Gap-exponent evolution near the upper critical dimension of directed percolation

J. A. M. S. Duarte

Centro de Informatica da Uniuersidade do Porto, Faculdade de Ciencias, R. das Taipas 4000 Porto, Portugal (Received 4 August 1987; revised manuscript received 26 October 1987)

Exact series expansions from perimeter polynomials are used for direct estimation of the gap exponent for $d = 3$ to $d = 6$ in fully directed site percolation. The critical concentrations are estimated at $p_c = 0.303 \pm 0.0015$ (d = 4), $p_c = 0.231 \pm 0.003$ (d = 5), and $p_c = 0.187 \pm 0.002$ (d = 6). The approach to $d = 5$ (the upper critical dimension) is also discussed.

INTRODUCTION

Directed percolation, where a fixed orientation of one (or more) lattice directions rules the cluster connectivity and buildup, is a model which has received some attention ever since the first numerical studies were published by Blease.¹ It is considered to belong to the same univer sality class as Reggeon field theory²⁻⁴ and possesses two correlation-length exponents as opposed to undirected percolation. However, for a different universality class, with such distinctive features, the amount of numerical work on it (both on Monte Carlo and exact series studies) has remained rather limited. This is only partly due to the fact that the most significant advances on the elucidation of the percolation phase transition were made on undirected systems and must also be related to the initial difhculties in formulating the Monte Carlo simulations correctly.

Numerical work has thus relied mostly on series, and the critical exponents β and γ have been estimated in two and three dimensions.⁶⁻⁸ The susceptibility exponent γ was also estimated by Blease,¹ using expansions for hypercubic bond percolation, before Obukhov⁹ established $d_c = 5$ as the upper critical dimension for the problem $(d_c = 6$ for undirected percolation), but a reanalysis of the data by standard methods (mostly Padé approximants)² left the earlier set of estimates substantially unaltered.

Recent efforts have tried to get a more complete picture through the simultaneous study of both dominant and subdominant (confluent) singularities, $4,7$ on the basis of a range of various lattice series for two and three dimensions. The overall conclusion seems to be that, beyond $d = 2$, some cautious narrowing of Blease's¹ original uncertainties was possible,^{4,6} although the gain was still modest when compared with the series extension effort. In this paper, we continue our work using exact series expansions^{4,6} and focusing on four, five, and six dimensions. The interest in these is not merely academic; four-dimensional directed percolation has been proposed as a phenomenological model for the evolution of threedimensional galaxies,¹⁰ but a study of these higher dimen sionalities is essential for the correct understanding of the approach to mean-field behavior at the upper critical dimension.

Most studies on dimensions greater than three must rely on a knowledge of low-density perimeter polynomi-

als,¹¹ which summarize the total number per site of connected clusters at fixed size s with perimeter t : These polynomials obey the standard sum rule

$$
p = \sum_{s,t} g_{st} p (1-p)^t \tag{1}
$$

and they can be used to estimate not only the "thermal" exponent γ , but also the magnetic exponent δ and the cluster-size exponent τ .¹² The alternative route of transfer-matrix derivations followed by Blease in his initial studies,¹ and extensively used by de'Bell and Essam,^{7,8} looses much of its efficiency for dimensions highe than two, while the recursion relations implicit in the Markov properties of fully directed site percolation greatly improve the exhaustive cluster enumeration for $d = 4$, $d = 5$, and $d = 6$.

For site percolation, four-dimensional (4D) hypercubic data are available to order $s = 10$ (Ref. 11) and the present work uses additional data (to order $s = 13$) and the first twelve and ten polynomials on the 5D hypercubic and 6D hypercubic site problems, respectively. From these, low-density cluster-size moments can be expanded as

$$
m^{i+j}(p) = \sum_{s,t} s^i t^j g_{st} p^s (1-p)^t , \qquad (2)
$$

where $i, j \geq 0$. The dominant and subdominant critical

behavior of these moments is
\n
$$
m^{i+j}(p) \sim |p - p_c|^{-[\gamma + (i+j-1)\Delta]} [1 + B (p_c - p)^{\Delta_1}],
$$
\n
$$
p \rightarrow p_c^-
$$
\n(3)

with B depending on the expansion. To obtain gapexponent series $\delta(p)$ from these, denote

$$
\langle s^i t^{k-i} \rangle = m^{i+j}(p) \tag{4}
$$

and

$$
\delta(p) = \langle s^i t^{k-i} \rangle / \langle s^n t^{k-n-1} \rangle \tag{5}
$$

with $k > 1$, $0 \le n \le k - 1$. The critical behavior of $\delta(p)$ follows from Eqs. (3) and (5):

$$
\delta(p) \sim |p_c - p|^{-\Delta} \ . \tag{6}
$$

A great number of combinations is possible for $\delta(p)$ and direct estimation of the gap exponent can be made

	$\langle s^2 \rangle / \langle s \rangle$	$\langle st \rangle / 3 \langle s \rangle$	$\langle s^3 \rangle / \langle s^2 \rangle$	$\langle t s^2 \rangle / 3 \langle s^2 \rangle$
	6		12	8
	24	13	48	23
	72	39	114	67
	216	108	486	224
6	588	303	978	551
	1656	795.33	3738	1621.33
8	4262	2151.66	7264	4229.66
9	11682	5416	27996	10934
10	28 680	14 3 5 4	41 6 64	27 5 24
11	77904	35056	212730	77742
12	183768	92387	206 292	159791
13	503832	218441	1531968	529831
14	1 1 29 1 28	583 188.33	760026	950478.33
15	3 2 1 7 4 0 0	1316299.66	11808764	3 372 225.66
16	6640944		-4525674	

TABLE I. δ series for the simple-cubic problem.

TABLE II. δ series for the 4D hypercubic problem.

	$\langle s^2 \rangle / \langle s \rangle$	\langle st \rangle /4 \langle s \rangle	$\langle s^3 \rangle / \langle s^2 \rangle$	$\langle s^3t\rangle/4\langle s^3\rangle$
	8	6	16	24
	44	28.5	92	10.5
	188	121.5	340	931.5
	788	486	1772	-2628
6	3056	1909.5	5992	33 202.5
	11966	7204	27 20 6	-124193
8	44056	27 181.5	87752	611491.5
9	167480	99 30 6	407296	1938732
10	596880	365489	1 1 2 3 5 7 2	-57530842
11	2 2 2 9 6 0 8	1 307 821.75	5756052	809 681 308.75
12	7764914	4738329.75	14 306 406	-8614238882.25
13	28 747 794	16 674 709.25	76487978	81 196 025 539.25
14	97931090		172 873 708	

TABLE III. δ series for the 5D hypercubic problem.

	$\langle s^2 \rangle / \langle s \rangle$	$\langle s^3 \rangle / \langle s^2 \rangle$	$5\langle s^2 \rangle / \langle t \rangle$	$\langle st \rangle / \langle t \rangle$
	10	20	11	9
	70	150	83	61
	390	760	493	355
	2110	4810	2753	1925
6	10710	22 8 8 0	14 3 3 1	10007
	54 160	125 960	73419	50413
8	262410	577280	361227	249 221
9	1 2 8 4 6 8 0	3 133 940	1778239	1 209 945
10	6058670	13 306 100	8482635	5813357
11	29 067 530	73 362 590	40781282	27 598 005
12	134 712 730	298 900 170	190 765 472	130 211 850
13	637844040	1639822650		

FIG. 1. Padé patterns from various $\delta(p)$ simple cubic series according to the combinations described in Eqs. (4) and (5): \times denotes poles from series for $\langle s\rangle/\langle s\rangle$; \bullet denotes poles from $\langle s^2\rangle/\langle s\rangle$, \circ denotes poles from $\langle s^3\rangle/\langle s^3\rangle$; + denotes poles from $\langle s^3\rangle/\langle s^2\rangle$; critical concentrations are marked on the x axis; Δ values on the vertical axis. A indicates the central p_c and the Δ estimate found by combination of Adler and Duarte's γ (Ref. 4) and the β from Ref. 7. B indicates the same combination with Duarte and Ruskin's γ (Ref. 5). $ij = i$ degree of the numerator; j degree of the denominator.

FIG. 2. Padé patterns from various $\delta(p)$ series for the 4D hypercubic site problem: \bullet denotes poles from series for $\langle s^2 \rangle / \langle s \rangle$; Δ denotes poles from $\langle ts^2 \rangle / \langle s^2 \rangle$; $\frac{1}{2}$ denotes poles from $\langle s^2 \rangle / \langle s^2 \rangle$; $\frac{1}{2}$ denotes poles from $\langle st \rangle / \langle t \rangle$, \odot denotes poles from $\langle st \rangle / \langle s \rangle$; \times denotes poles from $\langle s^2 \rangle / \langle t \rangle$; † denotes poles from $\langle t s^3 \rangle / \langle s^3 \rangle$ (axes like in Fig. 1).

FIG. 3. Padé patterns from various $\delta(p)$ series for the 5D hypercubic site problem: † denotes poles from $\langle s^3 \rangle / \langle^2 \rangle$; \bullet denotes poles from $\langle s^2 \rangle / \langle s \rangle$; Φ denotes poles from $\langle ts^2 \rangle / \langle s^3 \rangle$; \times denotes poles from $\langle s^4 \rangle / \langle s^3 \rangle$; \odot denotes poles from $\langle st \rangle / \langle s \rangle$; \triangle denotes poles from $\langle s^2 \rangle / \langle t \rangle$ (axes like in Fig. 1).

FIG. 4. Padé patterns from various $\delta(p)$ series for the 6D hypercubic problem: + denotes poles from $\langle s^2 \rangle / \langle s \rangle$; \odot denotes poles from $\langle s^2 \rangle / \langle t \rangle$; \times denotes poles from $\langle ts^2 \rangle / \langle s^2 \rangle$; \star denotes poles from $\langle ts \rangle / \langle s \rangle$; \bullet denotes poles from $\langle s^3 \rangle / \langle s^2 \rangle$ (axes like in Fig. 1).

TABLE IV. δ series for the hypercubic 6D problem.

	$\langle s^2 \rangle / \langle s \rangle$	$6\langle s^2 \rangle / \langle t \rangle$	$\langle t s^2 \rangle / 6 \langle s^2 \rangle$	$\langle t_s \rangle / 6 \langle s \rangle$	$\langle s^3 \rangle / \langle s^2 \rangle$
2	12	13	20	10	24
3	102	117.5	162.5	77.5	222
4	702	849.5	1097.5	532.5	1434
	4622	5782.75	7895	3465	10782
6	29 2 9 2	37004.75	49 3 3 2.5	21847.5	65784
	182052	232 404 04 166 6	314833.33	134148.33	433 122
8	1094932	1412418.541666	1911924.166	811284.166	2550764
9	6583932	8 5 3 7 8 4 4 . 1 8 7 5	11 749 442.5	4 8 3 0 8 2 7 . 5	16294452
10	38 625 912	50446016.1875	68 539 517.5	28 508 022.5	91 489 314
11	227 501 922				577 571 682

from multiple Padé patterns. Traditionally, Δ values have always been determined from γ (based on lowdensity series) and β estimates (requiring high-density expansions for the percolation probability). There are however several significant difficulties in the derivation of fixed perimeter polynomials required in this expansion of the percolation probability (that determines the β exponent). Low-density perimeter polynomials are a very good and far longer alternative, since they automatically give higher moments of the cluster-size distribution $[i+j>1$ in Eq. (2)], and lead to direct estimations of $\gamma + \Delta$, $\gamma + 2\Delta$, etc. From these, as shown in Eqs. (4)–(6), estimation of the gap exponent can be made on a whole range of alternative $\delta(p)$ series. This direct approach keeps the uncertainty intervals within reasonable limits, furnishes acceptably precise values for the critical concentration and clarifies the approach to the upper critical dimensionality $d_c = 5$, as will be shown below.

RESULTS AND DISCUSSION

For the simple-cubic site problem we have used the first fifteen polynomials; the second and third moments of the cluster-size distribution (with exponents $\gamma + \Delta$ and $\gamma + 2\Delta$, respectively) are too ill-behaved to throw any light on the existing γ ranges. The present gap exponent series (given in Table I) have a significantly improved Padé pattern (Fig. 1) which agrees with the central esti-

'Uncertainty ranges as in Refs. 6 and 4. ^bMean-field value.

mates $\Delta \in |2.15-2.18|$ and $p_c = 0.435$, but gives no sound reasons to decide on either the Duarte and Ruskin⁶ or the Adler and Duarte⁴ exponent ranges for γ .

The four-dimensional series are notoriously difficult to analyze (Table II and Fig. 2). The dispersion of pole locations does not even exclude the mean-field value $\Delta=2.0$ from an untutored estimate range. The various combinations of moments seem to exclude a critical concentration value below 0.3015. When our estimate range of $p_c = 0.303 \pm 0.0015$ is used on the susceptibility series, the γ estimates are not inconsistent with Blease's $\gamma = 1.230 \pm 0.005$ (probably too precise a claim) but they extend well beyond this value. No β estimates are available for this problem —no high-density expansions have been derived beyond $d = 3$, and the cluster-size moments show that mean-field values are not yet reached at $d = 4$, regardless of the very small deviation of the Δ range (from Fig. 2).

For $d = 5$, the upper critical dimensionality is reached, although logarithmic confluent corrections must be assumed. Padé poles (Fig. 3, and from the series in Table III) cluster below the mean-field value $\Delta = 2.0$, but their locations fall well within a band $p_c = 0.231 \pm 0.003$; this is a definite improvement on the analyses of cluster size moments. Biassed estimates obtained from these tend to be slightly lower than those due to gap exponent series (the same is also valid for $d = 6$). Blease's¹ value (same as $d = 4$) is clearly a misprint: the apparent Padé value should be $\gamma = 1.119 \pm 0.005$,² markedly different from the mean-field value.

Beyond the upper critical dimension, the shorter series for $d = 6$ hypercubic site percolation exhibit no significantly improved behavior, although once again the present series have the edge on their raw moment equivalents $p_c = 0.187 \pm 0.002$ seems a reasonable result (Table IV and Fig. 4).

It is course, the superposition of all alternative series that lends greater consistency to the estimations and avoids the cumulative effect of separate uncertainties: In the present problem the latter virtually impair any sensible indirect guesses for the gap exponent (for $d \ge 3$). We summarize our studies in Table V.

- 'J. Blease, J. Phys. C 10, 917 (1977).
- 2J. Adler, M. Moshe, and V. Privman, J. Phys. A 14, L363 (1981).
- ³J. Cardy and J. Sugar, J. Phys. A 13, L423 (1980).
- 4J. Adler and J.A. M. S. Duarte, Phys. Rev. 8 35, 7046 (1987).
- 5J. Benzoni, J. Phys. A 17, 2657 (1984).
- ⁶J. A. M. S. Duarte and H. J. Ruskin, J. Phys. (Paris) 47, 843 (1986).
- ⁷J. W. Essam, K. de Bell, J. Adler, and F. Bhatti, Phys. Rev. B

33, 1982 (1986).

- ⁸K. de Bell and J. W. Essam, J. Phys. A 16, 3553 (1983).
- 9S. P. Obukhov, Physica 101A, 145 (1980).
- 10 L. Schulman, in Annals of the Israel Physical Society, edited by G. Deustcher, R. Zallen, and J. Adler {Hilger, London, 1983), Vol. 3.
- I'J. A. M. S. Duarte, Portgal. Phys. 15, 119(1984).
- i2J. Cardy, Phys. Lett. 678, 97 (1977).