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Collective modes in an "ultraquantum crystal": Field-induced spin-densify-wave phases.
II. Coupling between longitudinal and transverse fluctuations
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It is well known that a two-dimensional anisotropic electron gas with an open Fermi surface is
unstable at low temperature under the application of a uniform magnetic field perpendicular to the
conducting plane. In a previous paper we have studied the collective modes of the field-induced
density-wave phases within an approximation which neglects the coupling between spin-density
fluctuations and charge-density fluctuations. We have found that the spin-wave mode and the phase
mode were degenerate. In this paper we have taken into account the coupling between fluctuations
transverse and parallel to the applied magnetic field. Our new results confirm the structure found

previously, and describe the small perturbations on the rotonlike modes due to the longitudinal-
transverse coupling. We find that both spin-wave and phase-fluctuation modes still exhibit, besides
the trivial Goldstone bosons, a series of rotonlike modes for wave vectors of the order of the inverse
magnetic length, but the degeneracy of the rotonlike energy minima is weakly lifted: the spin-
wave-like modes decrease their energy slightly, while the phasonlike ones are practically unaffected,
at least at their minima. The theory applies to Bechgaard salts.

I. INTRODUCTION

In a previous paper' (hereafter referred to as PL-I) we
have derived the collective modes of field-induced spin-
density-wave (FISDW) phases within an approximation
which neglects the coupling between fluctuations parallel
to the applied magnetic field and perpendicular to the
latter; within this approximation there is no coupling be-
tween spin-density fluctuations and charge-density fluc-
tuations. The reader is referred to PL-I for a general in-
troduction to the problem.

We have found two degenerate types of collective
modes. One is a spin-wave mode; it describes the spin
fluctuations along a direction perpendicular to both the
applied magnetic field and the order parameter. The oth-
er is a phase mode which describes the spin fluctuations
perpendicular to the applied magnetic field and parallel
to the order parameter.

We have shown that, besides the Goldstone bosons
connected to the two continuous broken symmetries of
the FISDW phases, the collective modes exhibit a fine
structure on the scale of the inverse magnetic length xo
of the problem. Namely, low-lying rotonlike minima ap-
pear at the ordering temperature in the single-particle en-
ergy gap and decrease relative to the latter as the temper-
ature decreases. A numerical application to the case of
Bechgaard salts, where field-induced spin-density-wave
phases are observed, leads to a rotonlike energy minimum
of order 30%%uo of the single-particle energy gap.

On the other hand, Maki and Virosztek have derived
the FISDW collective modes by studying the spin-density
correlation function parallel to the applied magnetic field
and the charge-density correlation function. They have
taken into account the coupling between fluctuations
transverse and parallel to the magnetic field, but they
have neglected the specific features of the FISDW elec-
tronic spectrum which give rise to the fine structure in

the spin-correlation functions. As a result, they fipd an
expression for collective-mode energies which is qualita-
tively valid in the very long wavelength limit (q &&xo );
they find nondegenerate spin-wave modes and phason
modes proportional to the wave vector q, a result which
corrects their previous erroneous finding of a gap in the
transverse spin-fluctuation spectrum.

It is thus necessary to examine the influence of the cou-
pling between longitudinal and transverse spin fluctua-
tions on the collective-mode structure we have found in
PL-I. This is what this paper is about. Our results
confirm the structure found previously and describe the
small perturbations on the rotonlike modes due to the
longitudinal-transverse coupling. We find that the degen-
eracy of the rotonlike energy minima is weakly lifted; the
spin-wave-like modes decrease their energy slightly while
the phasonlike ones are practically unaffected, at least at
their minima.

The rest of the paper is organized as follows. Section
II recalls some notations and preliminaries on the basis of
the model used in PL-I. Section III sets up the equations
for the spin-wave modes, when coupling to fluctuations
along the external field is taken into account, and solves
for the rotonlike energy minima in the presence of this
coupling. Section IV deals with the phase sliding modes;
they are coupled to the charge-density fluctuations. The
solution for the rotonlike energy minima is given. Our
results are discussed in the conclusion, Sec. V.

II. PRELIMINARIES OF FISDW PHASES

The reader is again referred to PL-I for a detailed in-
troduction on the model.

Below the critical temperature T, a staggered linearly
polarized magnetization appears in the most conducting
plane perpendicular to the magnetic field:
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(x) & = &1ttt(*)yi(x) &

i (Q& x+Pl & Q —i(g& x+t301»)+—P (2.1)

This defines two components of the order parameters,
ip i/2he ' and h, e ', the phases of which are arbitrary.

$1—$1 describes the angle of the spin direction from the
x axis and QI+QI the absolute phase with respect to the
lattice. Thus, magnetic ordering breaks the spin rotation-

I

al and the translational continuous symmetries.
Following Maki and Virosztek (hereafter referred to as

MV), it is convenient to define a four-component spinor
P given by

0'=(lt'I I O'II Itlt III» (2.2)

where g; is the field operator of the electron on the i side
of the Fermi surface and is of spin 0 = 1, I. The equa-
tions of motion for the Green's function of Ref. 1 are the
following:

l Q)~ + lU +oPRH g, , +b, ; (x)gl, ——5 (x —x'),
(2.3)

d N
i N„—lU

——U —o @AH gp 0, ~0 +~ i ~& ~g lo, 1'
dx xo

where gl~ I~ and g2 ~ I~ are the diagonal and off-
diagonal Green's functions and E; (x ) is the one-
dimensional pseudopotential

(2.4)

where xo is the magnetic length, xo = 1/eHUb, and QI is
the actual value of the transverse component of the or-
dering wave vector giv. i =1, 2 for, respectively, the
spin indices 1' and l.

The Fourier components 5„(Qj ) open up gaps in the
quasiparticle energy spectrum and separate the Landau
bands. These gaps are equidistant in energy at a dis-
tance co, =u/2xo (cyclotron frequency).

When the coupling to the longitudinal fluctuations
(along the magnetic field), is considered, the fluctuations
of the two components of the order parameter are cou-
pled, and it is essential to consider the phases pi and p2.
Nevertheless, it is always possible to choose $1=$2,
which means the polarization of the spin-density wave
(SDW) is chosen along the x direction. In that case, the
long-wavelength transverse fluctuations of the order pa-
rameter, that is, of the y-spin component

cr (x ) = 4 (x )p„o~%(x),1

2

[x = (x, r )], are coupled to the fluctuations of the spin
along the magnetic 6eld, that is, the fluctuations of the z-
spin component o,(X)=—,'g &, tP. Here p; and 0'; are
Pauli matrices operating on spin and ordinary space as
used before by MV. Similarly, the longitudinal Auctua-
tions (to the order parameter and transverse to the field)
Rrc coupled to tllc cllRrgc-dclislty 6uctuatlons. Note that
within our choice of phases we have

&,(x)&=&,(x) &=0

(no staggered y- and z-spm components).

III. SPIN MODES AND TRANSVERSE
(TO THE ORDER PARAMETER) ROTON MODES

When Iluctuations along the field (z direction) are con-
sidered, we must extend our previous random-phase ap-
proximation (RPA) equations describing the uncoupled
fluctuations of each order-parameter components. Now
these components are coupled to each other and to the
spin fluctuations along the field. Following MV we may
write

&T,o o &=&T„a rJ &o+A,(&T,aro', &0& T,o, cr

+ & T,~yor &0& T,oyoy & ),
(3.1)

&T, , „&=&T. . .&.+~(&T. . .&.&T. . .&

+ & T,o,a, &0& T,o,o, &),

where A, is the dimensionless mean-field coupling con-
stant. (We use units such that the density of state at the
Fermi level is 1; T, means we use imaginary-time-ordered
products; & &0 means that the thermal average is done in-
cluding the interaction only in the Hartree-Fock Green's
functions. )

The time-ordered products & T,cr;Ir &0 are not strictly
translation invariant. They are functions of two momen-
ta q, q', the di6'erence of which is an integer number of
time of the ordering wave vector gz. It is essential to
point out that the magnetic momentum U/xo which ap-
pears in the scattering potential b, ; (x) does not enter in

the relation q' —q= mph. In other words, the magnetic
field pseudopotential responsible for the scattering of the
electron wave function does not break the (discrete)
translation invariance of the physical and macroscopic
quantities as correlation functions. %'e keep the terms
with the lowest momentuin transfer but, unlike MV, (i)
wc do Ilot assuI1M g1 =0, RIld (11) wc do Ilot RssuIIic

q~~ &&U/xo since we are interested in the roton modes"
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for q~ -mv/xo. In that case the collective-mode spec-
II

trum loses the (ql, qj )~( —
q~~, q~) symmetry (it always

keeps the q~ —q symmetry}. Defining X;. as ( T,cr; o . ),
the general expression for the poles of the diagonal and

l

off-diagonal (in momentum) components X (Qz+q, co}

and Xyy( —Q~+q, QN+q, co), and of the off-diagonal
component X,y(q, Q&+q, co},can be found by solving [us-
ing (3.1)]

X„(QN+q ~)=X„',(QN+q, ~)+~X,', (Q&+q, q, ~)X„(q,Q&+q, ~)+&X,'„(QN+q, co)X (Q~+q, ru)

+~Xyy(Q~+q, QN—+q, ~)Xyy( Q„—+q, Q„+q,~),
Xyy( QN+—q QN+q ~) =Xyy( —QN+q QN+q, tv)+&+~( Q—/+q, q, t0)X,y(q, Qyt+q, co)

+~Xyy(
—QN+ q, ~0)Xyy( —QN+ q, Q~+q, co)

+~&»( —QN+q Q~+q ~)X„(QN+q,~),
Xy(q Q~+q ~)=X!,(q QN+q tv)+~X (q, ~»„(q,QN+q, ~)+~X,'„(q,Q&+q, co)X»(Q„+q,to)

+~X'(q~ —Qx+q tv)Xyy( Q—N+q~Qyt+q, tv) .

(3.2)

The subscript 0 corresponds to the dynamical Hartree-
Fock correlation functions depending on the frequency co

and the temperature T. Let us recall that the static stag-
gered spin density is assumed to be polarized along the x
direction. The previous equation, then, clearly shows
that the spin-density fluctuations along y, and along the
magnetic field (z), are coupled, leading to complicated
algebra. The following two limits can be considered.

(i) If q~ =0 and
q~~ && I/xo (Ref. 2), then the ql —ql

symmetry is restored and the collective-mode spectrum
exhibits a Goldstone mode (spin mode) which reads

co a:qII . (3.3)

[For q~+0 see (3.20).] The constant of proportionality is
1 in our previous result. In fact, a renormalization of the
Goldstone mode occurs by the spin fluctuations along z,
but is not significant in the weak-coupling limit (A, « 1}.

(ii) If the coupling terms X, and X, are neglected, our

I

previous results are recovered. The spin-mode spectrum
exhibits a fine structure with rotonlike minima near each
multiple of the magnetic momentum I/xo. Now the next
step is to consider the coupling; we are going to check
that it does not qualitatively change the picture of roton
minima.
The general structure of the pole equation is not very
simple even if we use relations like

X (QN+q —Q.+q. }=[X,', ( —QN+q QN+q»]'
(3.4)

X,(+Q~+q, q, iv) =[X, (q, +Q~+q, co)]' .

Anticipating the results, we will show that, to a good ap-
proxirnation, X, and X, are, in fact, imaginary so that

X,(+Q&+q, q, t0) = —X (q, +Qz+q, c0) . (3.5)

Making use of that result the pole equation is now

[1—&X (q, tv)]([l —Any(Q„+q, co)][1—AX ( —QN+q, to)] —A, [X„(QN+q, —Q&+q, )]zj

[Xy, ( —Q&+q, q, tv)]'[I —&Xyy(QN+q, tv)] —A, [Xy,(Q~+q, q, tv)]2[1 —A.Xoy( —Q„+q,co}]

+2~ Xy, (QN+q, q, to)Xy, ( QN+q, q, to—)Xyy(Qyt+q, —QN+q, a)) . (3.6)

Setting X,=0, we recover our previous equation, '

[1—~X,,(Q +q, tv)][1—kX,,( —Q„+q,co)]—A, '[X,', (Q +q, —Q +q, co)] =0. (3.6')

General expressions for Xyy and X„, are given, respectively, in PL-I and in Appendix A. For a magnetic field such
that the cyclotron frequency to, = v l2xo is smaller than the energy t& characterizing the violation of perfect nesting, a
number of gaps 5„(about 1+th/co, } are comparable in magnitude. Nevertheless, some simplifications can be per-
formed in the weak-coupling limit such that 5„/co, « 1. In the phase labeled by N, the gap 5& plays a special role be-
cause it sits at the Fermi level and is responsible for the stabilization of the ordered magnetic phase. It must be treated
to all orders in perturbation.

The Hartree-Fock correlation functions can be computed to zero order in 5N+, p&0; it is performed in PL-I for X
and in Appendix A for X, and X . Zero order is shown in a diagrammatic form in Fig. 4. It reads

Xyy(Q, m)= +IN+„(Qj )Xo q~~
—,co +O((b, /co, ) ),

X',(Qx+q —QN+q»= &4 .(Qj". +qi) N .«j". —qj. ) 0 q~~
— +o«

Xo

(3.7)
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X», (Q~+q, q, )= /I'+„(QJ" +qi)J„(t)XO' qi—
Xo

X,( —Q +q q, )= QI „(Q, —,)J( )X '
tg Xo

(3.7')

The third direction simply disappears since we have
neglected the tiny deviation from perfect nesting along
the magnetic Seld and since we consider the coHective-
mode spectrum only in the plane Q, =Q, . IN+„(Qi) is
the coefficient of proportionality between the gap
5~+„(Qi) and the order-parameter 5; t is of order

4tb/co, . Xo and I'0 are one-dimensional correlation func-
tions renormalized to all orders by the gap 5& at the Fer-
mi level, as introduced by Lee et al. in their study of
charge-density wave (CDW) collective modes. Xo and

1~0' are ne~ one-dimensional elementary irreducible bub-
bles coming from coupling between y- and z-spin Suctua-

tions. They are computed in Appendix A. Xo(q, co=0)

and I 0(q, co=0) are maximum around q=O. Then we are
expecting a series of local maxima of the diagonal and
off-diagonal (in momentum) components of X»». Like-
wise, a series of oscillations also occurs for both functions
since the coefficients Iz+„osciBate with Q„. But we

have to go further to check that this expected fine struc-
ture in reciprocal space on a scale xo ' is not washed out
by taking into account the coupling term (3.7') into (3.6).
The elementary irreducible bubbles have the foHowing
expressions:

In the limit T=o, x & 1 it reduces to

h(x, T=O)=
x(1—x }'~

(3.9')

Besides the explicit dependence on temperature, Eqs.
(3.8) and (3.8') depend on temperature through the gap
5,c =5~( T). The value of 5tc( T) is given by the gap equa-
tion

1/A, =X„„(Q»c,co=0)+X (QN, —Q~, co =0)

=X (Q, co=0)—X„(Q,—Q, co=0) (3.9"}

X»0* qi —,co =0((co5tc/co, )ln(h/co, )),
Xo

This formula establishes the static properties of the
low-temperature magnetic phase of quantized vector Qz.

The last step in the computation of collective modes at
a wave vector (qi, qi

——m /xo+5) for 5xo && 1 and
co

greco,

is to approximate (3.7') for such a wave vector; as

for Xo and I'0 one can write for n &m

in2E, ZS„ 5'
Xo(5,co) = dx tanh coshx

0 2,T

+(co —u 5 —25&)F(co,5),
Xo qi —,co —1=0(co /co, ) .zz n 2 2

Xp

(3.10}

I 0(5,co) = 25JvF(co, 5—),
X»0'(5, co) = i v 2co5NF(co, 5—),

(3.8)

(3.8')

X~(5 co)=(u 52 —co ) '[u 5 —4u 5 5NF(co, 5)],

In the weak-coupling limit such terms are negligible
and ~e keep only the main terms; as a matter of fact, on a
large magnetic field range the magnetic energy scale co, is
nearly one order of magnitude higher than the condensa-
tion energy (order parameter) or than the frequencies we
consider here. Then,

with F(co,5)=(co u5 )F(co,5); —F(co,5) has already
been calculated in Refs. 1 and 2 and depends on the tem-
perature. It simplifies for 5=0 as

X,( Q+q, q, co) =I — (Q q)J (t)X»'(5, co)—,

F(co 5=0)= h(x, T) with x =1

45~co 25tv
(3.9)

X», (QN+q, q, co) =I~+ (Qi +qj )& (t)X»0'(5, co), (3.11)

X' (q, ~)=J'(t)X, (5,~)+[1—Z'(t)] .

h(x, T)=I du
Q

tanh cosh'

cosh u —x2 2

The same kind of approximation has already been per-
formed for 7
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2E0
Q (Qcu)= g I~ „(Qj )ln

n(&m) m —n ~co,
+IN + ( Q, )Xo(5,cu),

(3.11'}
X (Q~+q, Q—N+q, cu)=IN (QP+q )IN (Q q—)I (5,cu) .

All of the above expressions are valid even if co ~ b„co &&cu, . Using the formulas (3.11) and (3.11') into the pole Eq.
(3.6}we immediately get

2yE0
[1—A, +X—XXO(5,cu)] ln —Xo(5, cu)

nT+ (qj )

2yE0
ln —X,(5,~) —I,'(5,~)

nT (q )

2yE0= —2X[X~&'(5,co)] ln, —Xo(5,co) —I'o(5,c0), (3.12)
m[(T+ (qj }T (q~)]'~

where X=AX (t}and J (t) is Bessel's function of order m and argument t.
It has been convenient to incorporate the frequency-independent terms of (3.11') into two temperatures T+ (q~, H)

characterizing the virtual instability toward metastable subphases of quantum number N+m and of transverse wave
vector Qj kqj. For m=0 and qj =0, T+ ——T, , the actual ordering temperature of the Nth subphase. In general,
T+ (q~} are always lower than the virtual transition lines T, * which can be drawn in the Nth subphase part of the
phase diagram, and which represent virtual transition lines to phases with slightly larger free energy than the Nth phase
and with a different wave vector QN+ . T+ (q~) may be equal to T, * for a special value QP* of Q~. In our ap-
proximation the gap equation can be explicitly written as

1n(2EO/5N ) 5N 2yE0
dx tanh coshx =ln

0 m. T,N

Using (3.8), (3.8'), and (3.12'), (3.12) can be written as follows:

(3.12')

[1—A, +X—X(u 5 —cu ) '(v 5 —4co 5~F)] ln (co v—5 2—5~)F-
T+ (qj )

TN
ln (cu v5 —25&—)F —(—2g F)T (qj )

TN

(q~)T' (qg)
(3.13)

It is clear from the two preceding equations that the collective-mode spectrum verifies the symmetry relation
co(q) =co( —q). The temperature dependence has been incorporated in F. Setting X=O into (3.13), we recover our previ-
ous equation (4.27} of Ref. 1. Now, when the coupling to the spin fluctuations along z is taken into account, the calcula-
tion of the collective-mode energies is still simple for special values of the magnetic field H (q~ }such that

T+ (q~, H)=T (q~, H)=e (qj) .

For such a field, (3.13) decouples into the following two equations:

TN
ln =(co —v 5 —45~)F,

g N

TN
[1—A, +A, —A, (u 5 —co ) '(u 5 —4co 5&F)] ln (co v5 )F =—4A, co 5—~F0

(3.14)

co =u 5 +45~(T) . (3.15)

On the contrary, the phason mode is coupled to 7 . Us-

The physical interpretation is clear from (3.14). The
amplitude and the phase modes decouple. The amplitude
mode is not renormalized by the spin fluctuations along
the magnetic field. If m=O and q~=O, at all tempera-
tures

I

ing the expression (3.9) of F for 5=0, we get
N

ln =(1—A, +A, )
Tc — x h(x}

1 —A, +A, —Ah (x)
(3.16)

In the weak-coupling limit 1 —A, +A, =1. In the denom-
inator, k is responsible for a pole at x =x0 such
h(xo)=1/A, . This equation is solved graphically in Fig.
1. At T=O we always find a real solution,
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from the gap increases, and this increase is maximum for
m= 1 and for

q» QN+1 QN QN QN —I

-x (T)

in TN/8

x*iu/28N

the values of which guarantee 8, to be the closest to
C

It is easy to derive the Goldstone mode for q~ && tb and

qi =5(( 1 /xo (m =0). In that case, besides the q~ —q
symmetry, Eq. (3.13) recovers the qll

—
qll symmetry.

Indeed, Tn(qi) = To( —qi), which is the critical tempera-
ture for a phase N in which the transverse component Qi
is slightly difFerent from its optimum value Qi. It has
the qj ~—q~ symmetry since q~ =0 corresponds to the
maximum of To(qi ), namely Tn(qi =0)= T, . Then,
(3.13) factorizes and the phase and amplitude mode
decouples. %e find, respectively, the phason and the am-
plitude modes

FIG. 1. Graphic solution of Eq. (3.16}. The roton minimum
is obtained at the crossing point between the constant
1n(T,"/8 ) and the function x~x2h(x)/1 —A,II (x). If 8 is
close to T~, the roton frequency is very low. %'hen 8 ~0, the
roton frequency is bounded by 25&.

co„( 1 ——X 25„. (3.17)

There is no damping of these collective modes since
they are localized in the quasiparticle energy gap at the
Fermi level. We always find a lowering of the roton
mode in the gap because of the longitudinal fiuctuations
(along the field H). If 8~ is well below T, , the roton-
mode energy is close to the gap 25N, and the relative
correction due to longitudinal spin fiuctuations is of or-
der X. If 8 is close to T+, the roton-mode energy is
deep in the gap and we find

=25N(l —X)' ln' (T /8 ) . (3.18)

n5N(T)
co„&25~( T) 1 —A, (3.19)

The physical meaning is clear: The roton mode is a
low-energy collective-mode excitation if the metastable
phases N+m and N —m are close enough in energy to
the stable phase N. This condition could be easily
fulSlled for small values of the integer m. The relative
corrections are of order X for every roton minima in the
single-particle gap. The rotonlike mode appears in the
gap as soon as T g T, . The solution is still real and is
bound for r=r,"by

45~( T) T,
c0 =(1—I, ) U 5 + ln, (3.20)

h x =0, T To q~

45', ( T) T,
co =45&(T)+U 5 + ln . (3.20')

Ii x ~ I, T To qi

For qi&0 the phason and amplitudon become tempera-
ture dependent through the h (x, T) thermal factor. Note
that only the phason is renormalized by the transverse-
longitudinal coupling. Physically, it is clear that the
(1—A, ) factor is related to the Stoner factor in the static
spin susceptibihty. Obviously lnT, /Tn is proportional
'to U (qi/is ) .

Another simple hmit is qj =0. Then,

(qi=O)=5"(m) .

If m+0, then the coupling term X, from (3.11) vanishes,
leading to decoupled order-parameter fiuctuations.

From the results above we conclude that the roton
minima in the collective-spin-mode spectrum are not
suppressed by their coupling to the fiuctuations of the
longitudinal (i.e., parallel to the field H) component of
the spin. On the contrary, their energy in general de-
creases and their renormalization is exactly the same as
the one of the Goldstone mode predicted by MV. In the
weak-coupling limit these corrections on the order-
parameter spectrum are negligible. However, we agree
with MV that both fiuctuations should be handled at the
same level to compute the longitudinal susceptibility 7„
which is shown to have no change at the critical tempera-
ture. So, even if the two fluctuations should be physically
treated at the same level, we find qualitatively the same
results already found in Ref. 1. Now let us study the slid-
ing mode spectrum, the degeneracy of which —with the
spin mode spectrum —is lifted in our new study.

As before, we get an additional small factor propor-
tional to A, and the roton-mode energy is reduced by a
small factor of order 5~(T)/T, X&(1. The qualitative
behavior of the roton mode with temperature is not
afFected by longitudinal fluctuations. As the temperature
is decreased, the relative distance of the roton energy

IV. SI.IDING MODES
AND LONGn UDINAX. ROTON MODES

In our Srst analysis, longitudinal and transverse spin
mode were degenerate. In fact, the longitudinal Auctua-
tions of the order parameter are coupled to the charge
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fluctuations. Such coupling has been considered in the
derivation of the charge dynamics response functions Ppp.
Our aim, here, is somewhat different: We are going to
analyze the effects of such a coupling on the order-
parameter fluctuations at a wave-vector scale of the order
of the magnetic wave vector 1/xo. Our RPA equations
are then similar to MV (Ref. 2):

& T, 55; M, , & =& T, 5b,; 55, &o—A& T, 56, p&0& Tp5b, , &

+Xg &T, 5a, 5S„&,&T, u, „u,, &,

(4.1)
&T p5bi&=&T p55&&0 —A&T pp&o&T p56&&

+~y & T,,5~„&,& T, 5~„5~,& .
k

The subscript i of 55, means 1 or 2. The operators 56,.
are needed to describe spin fluctuations along the direc-
tion of polarization,

5b,2—:o,' =

and 56
&

is the x-spin component:

5b,:o„= gtP—„&„1(.
I

2

X„(+QN+q, q, co) =X „'(q, +QN +q, co)

=X,'.(q +QN+q ~»
X, ~(+Q&+q, q, ~)=X~„'(+Q~+q,q, ~)

= —X~„(+Qz+q,q, ~),

(4.2)

where x' (
—=2) corresponds to o„':—M2.

Furthermore, 7 „and P „.are related by general rela-
tions as

X „,(q, QN+q, ro)=iX „(q,QN+q, co),
(4.2')

X „(q,—QN+q, co)= iX „(q,——Q~+q, co) .

Similarly X„.„., X,.„, and X„„are related to X„„(seeAp-
pendix 8).

Using (4.2) and (4.2') the pole equation becomes

p is the density of charge. The preceding equation simply
establishes that the spin-density fluctuations along the
polarization vector (namely the x direction) are coupled
to the charge fluctuations of the anisotropic electron gas.
The pole of X„„(orX& &

) is given by a 5 X 5 determinant as
shown in Appendix C. The irreducible Hartree-Fock
bubbles which couple spin and charge fluctuations can be
considered as real to a very good approximation (Appen-
dix 8) so that

1+—X (q, ro) [[1—~X (QN+q ~)][1—~X', ( —QN+q, ~)]—~'[X', ( —QN+q QN+q )l

=A, [X „(q,—Q~+q, co)]'[1—AX„„(QN+q, co)]—A, [X „(q,QN+q, co)]'[1—AX„„(—Q~+q, a))]

—»'X',.(q Q~+q ~)X,'.(q —Q~+q ~)X'..( —Q~+q, QN+q, ~) . (4.3}

The notations are similar to those of Sec. III,

X'„„(+QN+q,~)=Xr', (+Q&+q, ~)

and

X'..(Q~+q —Qs+q ~)= —X'„«~+q —QN+q ~) .

Xpp(q, co) = g 'J(t)X~()~
q~(
—,co

n Xp

Xz„(q,Q&+q, co)= g J„(r)IN+„(Qp+qj ) (4.4)

Xz is the usual Hartree-Fock charge-charge response
function. It should be noted that the equations of Appen-
dix C would enable us to go beyond the pole equation in
computing the RPA response functions themselves. It
could be shown, for example, that the static charge-
charge susceptibility has the well-known Stoner form.
The Hartree-Fock bubble X „=& T,po„& is responsible
for the coupling between charge and spin fluctuations.

These new terms can be treated within the same ap-
proximation as above: The gap 5~ at the Fermi level is
treated to all orders in perturbation while the expansion
in terms of the 5&+, , i&0 is cut at zero order (Appendix
8}

n

Xp

X „(q,—QN+q, ~}=g J (r)I„„(gj" q,)—
n

XX~p q~t-
Xp

where the superscript = means one-dimensional irreduc-
ible bubbles renormalized to all orders by the gap at the
Fermi level 5~. Their values are given in Ref. 2 and in
Appendix B,
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X~0~(5,c0)=4(u 5 —co ) 'U 5 (1 4—5~F),

Xio"(5,co) =2 U55~F .
(4.5)

5N
g~o 4J)I—,co 0

o

(4.6)

Then we can approximate the Hartree-Fock bubbles in
the weak-coupling limit where ro/co, « 1 and
5~/coq && 1:

Up to now, we limited ourselves to the computation of
collective modes at a wave vector (qi, qi ——m/xo+5) to
establish the quantum oscillations of the spectrum. The
next step is to approximate (4.4) in that limit. For n &m

2

X~oi'
qadi
—,~ —4=0, ln

Xo

X'„(q,~)=4f 1 J—' (t) j+J' (r)X ~«(co, 5),
X (q, g +q, ~)=J (r)1 „(Q +q )X~"(co,5), (4.7)

Xp„(q, —QN+q, co) =J~(t)I~ (Qi q—i)X("(a),5) .

Let us recall

J (r =0)=5 (m) .

Then, for m ~0 and qi =0, the coupling term Xz„reduces
to zero and the longitudinal Auctuations of the order pa-
rameter decouple from the charge fluctuations. Then for

qi =0, m &0 the longitudinal and transverse fluctuations
(to the order parameter} are stiH degenerate. That is not
true for m=0, i.e., for the spin mode and the sliding
Goldstone mode in the limit qi ~0. To check this point
it is convenient to rewrite (4.3) into a new equation:

1+A, —X+—X $~(co, 5)
4,

ln (co—U5— 25&—)F
(q, )

TN
ln —(a)i —U'5 —25~ )F —I 0(co,5)

T (qi}
TN

=—(X$"(5,a)))' 1n, ', ii (co— v'—5 45—~)F
~T,.(q, )'"T .(q, )'"

(4.8)

If m=0, qi « tb the amplitudon and the phason (slid-

ing mode) decouple. Replacing Tz (q, ) by To(q, } and
(4.5) into (4.8), one finds a renormalization of the sliding
mode by charge Suctuations, although the amplitude
mode is not afFected:

45N( T)
co =(I+A, )u 5 + lnT, /To(qi),x=O, T

4@,( T)
co'=45N(T)+U'5'+ lnT, /To(qi) .

Ii x~1, T

(4.9)

(4.9')

V. CONTI. USION

In PL-I (Ref. 1), we had derived the peculiar rotonHke
structure of the order-parameter collective modes of the
FISD% phases. It was shown there that this structure is

In fact, for q~ =0, we recover the "poles" of g found

by MV. Equation (4.9) is an actual pole for X,„(sliding
mode) but not for X since the numerator of X also van-

ishes for co=uqi=Uqi=0, Actually in this limit the
charge-charge susceptibility reduces to the usual Stoner
formulas. From (3.20}and (4.9) we see that the renormal-
ization of the two Goldstone modes by Auctuations paral-
lel to the field is different (although weak in the weak-
coupling limit}. Then, sliding mode and sjn mode are no
longer degenerate. Furthermore, only 5 enters in (4.8)

and, on the other hand, Xio"(5=0,co)=0. This implies
that the roton minimum energy for m&0 is not affected

by X~o". The only efFect of the coupling terra X)o is to
modify the curvature at the minimum. This efFect does
not even appear for the special value q~ =0.

characterized by dispersion relation minima at wave vec-
tors qi n/xo——(n an integer) and special values of q~ in
the plane q, =ir/c (see Fig. 2). It was argued that the
reason behind this structure is the interplay between elec-
tromagnetic gauge invariance and breaking of translation
invariance by the electronic orbital motion. Spin-wave
modes and sliding modes were found to be degenerate in
PL-I within the approximation which neglects coupling
between the spin Suctuations transverse to the applied
magnetic field and spin fluctuations along this field, or
charge fluctuations.

I/Xo

I l

2/xo 3/xo
I

4/ro

FIG. 2. Schematic view of the collective mode energy spec-
trum; we have shown only the minimum of co(q~~, q&) with
respect to q& as a function of q~I. This anisotropic spectrum also
gets minima in the q, direction. It should be noted that the
whole spectrum is discontinuous at the crossing of the 6rst-
order transition lines between the quantum phase X and its
neighboring phases X+ I and X —1.
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In the present work we have shown that the essential
results of PL-I survive in a more complete treatment
which includes the previously neglected couplings, at
least in the weak-coupling limit. A schematic view of
both spin modes or phase-fluctuation modes is presented
in Fig. 2. The degeneracy of spin-wave modes and sliding
modes is lifted. Spin-wave rotonlike minima are lowered
by a relative shift of order )(, =AX (t), while sliding
modes have unchanged minima and their group velocity
is increased by a relative shift of order X. At qj =0 the
collective-mode energies remain degenerate. As a result,
it is a fairly sound approximation to neglect altogether
the transverse-longitudinal coupling when studying the
order-parameter correlation functions and some conse-
quences of the rotonlike energy minima derived in PL-I
on the physical properties of FISDW phases such as can
be found in Bechgaard salts. On the other hand, it is
essential to take into account the transverse-longitudinal
coupling when dealing with the longitudinal correlation
functions, at q~0, studied by MV. It will be interesting
to study the physical consequences of the "rotonlike"
structure which exists in the latter in the physical proper-
ties [electron spin resonance (ESR), nonlinear conductivi-
ty] discussed by MV.

The justification of the labor involved in disentangling
the complicated expressions contained in Secs. III and IV
of this paper, and in the Appendices, is our belief that the
roton minimum described in PL-I is a real feature of the
physics of Bechgaard salts under magnetic field; this be-
lief is rooted in the general st:miquantitative agreement of
the theory with the experimentally observed phase dia-
gram and in numerical calculations reported in Ref. 7
which are based on the same model with the same
coeScients. The main feature of the numerical work
done in Ref. 7, for our purpose here, is that in any SDW
subphase of index N, the virtual transition lines T to
subphases of index num, are not exponentially small
compared to the metal SDW actual transition ternpera-
ture T, , at least for m =1, sometimes for m =2. This is a
necessary condition for the lowest roton-mode energy to

1$ 2& = l$ 21 = 2i ll = 2)
2't = 'll li = )$ lt 252 —2i

lt 2& = 2l 2&= 11

It =~&t 2k~—2b 2t = lt lt —2y

FIG. 3. Hartree-Fock bubbles 2( T,rx„o~ )0, (2'~ li)
( T,o~rr, )0, 4( T,n, rr, )0 obtained by use of Wick's theorem
and of the expressions of the spin operators cr~

(42141t+ Pl t P2J 42l Pl't Pl l42t ) d +
p (Plt(i 1 l

+ fg tQg f 1Pt $1P) j I/Jg $fp $ ). The only allowed contractions in
the SDW phase involve separately 1 t', 2$, and 1$, 2f pairings.
On the contrary, the interacting random phase approximation
bubbles mix the two types of pairings. No Zeeman energy
remains in the Hartree-Fock correlation functions even if it ap-
pears (as a phase factor) in each Green's function. Those corre-
lation functions in general depend on the phases P, and Pz (ex-
cept X ). With the choice P, =Pz the dependence on the phase
disappears and spin indices may be dropped.

be significantly deep in the single-particle gap. It is
difFicult to ascertain the degree of accuracy of our esti-
mate, but the results displayed in Ref. 7 seem to show
that the existence of at least one low-lying roton mode (at
m = I) is a real feature in Bechgaard salts in all SDW sub-
phases.

APPENDIX A HARTREE FOCK CORRELATION FUNCTIONS Xyy Xy AND X

Using the expressions for the spin operators o„and o, given in the Introduction, it is easy to check that these
Hartree-Fock correlation functions can be drawn as shown in Fig. 3. The last two correlation functions contain, respec-
tively, expressions of the type

A (x,x', qj ) = —T g (( Gz, (x,x',p +q~b, co„+co~)G»(x', xp, ~„))),

8(x,x', q~) = —T g ((G«( x'x,p+q~b, +coco&)G&&( ', xp, x))r)0, (A I)

C(x,x', q~) = —T g (( G,z(x, x',p +Q~b, co„+co~ )Gz, (x', x,p, r0„))) .
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They have been written in the mixed representation. 6, are the Green's functions (T,g;g~) calculated in the
Hartree-Fock approximation. Phase transformations connect these functions to the g; of the text. The corresponding
phase factors are given in the following:

X0
4„(x,x',p)=kF(x —x')+ Ti p

U X0

X0 X
Tg p—

U X0
r

X0 x Xo x'
e»(x, x,p) = k,—(x —x ) — T, p—

U X0 U X0

r

X0 X N X0 N42?(x,x',p)=kF(x —x') — T? p — +Qib + Ti(p+g~b)
U Xp U

Xo x' Xo
P + Ti(P) e

U X0 U

X —Qib
X

X0
4?2( xex' ep)= —kF(x —x')+ Ti p

9

X0 NTi(p —Qib)

Xo X'
Tj P-

U X0

X0—Qib — Ti(p) )
U

where Ti(u)= roti(p)dp
Until now we use units such that x0 ——1. The following expansions will be useful to express the functions A, 8, and C

above:
e

l l Q, b
exp — Ti(p —x +Q?b) — Ti(p —x) = g Iq(gi)exp ln p + —x

U U
tt

(A3)
l l q~b

exp — T?(p+qjb—)+ Ti(p) = —QK„(qi)expin p+
U

If
2

The coefficients are easily obtained by inverting (A3),

l l . Qjb
l„( ~{))=((exp —T~(p+{?,b)+ —T, (p)+ie p+

(A4)
l l qqb

K„(q~)= exp — Ti(p+q, —b)+ T,(p) in —p+—
U U 2

As Ti is an odd function. , it is easy to check that

+4=+4=i
N

X I K?v I

'= l

~„(gi ) =&„(—Qi )=&„'(Qi),
K„(qi)=K „(q? ), K„'(q? )=K„(—qi) .

(A5)

K„ is not real. It is possible to reduce it to an approximate simple expression. Using the standard expression for the
transverse dispersion (see Ref. l) we obtain

K„(qj ) =(i)"y ( i) J„2[(t)J?(t—'),
1

(A6)

Sfg 4t~
sin(qib/2), t'= sin(qib) .

Q)~

tb and t& characterize, respectively, the dispersion energy in the k~ direction and the violation of perfect nesting along
k . We can restrict ourselves to values of qib of the order of t?', /t?, && l so that t'-t?', /co, t?, ~~ l. So we can approxi-
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mate (A6) by

K„(qj)=i"J„(t)with t= 4th
(A7}

The Green's function g,. is not space translation invariant because of the gauge periodic potential of periodicity 2~xo.
So we can expand them in the following way:

gNb
g&, (x,x',p, co„)=g f dk exp +ik(x —x')+imx im—p+ g (k, co„),

l l & j.
~Nb

g, (x,x',p, co )=exp ——T~(p) T—j(p—+Q~b) g dk exp +ik(x —x')+imx im —p+
V 2

m

f (k,co„),

g, ~(x,x',p, co„)=exp T~(p—)+ T~(p —Q~b—) g f dk exp ik (x— x'}—imx—+im p—
V V

(A8)
gNb f (k, co„),

g22(x, x',p, co„)=g fdk exp ik(x—x')—imx—+im p—
gNb

2
g (k, co„) .

The coefficients g and f, as defined above, do not depend on p =k~b and are given by solving a Dyson equation (see
Ref. 1). Putting (A2) and (A8) into (Al), making use of (A3), and finally averaging over p leads to functions of x —x' as
expected from general gauge invariance arguments. Then it is possible to perform Fourier transform relatively to
x —x'; we find

A = —T g g f dk IN+„(Q~)K„(qj )e "fN+ ( —k q~~, co„—+co )g„+„(—k+m n, co„)—,
Ico„n,n,

B = —T g g f dk K„'(qj )K„.(q~)e g ( —k q~~, co„—+co )g„„(—k+m +n, co„),
I

co n, n,
m

C = —Tg g fdk K„'(q, )K„'(q, )e 'fN+ (k+q[[ co„+coe)fN+~ „„(—k+n m, co—„),
I

co n, n,
m

with

Qib, QPbP„=(n +n' 2m —N) —n'—
2 2

q~b gNb
Pa (n' ——n —2m—) +(n n')—

2 2

g Nb qjb
Pc n——+(2m +2N n n')— —

2 2

(A9)

These formulas, although general, are too complicated to be used in the text. At suSciently low temperatures, as ex-
plained in the text, we perform an expansion to zero order in powers of 5N+z, p&0 (for details see Ref. 1}. So we keep
only

fN+ (k, co„)=fN+ (k, co„):——5 (m)5N/2)0,

g (k, co„)=g' '(k, co„)—=5 (m)(ico„+k)/2)o,
(A 10)

withe) =(ico„+k+p)(ico„—k —p) —5N.
On the other hand, K„(q~) can be approximated by using (A7). Assuming q~b && 1, Q~b =n it is easy to check that

all extra phase factors could be taken to 1 to a good approximation.
Then, (A9) can be rewritten as

= —T g g J„(q,)IN+„(Q, )fdk fN (qli n +,co„+co )g,' '( k, co„), —
Qp n

B = —T g g J„(q~)f dk go '( —k, co„)go '( —
(q~~ n —k), co„+—co ),

co n

C = —T g g J„(q~)fdk fN '( k,co„}f—
co n

(A 1 1)
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&g+ n

&pa,'&- C )+C
(b)

~~ -CQ CO C& CO

FIG. 4. Hatree-Fock (HF) correlation functions of Fig. 3 can
be approximated as explained in Appendix A. The general rules
consist in attributing a factor IIv~„{gfkq, ), [J „{t)],to each
vertex with difFusion to the other (same) side of the Fermi sur-
face. Figure 4(a) represents, respectively, X~»(Q~+q) or
X ( —Q~+q) and X „(Q„+q,—Q~+q). Figure 4(b)
represents X„,{Q&+q,q) and X~,{—Q„+q,q), X is diagonal in

wave vector and is drawn Fig. 4(c) for the argument q. The qj-
dependent factors of all the terms involved in each HF correla-
tion function factorize and the remaining factors are then one
dimensional depending only on qtI. %'e have used the same no-
tation as in PL-I

FIG. 5. %'ick's theorem has been applied to get Hartree-
Fock T, products using the following definitions of
the density operators: p= g;, 2 P,

" P;, u„—=5b, ,
rr= 1'„1

=2 '"g. . .g,
' g, „and o,'—=M, ,=i/&2(g'„y,

+Pttg2t —g, tP, t fztP~t). —The straight lines labeled i and j
stand for the fermion propagators (T,P; P, ~ ). We have
chosen the polarization along x so that P& $2 (=——0). It enables
us to drop the spin indices since there are no more extra phase

ip
factors e in the Green's functions depending on the spin. The
input or output momentum at a "longitudinal" vertex 1,1 or 2,2
is q and RQ~+q at a "transverse" one 1,2 or 2, 1.

(k) = f (-k).
Using Fig. 4 and Eq. (A10) it is straightforward to get

The frequencies co„+co~ (m„), and the pseudomomentum k +q~~
(k +n), are associated with the upper (lower) lines.

=yz 5~t co»
X»o'(q, co)= —T g Jdk g}p)'

(A12)

Equation (A 1 1) shows that each bubble which enters the
expression of X, and X„(see Fig. 3) can be expanded in
the same way with, respectively, the same factors J„I~+„
and J„ leading to formula (3.7') of the text. Such identi-
ties are expressed diagrammatically in Fig. 4 where it is
then possible for the reader to extract the general rules
for constructing higher-order terms and other correlation
functions. I» is a combination of terms called g+ and
I ++ in Ref. 1 and calculated in the same reference.
After factorizing the q~-dependent terms, the

q~»
depen-

dence is left in so-called irreducible one-dimensional bub-
bles X»o' and X o (and also Xo and 1 o for X»» ).

co„(co„+co ) —k (k +q)+5A,1' "(q,co) = T g dk
2)P)'

Analytical continuation co ~~+i 0+ is performed at the
end of the calculation and 2)v means
(i ro„+ico» —k q)(i co„+ico—+k +q) 5N Summat—ion.
over Matsubara frequencies and integration over k leads
to the formula (3.8').

Note that for the special value q~ =0, 7 „and g„ lose
their fine structure. Accordingly, using
J„(q~=0)=5 (n ), formula (3.7') reduces to



9684 DIDIER POILBLANC AND PASCAL LEDERER 37

X,', (+Q+q, q=(q]~, 0), )=I„Xr;(q~~,~),

X (qt, q =0, )=X (q], ) .

(A13) (a)

APPENDIX B: HARTREE-FOCK BUBBLESOF CHARGE
AND SPIN-DENSITY COUPLED FLUCTUATIONS

The HF bubbles which enter RPA Eq. (4.3) can be cal-
culated with the method described in Appendix A. Their
general expression is represented in Fig. 5. The first term
of the expansion in powers of 5N+~, p+0, are shown di-

agrammatically in Fig. 6. The q]-dependent term factor-
izes and the remaining terms are one-dimensional corre-
lation functions depending on qt the expressions of which
are deduced from Fig. 6 (c) +

IN+„~Q"+~ )

Jn

IN „(Q~-q~)

I~~„(Q~ + q~)

co„(co„+co ) —k(k+q) —5N
X(sc'(q, ci])=4T g dk

fig SsXlo

=4[7]]'(q,co)+2I ]](q,c0)], (B1)

Xo"(q,co)=&2TQ fdk, =2 . lro'(q, co) .
]Ci]

Simple analytical manipulations lead to formula (4.5).

FIG. 6. The HF bubbles are approximated by use of the tech-
nique described in Appendix A in terms of one-dimensional
propagators. The upper (lower) propagators are taken at a
Matsubara frequency co„+co~ (co„) and at a wave vector k +q~~
(k+n). (a) represents the diagonal term (in momentum) com-
ponent X~~(q, c0). As X (q, c0), it does not depend on the polar-
ization of the SD%' in the XYplane. The sum over the integer n
has to be performed (although not explicitly written). (b) and (c)
correspond, respectively, to X~„(q,—QN+q, ci]) and
X ~(q, Q +Nq, )e.]On the other hand, the HF correlation func-
tions ( T,o,o„)1], ( T,o, cr', )0, and ( T,o,'cr,' ) (not drawn here)
involve exactly the same one-dimensional bubbles as in Fig. 4(a)
(with different signs) and are not shown here.

APPENDIX C: RPA APPROXIMATION FOR CHARGE AND SPIN-DENSI.rY CORRELATION FUNCTIONS

Equation (4.1) can be explicitly written as {the frequency co is omitted)

Xii(QN+q) +11(QN+ 1)
2

X] (QN+q q)X, ](q QN+q)+ X]l(QN+q)X]](QN+q)2

+
2

Xi](QN+q —QN+q)Xii( —QN+q QN+q)+
2

Xiz(QN+q»2](QN+q)

+
2 +12(QN+q QN+'q)X21( QN+'q QN+q),

Xz](QN+q) =Xz](QN+q) —
2 Xz,(QN+q q», i(q QN+q)+

2 Xz](QN+q)X»(QN+q)

+—Xz](QN+q —QN+q»i i( —QN+ q QN+ q)+ —Xzz(QN+ q)X2](QN+ q)2 2

A+
2 Xzz(QN+q* —QN+q»zi( —QN+q*QN+q»

X,i(q QN+q)=X,'](q QN+q) —
2 X,',(q)X,](q QN+q)+ —X,'](q QN+q»ii(QN+q)p

+ 2X,'](q —QN+q»ii( —QN+q QN+q)+
2 X,'2(q QN+q»zi(QN+q)

(Cl)

+
2

X 2(q QN+ l)X21( QN+'q QN+ 1)
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&»~ —Qx+q Qiv+qi=&il~ —Riv+q Qiv+qi —
2 &ip~ —Qs+q q», i~q Qw+qi0

(}+
2

&ii~ —QN+q QN+q»ll~Qx+qi+
2

&»~ —Q~+q»»~ —Q~+q Q~+q~

+
2

&i2~ —&iv+e Qiv+e»zi~Qiv+qi+
~

&i2i —Qiv+q»'21' —Qx+q Qx+q~,

&21i —QN+q Qiv+Qi=+2i~ —'QN+q QN+%~ —
p

+2pi —'QN+q q»piiq 'QN+qi

+ +21' Qiv+q Qiv+q»ii~QN+ei+ —&2ii —Qiv+q»ll~ QN+q Qiv+q~
2 2

+—&22' —QN+q Qiv+q»2i~Qiv+qi+ —&u~ —QN+q»2ii —&n +q &iv+qi .
2 2

This leads to a 5 X 5 determinant which is expanded in (4.3). Furthermore, by solving this linear system it is even possi-
ble to obtain a general expression of the RPA spin-spin and charge-charge correlation functions.
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