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%e investigate the surface spin waves on the (001) free surface of semi-infinite two-lattice ferri-

magnets on the Heisenberg model with nearest-neighbor exchange interactions, Energy spectra are
calculated for both NaC1 and CsC1 structures by means of the method of the retarded-Green's-

function equation of motion. It is found that the surface-spin-eave spectrum for NaC1 structure has

both optical and acoustic branches, while it can only have one of these branches in the case of CsCl
structure. The nature of the energy spectrum branch depends upon which sublattice the surface

layer belongs to. It is also found in CsC1 structure that the surface optical branch crosses into the
bulk acoustic continuum and produces the resonant state. Possible extension of the theory to inter-

face and superlattice problems is discussed.

I. INTRODUCTION

Surface spin waves (SSW's) of ferromagnets or antifer-
romagnets have been the subject of extensive study. '

Most of the discussions have been concerned with one of
two types of geometry, a semi-infinite or a slab Heisen-
berg ferromagnet.

Mills and Maradudin' first discussed the existence of
surface states near the (001) surface of a Heisenberg fer-
romagnet with a simple cubic (sc) lattice. They also stud-
ied the effects of the surface state on thermodynamical
properties of the magnet. The first investigation of the
surface state in antiferromagnets was performed by Mills
and Saslow who studied the (001) free surface of a two-
sublattice Heisenberg antiferromagnet with a body-
centered-cubic (bcc) lattice. DeWames and Wolfram in-

vestigated in their series of papers the effect of surface
perturbations on surface modes in ferromagnets, bcc anti-
ferromagnets, and sc antiferromagnets. The next-
nearest-neighbor exchange interaction was considered by
Harada and Nagai in their discussions of the surface
modes of semi-infinite and slab Heisenberg ferromagnets
and antiferromagnets.

The method of retarded Green's function was intro-
duced by Diep-The-Hung et al. in their study of spin
~aves and other magnetic properties of ferromagnetic
and antiferromagnetic films. It has also been applied by
Seizer and Majlis to study the surface spin waves, sur-
face magnetization, and surface Curie temperature of a
semi-infinite Heisenberg ferromagnet. The treatment of
such surface magnetic problems has recently been gen-
eralized to the interface of two difFerent Heisenberg fer-
romagnets by Yaniv and by Bu Xing Xu et a/. More
recently, Dobrzynski et al. ' investigated the properties
of SS%'s in a superlattice.

As we have mentioned above, most of the SS% works

are concerned with ferromagnets. Few are for antifer-
romagnets, and to our knowledge, there does not exist
any work on ferrimagnets. Since the magnetization vec-
tors of individual sublattices do not offset each other in
ferrimagnets, they are more complicated than ferromag-
nets or antiferromagnets to handle. The spin waves and
magnetic properties of bulk ferrimagnets have been inves-

tigated by the present authors" on the two-sublattice
Heisenberg model. This paper will be referred to as I
from now on. The method introduced in I is now em-

ployed to study surface spin waves near the (001) free sur-
face of semi-infinite two-sublattice ferrimagnets.

As in I, we consider two different kinds of magnetic
ions a and b. They may form either NaC1 or CsC1 struc-
ture with mean values of a-sublattice spin (S'), and b

sublattice spin (S )b, respectively. For ferrimagnets, we
have

)
(S'),

( &
~

(S')„) in general. In the case of fer-
romagnets or antiferromagnets, the energy spectrum of
either bulk or surface spin waves, when expressed in
terms of the dimensionless quantity e=E/zJ(S'), is in-
dependent of (S'). This is no longer true in the case of
ferrimagnets. The spin wave depends on the ratio
—(S')&/(S'), =tx even when expressed in unit of the
same dimensionless quantity e.. For definiteness, we as-
sume as in I, a( 1 without loss of generality. Namely,
the a sublattice is assumed to have a larger mean spin
than the b sublattice.

This paper is organized as follows. %e first review
very briefly the method of retarded Green's function and
obtain the matrix equation of motion for the tw o-
sublattice bulk system in Sec. II. The method is then ap-
plied to NaCl structure in Sec. III in which we describe
the cleavage procedures to create a semi-infinite ferrimag-
net with (001) free surface. The resulting superinatrix
equation is solved in the approximation in which the
mean spin in any lattice plane of the sublattice is assumed
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to be independent of its distance from the surface. That
is, (S;)=(S'), and (Sb)=(S')b. The SSW spectra
are explicitly calculated and it is shown that for the spe-
cial case, a=1, our results agree completely with those
for antiferromagnets. The CsC1-structure ferrimagnet is
considered in Sec. IV. It is noted that parallel to the
(001) surface, the crystal consists of alternative layers of a
spins and b spins with equal distances and hence, can be
regarded as the simplest superlattice. We find that the
SSW spectrum for this structure depends upon the nature
of the surface layer which may either be the a spin or the
b spin. Our conclusions are discussed in Sec. V.

II. THEORY

+g(K, E;m —i, n)1=5 „1,
(2a)

for the NaC1 structure, and

(E1 D')g(K, E;m, n—) F ig(K, E;m +—l, n)

Fig(K, E;m —i—,n)=5 „1, (2b)

for the CsC1 structure. In these equations we have
defined the unit matrix l, and

For a bulk two-sublattice ferrimagnet, the retarded-
Green's-function equations of motion have been derived
and solved in I. Here we only summarize what are essen-
tial to our discussions in the following.

In either NaC1 or CsC1 structure, the nearest neighbors
of an a spin in the a lattice are all b spins and vice versa.
We use Heisenberg model Hamiltonian with nearest-
neighbor interactions,

H= g JS Sb,
(a,b)

where J stands for the nearest-neighbor exchange in-
tegral, and the sum is taken over every nearest-
neighboring pair only once. The method of retarded
Green's function has been discussed in great detail by
many authors. ' ' The equations of motion for the spin
operators S, and Sb in different sublattices are obtained
after the random-phase-approximation decoupling. The
Fourier transform of the retarded Green's functions are
then shown to satisfy a set of coupled equations that can
be written as a matrix equation

(E1 D)g(K, E;m,—n) F[g(K,E;m—+ l, n)

g„(K,E;m, n) g, i, (K,E;m, n)
g(K, E;m, n)=

gb (K,E;m, n) gbi, (K,E;m, n)

for NaCl structure and

(3a)

g(», E;m, n)

g„(K,E;m, n) gob(K, E;m, n —
—, }

J(s'&, 0

for NaC1 structure and

4J(S'), ri(K)

—8J(s')0
—8J&s &,

D'=
4J (S')

b ll(K)

0 4J(s'), ll(K}
F

(4b)

(Sa)

(5b)

0 0F- 4J&S&„„() 0 (Sc)

for CsCl structure. The two-dimensional wave vector x is
defined by the three-dimensional vector lt =(», q)
=(k„,k, q). The ion layers in a and b sublattice are la-
beled differently. In the case of NaC1 structure, both sub-
lattice layers are labeled by the integers 0, +1, k2, . . .;
and in the case of CsC1, a-sublattice layers are denoted by
integers and b-sublattice layers by half-integers

The functions g and l) are given by

C(K) =~1[cos(k„d)+cos(k d)),

l)(K) =cos(k„d)cos(k d),

(6a)

(6b}

where d represents the nearest neighbor distance. Corn-
bining equations of the type of (2b) for all layers m, we
obtain the supermatrix equation for CsC1 structure

gi (K,E;m ,'—, n—) gi, i, (K,E;m ,'—, n———,')

(3b)

for CsC1 structure where g„(K,E;m, n) is the Fourier
transform of the retarded Green's function and is ex-
pressed in the Bloch-Wannier representation. That is,
the motion in the xy plane is described by Bloch function
and in the z direction by Wannier function. The matrices
D and F in (2) are defined by

—6J(S')i, 4J(S')0$(K)

4J&s*&,g(K) —6J&s'&.

0 J(S')0

El —D'

—Fi
—F

El —D'

—F,

0
—F2

El —D' —F2
El —D'

—Fi
—F2

El —D'

g(K, E;2,n)

g(K, E; l, n)

g(K, E;O, n)

g(», E; —l, n)

g(K, E; 2,n)—

5, „l
5, „l
50„l

5—1,n—

5—2, n—
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in which every matrix element is a 2X2 matrix. A similar supermatrix equation for NaC1 structure follows if one

makes the replacements in (7) O'=D and F,=F i F-—.
We are now ready to consider semi-infinite ferrimagnets with (001) free surface which is created by the cleavage pro-

cedure. ' The NaCl and CsCl structure will be treated separately in the following sections.

III. SURFACE SPIN %AVES IN Nay STRUCTURE

After the cleavage plane passes through the crystal between the ion layers of m = —1 and 0, the bulk crystal is

cleaved into two semi-infinite ones. With all connections between them being cut off, the two matrix elements of the su-

permatrix connecting m = —1 and 0 layers should vanish. The diagonal matrix elements corresponding to these two
layers should also be modified to reflect the fact that there are only five nearest neighbors to each spin instead of six. If
we denote the new 2 g 2 matrix Green's function by

G„(ir,E;m, n) G,i, (ir, E;m, n)
(g)

we find the supermatrix equation that 6 satishes is

I' —Vf
0

G(ir, E; l, n)

G(n„E;O, n)

G(ir, E; —l, n)
5O„1

5 , „1

where the 2 p 2 matrices V, and V f are given by

z&s'&„0
J(s'&.

-J&s').
—J(s'&,

(10a)

(10b)

Pl o e ~ s lsOy ly ~ ~ ~

where the matrix element (E Ho), itself is —a 2 X 2 ma-
trix. Similarly, Eq. (9) becomes

g (E —Ho —V} IG(K,E;l,n)=5~ „1,
1

(12)
m =. . . , —1,0, 1,. . . ,

where the supermatrix V has only four nonzero elements
which are themselves 2 X2 matrices, namely,

Voo ——V, i
——V, ,

Vo, -i= V-i,o= Vf-
It is clear that (11)has the solution

g(ir, E;m, n)=[(E Ho) 'j „. —

(13b)

Using this form of g(z, E;l, m) one can easily show that
G (a,E;m, n }satisfies the Dyson equation

To simplify the expressions, we rewrite the coeScient
matrix in (7) in terms of the supermatrices E and H 0 as
E Ho. Then (7—) becomes

g(E Ho) lg(n, E;—l, n}=5 „1,

G(n, E;m, n)=g(n, E;m, n)

+ g g(n, E;m, !)V«.Q(ir, E;l', n),
1, 1'

(15)

G(a, E;m, n)=g(a, E;m, n)+g(ir, E;m, O)V, G(a, E;O, n}

+g(ir, E;m, —1)V IG(a, E;O,n) .

Equation (16) yields, when m =0,

G(a-, E,O, n }= [1 g(a, E;0,0)V, —

(16}

—g(a, E;0, —1)Vf] 'g(a, E;O, n) . (17)

Combining (16) and (17) we find directly

which is soluble because we know the explicit form of g
from I. It should be emphasized, however, that an im-
portant assumption is already imphed in the above dis-
cussion. %e have assumed that the mean spin values
(S;) and (Sb ) remain to be constant everywhere. This
is, of course, not the case because the surface has de-
stroyed the translational symmetry in the z direction.
Hence, the mean-spin values of either sublattice should
depend upon the distance from the surface. If this z
dependence was taken into account, the supermatrix V
would have in6nite number of nonzero matrix elements
and it would not be possible to solve (15} anymore.
Therefore, we assume, as most of the other authors do in
their treatment of surface problems, ' ' ' that
&S;&=&S'), and &S;&=&S'&,.

To solve Eq. (15), we consider the half space m &0.
Thus, for all n (—1, we have G(e,E;m, n)=0 The.
m & —1 half space can be treated in similar fashion. Us-
ing the nonzero matrix elements given by (13), we obtain
from (15)
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G(z, E;m, n)=g(K, E;m, n)+[g(a, E;m, O) V, +g(K, E;m, —1)Vf ]

y[1—g(z, E;0,0)V, g—(z,E;0, —1)Vf] 'g(ir, E;O, n) . (18)

This is the Green s function solution for a semi-infinite ferrimagnet with NaCl structure. The first term on the right-
hand side of (18) is the bulk solution, and surface effects are involved in the second term. The pole of the 2 X 2 inverse
matrix determines the SSW energy spectrum which is found by solving the determinant equation

det
~

I g(~—,E;0,0)V, g(z—,E;0, —1)Vf
~

=0 .

The explicit form of g (z,E;m, n ) has been worked out in I and is given by

iqd(m —n) E+6J(S'), 6J(S'),y, (k)
g(z, E;m, n)=

N, [(E E+(—z, q)][E E(—z, q)] —6aJ(S'), y&(k) E —6aJ(S'),
where

E+(k) = —3J(S'),(1—a)+3J(S'),[(1+a) —4ay&(k)]'

y, (k) = —,'[cos(k„d)+cos(k d)+cos(qd)],

(19)

(20)

(21)

(22)

and the lattice spacing constant d is the period along z direction. Substituting (21) and (22) in (20) and introducing the
dimensionless variable s=E/6J(S )„we find

1 d ~]d dq ei0d(m n)—
g(x, E;m, n)=

26J(S2), 2m «Id e +—(1 a)e —a+a—[ ,g(K)+—,cos(q—d)]2 a[3$+cos(qd)]

where we have made the replacement

N, ~ 2m~ —«zz

—,'g+ cos(qd)

c—a (23)

The integration in (23) must be carried out for each matrix element separately. Because the denominator involves
cos (qd), the method of integration is more complicated than but similar to that described in Ref. 16. The procedures
are outlined in the Appendix and the results are

—Z+ (z)

where

Z (z)a(a —s)
g(~, E;m, n)= 6JS, 2

—Z (~)
1

a +

Z (z)a(1+e)

Z+(~)=i[[W (z)]' "'/U (~)k[W+(z)]~ "'/U (~)I,
i sgn(T+)[T+(~) —1]'~, T+(a)&1

Ug ~ ——

k sgn e — [1—T~(~)]', T~(~) (1
2

(25)

(26)

T~(tc) =2/(z)+3&(1+a)(a —e)/a,
W~(z)= —[T~(z)+iUg(z)] .

(27)

(28)

det

1 1 5+ e+ T+ T —U+ U =0, (29)
3(a —1)

2U+ U 8'+ 8'8' 8' —1 a

where we have used the relation

The function sgn(x) is defined to be + 1 when x & 0 and —1 when x &0. With the g given by (24) and the Vs by (10),
Eq. (19) becomes after a long calculation

1+aJ(S'),[g„(0,0)—g,b(0, —1)] —J(S'),[g,~(0,0)—g„(0,—1)]
aJ(S'), [gb, (0,0)—gbi, (0, —1)] 1 —J(S'),[gbb(0, 0)—gb, (0, —1)]

8+8' 1

W 8' =2T+ T —2U+ U
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From (27), we see that T+ T does not involve a square root but U+ U still does. To avoid the square root, we multi-

ply (29) by the expression

5+ c+T+T +U+ U
3(a—1)

But since

3a —1 —(U+U ) = z(a —1) e + —(1—a)——
+ a~ 6 31—a

2

s + (g —4)E+ — (1 —( )
9 9 1 —a

we see immediately that as long as a&1, the SSW spec-
trum is determined by e2(a)=[ ——43P(~)]'~ cos 8(~)+

s + —(1—a)——5 4 a
6 3 1 —a s + (g —4)e

9

8 a
(1—g )=0, (30)

9 1 —a

1 5 4 a—(1—a) ——
3 6 3 1 —a

e3(a)=[ ——', P(x)]'~ cos 8(x)+

(32b)

and when a = 1, it is given by

e ——,'(1 —g )=0. (31) 1 5 4 a—(1—u) ——
3 6 3 1 —a (32c)

It must be pointed out, however, that the three roots ob-
tained from (30) must be checked because an extra ex-
pression has been multiplied. We must make sure that
the root does not make the expression (29') vanish. As a
matter of fact, only two of the three roots satisfy these re-
quirements and therefore represent the true SSW spectra.

Equation (30) can be solved in a standard way' and
the three roots are

st(x)=[ ——', P(z)] cos8(tr) ———(1—a)——]/2 1 5 4 a
3 6 3 1 —a

(32a)

2

aQ(tr)= — (1—g ) — (g —4)91—a 27

5 4 a
X —(1—a)——

6 3 1 —a

2 5 4 a
27 6 31—a

'3

P(tr) = (g —4) ———(1—a)——
9 3 6 3 1 —a (33a)

~CD

(/)

LL]

~U

M

LLI

0 2(M)

FIG. 1. Optical (op) and acoustic I',ac) branches of the SS%
spectrum of NaCl structure ferrimagnet, S,= 1, Sb ——0.5,
a=0.476, and (S'),=0.944. The corresponding bulk spectrum
(shaded area} is also shown for comparison.

FIG. 2. SS%' spectrum of NaC1 structure antiferromagnet,
S, =S& and 0, =1. The shaded area shows the corresponding
bulk spectrum.
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nP

V

LLI

AO

CA

LLj

0
I

FIG. 3. Optical branch of the SSW spectrum on (001) free
surface of NaC1 structure ferrimagnet. b: S,=2.5, Sb ——2,
a=0.794; c: S,= 1.5, S& ——1, a=0.651; d: S,=2, Sq ——1,
a=0.486; e: $, =1.5, Sq ——0.5, a=0.316; f: S, =2.5, S~=0.5,
a =0.192.

FIG. 4. Acoustic branch of the SSW spectrum on (001) free
surface of NaC1 structure ferrimagnet. All the parameters for
the curves b-f are the same as in Fig. 3 except for a for which

S, =S& and a = 1.

R(a)=P /27+Q /4,

8(gc) =———,
' arctan[ —Q(~)/2v' —R (z)] .

(33c)

(34)

It is noted that R &0 when a & 1 and g & 1, as can be
directly verified. Equation (33c) then implies that P &0.

By numerical computation we find that s, (n) does not
satisfy the conditions discussed above while both c2 and

s3 do. In fact, we find that for 0&a&1 and g (z}&1,
s2(z) &0 and e3(z) &0. As has been discussed in I, the
negative energy state should be occupied by the "parti-
cle" even in the ground state. Physically observed spin-
wave excited state is actually the negative energy hole.
Hence the SSW excited spectrum of the (001) free surface
of a sc lattice ferrimagnet has two branches, optical
branch siw(e) and acoustic branch essw(e). Thus

siw(~) = —e2(~),

sssw(K) s3(K)

(35a)

(35b}

because sz(z)+0 when g (n)=1 and s3(z}=0 when
gz(~}=1.

When a =1, the system is antiferromagnetic. The SSW
spectrum in this case takes a very simple form of (31}

I

which is identical to that of the free surface in the third
paper of Ref. 4.

Our results are plotted in Figs. 1-4 for different cases.
In Fig. 1 we plot SSW spectrum along with the bulk
spin-wave spectrum (shaded area} for comparison. Fig-
ure 2 shows the SSW and bulk spin-wave spectra for the
case of antiferromagnet. The optical branch of SSW
spectrum for different a values are shown in Fig. 3 and
acoustic branch of SSW for different a values are plotted
in Fig. 4.

IU. SURFACE SPIN WAVES IN CICl STRUCTURE

For the case of CsC1 structure, semi-infinite ferrimag-
nets with (001) free surface can again be made by
cleavage. Now we assume that the cleavage plane passes
through the crystal between the —1 layer of a lattice and
the ——,

' layer of b lattice. One of the resulting semi-
infinite ferrimagnets occupies the half space with
z & ——,'ac ———d, and its surface layer belongs to the b
sublattice. The other occupies the half space with
z& —ac= —2d, and its surface layer belongs to the a
sublattice. As we shall see later, the SSW spectra associ-
ated with these two surfaces are qualitatively different.

The 2 X2 matrix of Green's functions after cleavage is

G«(ac, E;m, n} G,&(z,E;m, n —z')

G»(K, E;m ——„n) G»(z, E;m ——„n ——,)
(36)

The equation that G satisifes can be obtained from (7} by taking into account the effects of cleavage. As a matter of
fact, only four elements of the coefBcient matrix are influenced in our approximation of nearest neighbor exchange in-
teractions. If we define the 2)& 2 matrices

4J(S') s 0 () 0
o o —»= o 4J&s')

(37)
0 —4J(S'),ri(e)

0V)f ——
0 0

—4J & S'), 'g(K) 0
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we find the supermatrix equation that 6 satisfies

EI—D'

—FI
—F2

EI—D'

F
—F2

EI —O' —V ~~

—F I
—VII

—F 2
—V2f

EI—O' —V,b

—F) EI—D'

G(z, E;2,n)

G(z, E; l, n)

G(z, E;O, n)

G(a, E;—l, n)

G(Ir, E;—2, n)

From Eqs. (5) and (37), we see that the effect of V» and V 2f is to cut off the connection between ——,
' and —1 layers,

and the eft'ect of V» and V ~ is to reflect the change in coordination number from 8 to 4 for ions on the free surface.
A similar procedure as described in Sec. III then leads to the Dyson equation

G(~,E;m, n) =g(a, E;m, n)+ y g(ic, E;m, t) Va G(ir, E;m, I', n) (39)
I, 1'

where the supermatrix V has only four nonvanishing matrix elements

—0,0 —bb & ——1, —1 —baV =V V =V
(40)

I,o= V if Vo, -I= Vzf
We remark that the same assumption of constant mean spin values has been made here as in the case of NaC1 structure.

Since the two semi-infinite systems resulted from the cleavage have their surface layers belonging to different sublat-
tices, we treat them separately. Consider first m )0, n &0 or the system with surface layer of b-sublattice ions. Equa-
tion (39) can be solved by the same method as before. That is, set m=0 in (39) and solve for G(ir, E;O, n) which is then
substituted back in (39) to obtain the result,

G(~,E;m, n) =g(ir, E;m, n)+ [g(K,E;m, O) V bb

+g(z, E;m, —1)V if][1 g(~, E;00—)V bb g(a, E;0,——1)V»] g«E On)'
The SSW spectrum is therefore determined by

det
~

1 g(~,E;0,0—) V bb g(~, E;0,——1)V if ~

=0 .

The explicit form of g (a,E;m, n) has again been found in I. It is

E+8J&S"&. 8J&&'&,y, (k) ""'
E "E-"

N, X[E E, (k)][E E (k)] 8.J&S&.y, (k),-" E 8.J&S &.

where

E (k) = —4J&S'&.(1—a)+4J &S'&.[(1+a)'—4ay', (k)]'",
y2(k ) =cos(a.„d)cos(a~d )cos( qd ),

(41)

(42)

(43)

(43b)

and a0=2d is the period in z direction for the CsCl structure. By introducing the dimensionless variable
s =E /8 J& 5'&, and making the replacement

n /2d
dq

N, 2n ~no

e ip(m —n)1 1
g(K, E;Pl, B)= dp

8J g' 2n —~ 2 a i a 2s +(1—a)e —a+ 'g + Y/ cosp
2 2 2

g( 1+e 'i')

—,'i)(1+e'~)

(44}

1
g(a, E;m, n)= 8JS, a2()2""

(45)
(s a) gr~m —n j

U(x)

where we have defined p=2qd and il stands for q(a) for simplicity. The integrals are again evaluated in the complex z
plane by applying the residue theorem as outlined in the Appendix. The result is

(s+1) 1 —'nZ'
U(a) 2 +
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Z+(z) [[IV(a)] I
~ —"

I +[IV(a. )] I
~ —"+&

I

)U(a. )

i sgn(T)[T (Ir) 1—]'~, T (a) & 1

U(~)= . —sgn E — &1—(z), T (z) & 1
2

(46)

(47)

T(~)=1+(E+1)(s—a) —g (~),
2

W(z)= —T(a) iU—(N) .

(48)

(49)

From Eqs. (45)—(49), we can easily write down g(a', E;0,0) and g(rc, E;0, —1) which are then substituted in (42) to
find the SSW spectrum for the free surface with b-sublattice ions. After some algebra, we find

1 —4J (S'),[g,q (0,0)—g(a')g„(0, —1 )]
0 1 —4J(S'), [g»(0,0)—ri(K)gg, (0, —1)]

s2+ ——a+ —ri e+ —(g —1) —I'U —T+2
2 +1

ag
(50)

Hence the SSW spectrum is determined by the quadratic equation

e + ——a+ —g e+ —(ri2 —1)=0 .
2 2 2

(51)

1 /2

The two roots, however, must be rechecked to make sure that the denominator of (50) does not vanish. It turns out that
the only solution satisfying all physical conditions is

'2

es (K) = — —a+ Yi
1 1 a 2 1

2 2 2 2
——a+ —ri +2a(1 —ri )
2 2

(52)

As has been pointed out previously, the spin waves are actually the negative energy hole state. Thus the SSW spectrum
associated with the free surface of b-sublattice ions is given by

Essw(z) sb (a )
b

(53)

When a=O, or ri=l, sssw(0)= —,'(1 —a). Hence, this is optical branch for ferrimagnets for which a&1 while it
represents acoustic branch for antiferromagnets for which a=1.

We now turn our attention to the other half space, namely, m (—1, and n ( —1. The semi-infinite system in this
case has a free surface of a-sublattice ions. Setting m = —1 in (39) and following the same procedure as before, we find
the Green's function matrix

G(z, E;m, n) =g(x, E;m, n)+[g(x, E;m, —1)V &, +g(x, E;m, O) V pf ]

X[I g(x, E;—1, ——1)Vs, g(~,E;—1,0)—V2f] 'g(~, E;—l, n) .

The SSW spectrum is obtained by solving the determinant equation

1+4aJ(S'),[g„(—1, —1)—g(~)g,s( —1,0) 0

4aJ(S'), [g&, ( —1, —1)—g(a)g»( —1,0) 1

(54)

4i a+1 2 a 1 ~ a ~ . 2(E+.1)s + 1 ————g s+ —(g —1) iU —T —— +1Uay 2 2 2
=0 . (55)

Thus the solution of the quadratic equation

1 ————q e+ —(q —1)=0
2 2 2

(56)

1 a 1(a) = —— 1 ————g'+
r '2

1 ————ri +2a(1 —g )
2 2 2

1/2

(57)

that does not yield vanishing denominator represents the
true SSW spectrum. Again, only one of the two solutions
satisfies these conditions and it is

Thus the semi-infinite system with free surface belonging
to a sublattice has only one branch of SSW spectrum



g623i~ITP. T%o%AVES OF SSUR ~CE SPIN

I 0.5

O

(A

(0

0

va&ues fordjfferent & "

1 5„Sb=

h surface lay
07g6. S = ' '

05, a=0
Sb

0 4sg Sg
0

S 1 Q=S —2, '
0 lg4.

f the 8$%~

( c) branch
0 5

Opt)cal (ap "
ferr&magg et,

1 spectrum
pf Cs

Thc cprresp
(shaded are

(5glr) .&ss
a (lr)=e +

Th&se~ w(K) =() for any &

that
epresents '

f a=1, Kssw
dent ln an,„hiattices a" q
(53) and (5g) g

Ugv

joe
two .

h case, bo .
h the SSW

When t
f Ref 4 '"

rface»

r
i resuts

omagnet
i as that o

'
h a free suget, w&t

the identtca
tifcrromagf a bcc aIl

ases are

spcctruln

for .
hul

different ca
lcu&ated

„ca&cuiat';„dicates
th

Thc results
Thc shaded a

g that th
] tted lnF g . ~e o»e . .

h the(00&)
ctrum «"t'

h SS~ asso~'
h„ik contlnuu

ted %&t

M

spec
„h of the

osses into b"
t sta

optjca& br
of Csc» rt ucture cr

h resona"stat~
su«ac

h resonance s

I 0.5

25, bs

eb sobgs to thc„rface flayer .
to diff'erent ~

o ly when thc
rrespondlng

suhiat-

cc«s o" y
ectra cor;

e and a s&
lattice

rs helonging
s ective&y

f r surface 1aye . »„d 8, resp
CsCi strgct«e

care show
fsSW, inthe

fromdlfrere
the p«pe'

for s«face
d thc «h '

are «mp
has on&ysubhtt'ce '

stlc &ranch
d,scusslons

s Pnc

the
have aco";ctcd o«

jt ps pm

can only
ha„e restric c

} structures, lf different y
i i i) fl

(00
portant to p

)etc]y thc sa
thc free surfa

t ated ln comp'
ther ~ords t '

rs each of
(00 .

Stais w't a.
ln hehavc

i) flee surfa
h a]ternatlve

cs hke thc
i-inftn&t "

e kind o p '
grum ls

sem~-'
jets only oze

„~a&e spec r
h,ch conta»s

far as the sp'" w
cerned

~CD

cG

0

~

h Cscl
nd-

tjferrQmag
h orrespon

FI~. 6-
1 The shade

SS% spectr" ' '
d area shoSb and a=t re

ing 1 pectrum

'70

values far
cor-

en« "prrpspplldi+g
Th curves af-IG 8 SS% sp

'" toasublattlccface laY .
s those 0f»g. 7

t esu
sp|nsa„,p nd«t "



9624 HANG ZHENG AND D. L. LIN 37

V. DISCUSSIONS AND CONCLUSIONS

We have studied the surface spin waves of two-
sublattice ferrimagnets by means of the method of
retarded-Green's-function equation of motion. Heisen-
berg model Hamiltonian with nearest-neighbor exchange
interaction has been assumed in our discussions.
Retarded-Green's-function solutions are obtained for
NaCl structure and for CsC1 structure with (001) free sur-
face of either a ions or b ions. From these solutions, it is
possible to find the SSW density of states, the mean-spin
value and its relation to the distance from the surface. It
should not be diScult to extend the method to treat the
interface problem. Work along these directions is in pro-
gress and will be reported in the future.

We have found that for NaC1 structure, the SSW spec-
trum has both optical and acoustic branches, while for
CsC1 structure the situation is entirely different. When
the (001) surface layer belongs to a sublattice, the spec-
trum has no optical branch and it does not have acoustic
branch when the surface belongs to b sublattice. These
findings should easily be verified experimentally by choos-

ing different (001) surfaces of ferrimagnets with CsC1
structure.

We have also found that the optical branch of SSW
spectrum crosses into the acoustic bulk continuum and
form the resonance state for CsC1 ferrimagnet with b-
sublattice surface. The occurrence of such a resonant
state is peculiar to this particular type of semi-infinite fer-
rimagnet. Discussions about such a resonant state can
also be found in Refs. 14 and 15.

Finally we note that the above mentioned properties
are both characteristic to the CsCl (001) or NaC1 (111)
surface. Since this may be considered as a structure of al-
ternative layers of a ions and b ions, it may also be re-
garded as the simplest magnetic superlattice. Therefore,
it is not impossible that such peculiar properties may be
common to all magnetic superlattices with surface.

APPENDIX

Here we illustrate the method of integration by carry-
ing out the upper left matrix element of g(tr, E;m, n) in
(23). We first put the integral in the form

g„(tr,E;m, n) = dp e 'P( — )

6J |,'g') 2~
1+a

a(a —e)

' 1/2
3 1 1

2 cos(qd)+ T (tr) cos(qd)+ T+ (tr}
(Al)

where we have defined p =qd and

T+(~}=2((tr}%3&(1+a)(a—e)/a . (A2)

Let e'~=z when rtt & n, and e 't'=z when rn &n. Then cosp =—,'[z+(1/z)]. The variable z goes around the unit circle
in the complex z plane when qd goes from —m to rr. Therefore, (44) becomes

' 1/2
1 3 1+a

(xf(g ). 2 a(a —e)
( m n(— 2 2

z +2T z+1 z +2T z+1
(A3)

which yields directly, by means of residue theorem, the result in (24).
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