrowing of Blease's' origi-
nal uncertainties was possible, ' although the gain was
still modest when compared with the series extension
effort. In this paper, we continue our work using exact
series expansions ' and focusing on four, five, and six di-
mensions. The interest in these is not merely academic;
four-dimensional directed percolation has been proposed
as a phenomenological model for the evolution of three-
dirnensional galaxies, ' but a study of these higher dimen-
sionalities is essential for the correct understanding of the
approach to mean-field behavior at the upper critical di-
mension.

Most studies on dimensions greater than three must
rely on a knowledge of low-density perimeter polynorni-

als, "which summarize the total number per site of con-
nected clusters at fixed size s with perimeter t: These
polynomials obey the standard sum rule

p= yg, p(1 p}—
s, t

and they can be used to estimate not only the "thermal"
exponent y, but also the magnetic exponent 5 and the
cluster-size exponent v. ' The alternative route of
transfer-matrix derivations followed by Blease in his ini-
tial studies, ' and extensively used by de'Bell and Es-
sam, ' looses much of its efticiency for dimensions higher
than two, while the recursion relations implicit in the
Markov properties of fully directed site percolation great-
ly improve the exhaustive cluster enumeration for d =4,
d =5, and 1=6.

For site percolation, four-dimensional (4D) hypercubic
data are available to order s =10 (Ref. 11) and the
present work uses additional data (to order s =13) and
the first twelve and ten polynomials on the 5D hypercu-
bic and 6D hypercubic site problems, respectively. From
these, low-density cluster-size moments can be expanded
as

m' +( t)p= gs'tjg„p'(1 —p)',
s, t

where i,j &0. The dominant and subdominant critical
behavior of these moments is

m'"(p}-
I p p, I

'"'" '"'ll—+~(p, —p) '1

p ~p, (3)

with B depending on the expansion. To obtain gap-
exponent series 5(p) from these, denote

(s't" ') =m'+'(p)—

and

(5)

with k & 1, 0&n &k —1. The critical behavior of 5(p)
follows from Eqs. (3) and (5):

A great number of combinations is possible for 5(p)
and direct estimation of the gap exponent can be made
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TABLE I. 5 series for the simple-cubic problem.

3
4
5

6

8
9

10
11
12
13
14
15
16

(s') /(s )

6

72
216
588

1656
4262

11 682
28 680
77 904

183 768
503 832

1 129 128
3 217400
6 640 944

(s~)/3&s&

1

13
39

108
303
795.33

2151.66
5416

14 354
35 056
92 387

218441-
583 188.33

1 316299.66

&s')/(s')

1

12
48

114
486
978

3738
7264

27 996
41 664

212 730
206 292

1 531 968
760026

11 808 764
—4 525 674

(ts') /3(s'&

1

8

23
67

224
5Sl

1621.33
4229.66

10934
27 524
77 742

159 791
529 831
950 478.33

3 372 225.66

TABLE II. 6 series for the 4D hypercubic problem.

1

2
3

5

6
7
8
9

10
11
12
13
14

(s'&/&s)

1

8

44
188
788

3056
11 966
44056

167 480
596 880

2 229 608
7 764 914

28 747 794
97 931 090

&s~ &/&(s)

1

6
28.5

121.5
486

1909.5
7204

27 181.5
99 306

365 489
1 307 821.75
4 738 329.75

16674 709.25

&s'&/(s')

1

16
92

340
1772
5992

27 206
87 752

407 296
1 128 572
5 756052

14 306 406
76487 978

172 873 708

(s't ) /4&s')

1

24
10.5

931.5
—2 628
33 202.5

—124 193
611491.5

1 938 732
—57 530 842
809 681 308.75

—8 614 238 882.25
81 196025 539.25

TABLE III. 5 series for the SD hypercubic problem.

&s'&/&s & &s'&/(s'& 5(s')/(i) (st ) /«)
1

2
3

5
6
7
8
9

10
11
12
13

1

10
70

390
2110

10 710
54 160

262 410
1 284 680
6058 670

29 067 530
134712 730
637 844 040

1

20
150
760

4810
22 880

12S 960
577 280

3 133940
13 306 100
73 362 590

298 900 170
1 639 822 650

1

11
83

493
2753

14 331
73 419

361 227
1 778 239
8 482 635

40 781 282
190765 472

l

9
61

355
1925

10007
50413

249 221
1 209 945
5 813 357

27 598 005
130211 850
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FIG. 1. Pade patterns from various 5(p) simple cubic series according to the combinations described in Eqs. (4) and (5): X denotes
poles from series for (st)/(s); ~ denotes poles from (s2)/(s), 8 denotes poles from (s )/(s ); + denotes poles from (s')/(s );
critical concentrations are marked on the x axis; 6 values on the vertical axis. A indicates the central p, and the 5 estimate found by
combination of Adler and Duarte's y (Ref. 4) and the P from Ref. 7. B indicates the same combination with Duarte and Ruskin's y
(Ref. 5). ij=i degree of the numerator; j degree of the denominator.
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FIG. 2. Pade patterns from various 5{p) series for the 4D hypercubie site problem: ~ denotes poles from series for (s ) /(s ); 5
denotes poles from (ts2) /(s2); rl denotes poles from (s~) /(s2); l denotes poles from (st ) /(t ), 0 denotes poles from (st ) /(s );
x denotes poles from (s~) /( r ); f denotes poles from ( rs') /(s ) (axes like in Fig. l).
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Fade patterns from various 5(p) series for the SD hypercubic site problem: t denotes poles from (s')/(t ).~ denotes
poles «om (s')/(s); ~ denotes poles from (ts')/(s ); X denotes poles from (s~)/(s'); o denotes poles from (st)/'(s); ~
denotes poles from (s ) /(t ) (axes like in Fig. l).
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FIG. 4. Pade patterns from various 5(p) series for the 6D hypercubie problem: + denotes poles from (s') /(s ); o denotes poles
from (s )/(t); X denotes poles from (ts')/(s ); + denotes poles from (ts) l(s); ~ denotes poles from (s') l(s') (axes like in

Fig. 1).
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TABLE IV. 5 series for the hypercubic 6D problem.

1

2
3
4
5
6
7
8
9

10
11

&s'&/&s)

1

12
102
702

4622
29 292

182 052
1 094932
6 583 932

38 625 912
227 501 922

6&")/«&

1

13
117.5
849.5

5782.75
37 004.75

232 404.041666
1 412 418.541666
8 537 844.1875

50446 016.1875

&ts )/6(s )

1

20
162.5

1097.5
7895

49 332.5
314833.33

1 911924.166
11 749 442.5
68 539 517.5

&ts &/6&s)

1

10
77.5

532.5
3465

21 847.5
134 148.33
811 284.166

4 830 827.5
28 508 022.5

(s'&/(s')

1

24
222

1434
10 782
65 784

433 122
2 550 764

16 294 452
91 489 314

577 571 682

RESULTS AND DISCUSSION

For the simple-cubic site problem we have used the
first fifteen polynomials; the second and third moments of
the cluster-size distribution (with exponents y+4 and
y+2h, respectively) are too ill-behaved to throw any
light on the existing y ranges. The present gap exponent
series (given in Table I) have a significantly improved
Pade pattern (Fig. 1} which agrees with the central esti-

TABLE V. p, and 6 estimates.

6 exponent pc

2.15-2.18 (central value)
2 02+0.04

2.0b

2.0

'Uncertainty ranges as in Refs. 6 and 4.
Mean-field value.

0.435 (central value)'
0.303+0.0015
0.231+0.003
0.187%0.002

from multiple Pade patterns. Traditionally, 5 values
have always been determined from y (based on low-
density series} and p estimates (requiring high-density ex-
pansions for the percolation probability). There are how-
ever several significant difficulties in the derivation of
fixed perimeter polynomials required in this expansion of
the percolation probability (that determines the p ex-
ponent}. Low-density perimeter polynomials are a very
good and far longer alternative, since they automatically
give higher moments of the cluster-size distribution
[i+j &1 in Eq. (2)], and lead to direct estimations of
y+b„y+2h, etc. Froin these, as shown in Eqs. (4}—(6),
estimation of the gap exponent can be made on a whole
range of alternative 5(p) series. This direct approach
keeps the uncertainty intervals within reasonable limits,
furnishes acceptably precise values for the critical con-
centration and clarifies the approach to the upper critical
dimensionality d, =5, as will be shown below.

mates lLC
~

2. 15—2. 18
~

and p, =0.435, but gives no
sound reasons to decide on either the Duarte and Ruskin
or the Adler and Duarte exponent ranges for y.

The four-dimensional series are notoriously diScult to
analyze (Table II and Fig. 2). The dispersion of pole loca-
tions does not even exclude the mean-field value 6=2.0
from an untutored estimate range. The various combina-
tions of moments seem to exclude a critical concentration
value below 0.3015. When our estimate range of
p, =0.303+0.0015 is used on the susceptibility series, the

y estimates are not inconsistent with Blease's
y=1.230+0.005 (probably too precise a claim) but they
extend well beyond this value. No p estimates are avail-
able for this problem —no high-density expansions have
been derived beyond d =3, and the cluster-size moments
show that mean-field values are not yet reached at d =4,
regardless of the very small deviation of the b, range
(from Fig. 2).

For d =5, the upper critical dimensionality is reached,
although logarithmic confluent corrections must be as-
sumed. Pade poles (Fig. 3, and from the series in Table
III}cluster below the mean-field value b, =2.0, but their
locations fall well within a band p, =0.231+0.003; this is
a definite improvement on the analyses of cluster size mo-
ments. Biassed estimates obtained from these tend to be
slightly lower than those due to gap exponent series (the
same is also valid for d =6). Blease's' value (same as
d =4} is clearly a misprint: the apparent Pade value
should be y =1.119+0.005, markedly different from the
mean-field value.

Beyond the upper critical dimension, the shorter series
for d =6 hypercubic site percolation exhibit no
significantly improved behavior, although once again the
present series have the edge on their raw moment
equivalents p, =0.187+0.002 seems a reasonable result
(Table IV and Fig. 4).

It is course, the superposition of all alternative series
that lends greater consistency to the estimations and
avoids the cumulative effect of separate uncertainties: In
the present problem the latter virtually impair any sensi-
ble indirect guesses for the gap exponent (for d & 3). We
summarize our studies in Table V.
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