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Standard finite-size-scaling techniques are introduced to obtain domain growth exponents during

a first-order phase transition. A scaling ansatz for the nonequilibrium structure factor in a finite lat-

tice is presented. It explicitly includes a time rescaling exponent x, related to the domain growth

exponent n (n =1/x). We first analyze domain growth in the kinetic Ising model with a noncon-

served order parameter. The method correctly gives the expected exponent n = 2. We have also

studied the kinetic Ising model with a conserved order parameter at a critical value of the order pa-

rameter. The scaling behavior of the peak of the structure factor is consistent with n =0.27. The

analysis of higher wave numbers is more consistent, however, with n =0.33.

I. INTRODUCTION

When a system is rapidly quenched from a high-
temperature, disordered equilibrium state to a low tem-
perature below its transition point, domains of the new
equilibrium phases appear and grow to macroscopic size
as time passes. ' Theoretical studies, computer simula-
tions, and experimental evidence indicate that there is a
regime in time after the quench in which the characteris-
tic length scale in the system R (t) (related to the average
size of the growing domains} follows a power law behav-
ior in time

R(t)- At" .

The nonequilibrium structure factor S(q, t) (which is
the spatial Fourier transform of the nonequilibrium aver-
age of the equal-time order-parameter-order-parameter
correlation function) satisfies, to a very good approxima-
tion, a dynamic scaling relation

S(q, t)=[R(t)]~9'(qR(t)), t ) t, ,

where V(x} is a universal function, independent of time.
This scaling has been observed in a variety of systems, ' in
both d =2 and d =3 dimensions, for times longer than
some transient time to (to is different for different sys-
tems). As in critical phenomena, there appears to be a
certain degree of universality in the growth exponent and
scaling function of different systems, although its origin
and extent is not yet completely understood.

It is now reasonably well established that in systems
with only two low-temperature phases which are de-
scribed by a nonconserved, scalar order parameter, the
growth exponent is n =—,'. Examples of these systems in-

clude the kinetic Ising model, the Langevin equation
for model A, ordering processes in (2X1)-type struc-
tures, ' etc.

If, instead, the order parameter is conserved, the late
time behavior is expected to follow the Lifshitz-Slyozov
law (n = —,

'
) (Ref. 10) for quenches close to the coexistence

curve. The situation for critical concentrations, however,
is much more controversial. Early computer simulations
of the kinetic Ising model with a conserved order param-
eter (Kawasaki dynamics) showed the existence of ap-
proximate dynamical scaling and obtained an estimate
for the growth exponent: n -0.20-0.25." More recent-
ly, it has been argued that if the growth process is statisti-
cally self-similar, the asymptotic behavior for a quench at
a critical value of the concentration also follows the
Lifshitz-Slyozov law. ' Correction terms have also been
estimated which incorporate the effects of surface
diffusion along the interfaces of the highly interconnected
structures. ' The inclusion of such a correction term
leads to an effective exponent n, (tit)

—=8 lnR (t)/8 lnt,
which in the present case would be given by

1 A
n, it(t) =——

R(t)
(3)

where A is a constant which could depend, in principle,
on the temperature and relative volumes of the two
phases. Recent extensive Monte Carlo studies of the ki-
netic Ising model with a conserved order parameter' '
and the continuum Langevin model with conserved order
parameter (model B) (Refs. 16 and 17) show evidence for
a power law with an exponent close to n =—,', once a
correction term like Eq. (3) has been taken into account.
However, if the correction term is not included, effective
exponents in the range n -0.27 —0.29 are obtained in the
case of the kinetic Ising.

On the other hand, numerical simulations together
with renormalization-group ideas have been used to study
both the kinetic Ising model with a conserved order pa-
rameter and the continuum Langevin model' in two di-
mensions. Concerning a critical quench, a logarithmic
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growth has been predicted in the case of the kinetic Ising
model' and a power law with an exponent n = —,

' for the

Langevin model. This, in turn, ~ould imply that the two
models belong to diferent universality classes.

Most of the analyses that have been used to calculate
exponents from computer calculations involve po~er law
fits of the form given in Eq. (1) to the calculated average
domain size R (t). Two techniques have been recently in-

troduced that explicitly exploit the temporal-spatial scal-
ing invariance of the system to calculate both the ex-
ponent n and the scaling function. They include real
space Monte Carlo renormalization-group methods using
standard blocking transformations and a direct analysis
of the scaling properties using subsystems of difFerent
sizes embedded in a larger system. ' ' ' Both methods
yield n = —, in the case of the kinetic Ising model with

nonconserved order parameter. They disagree, however,
in the conserved case (the value given by the Monte Carlo
renormalization-group technique is n = —,'). '

Another technique which makes use of the scale invari-
ance explicitly and has been successfully used in critical
phenomena to determine critical exponents is finite-size
scaling. i The divergent length at the critical point (the
bulk correlation length g} becomes finite in a lattice (of
size L) and of the same order of the lattice size. It is then
assumed that, in the vicinity of the bulk critical tempera-
ture, the behavior of the system, for large enough L, is
determined by the scaled variable g/L. Such an assump-
tion was later justified by using renormalization-group
methods. Domain growth during a first-order phase
transition also involves a divergent length (the average
size of the domains would diverge at infinite times in an
infinite system) that becomes bounded in a finite lattice.
It can be assumed here that, for late enough times and
large enough lattices, the behavior of the system is deter-
mined by the time-dependent scaled variable R(r)/L. A
finite-size-scaling theory for domain growth during a
first-order phase transition has been developed recently,
but it has not been yet tested with actual computer simu-
lations or used to determine growth exponents directly.

We show in this paper that finite-size-scaling methods
can be used to obtain the domain growth exponent n.
The details of the scahng ansatz are given in Sec. II. We
test the method in the case of the kinetic Ising model
with a nonconserved order parameter. The results ob-
tained are presented and discussed in Sec. III. We have
also analyzed (Sec. IV) the kinetic Ising model with a
conserved order parameter.

II. FINIi'x-SIXK-SCAI. ING ANSATZ

Let us denote by S(q, gr, L ) the time-dependent struc-
ture factor calculated in a finite lattice with N =L spins
(in d dimensions). The system has been quenched to a
final temperature T which determines the bulk equilibri-
um correlation length g. Since we will be only concerned
with isotropic systems, it is useful to introduce the circu-
larly averaged structure factor

S,'(q, r, g, L ) = g S(q, r, g, L ),j.

q

8,'(q, r, g, L )=L 9', ( qL, r ' "/L, g/L ),
where wave numbers are measured with respect to the
Bragg peak and n =1/x is the growth exponent. Since
the quench temperature is well below the critical re-
gion, g/L «1. We simply write

S,(q, r, L. ) =L"P(qL, r ""/L ) . (6)

We consider next a system with a conserved order pa-
rameter. In this case, the length scale of the developing
structure is contained in the peak of the structure factor
S,(qm, „,r, L); qm, „~0 and S,(qm, „,r, L)~~ as r~
If we assume the same scaling behavior as in the case of a
nonconserved order parameter, the position of the max-
imum of the structure factor satisfies

aS, (q, r, L)
0=

r}q & =&max

=L f, (qL, t'~"/L)
~ q L,

where f, ( x,y ) denotes the partial derivative 8f( x,y ) /dx.
Consequently, q,„(r, L ) satisfies the following scaling re-
lation:

q,„(r,L)= 6(r""/L}—.

Substituting Eq. (8) in Eq. (6), we obtain

S,(q,„,r, L, )=L'a(r""/L) .

III. KINETIC ISING MODEL WITH
A NONCONSKRVKD ORDER PARAMKTKR

%'e have considered a system of X spins o; =+1 on a
two-dimensional square lattice with periodic boundary
conditions. The system sizes used in this case are
N =32, 64, $28, and ],922. The Hamiltonian of the sys-
tem is taken to be

0=J g o;cr~, '

(i,j &

(10)

where the sum runs over nearest neighbors. %'e have
chosen as initial equilibrium configuration a totally ran-

where the average for a given q includes all the N wave
vectors such that

q.—~
& Iql &q.+ 2

hq ho,

with hq =2m/L.
In the case of a nonconserved order parameter, the pat-

tern formation process is manifest in a developing Bragg
peak (qs„——0 in the case which we will consider}, the
amplitude of which would diverge in an infinite system at
infimte times. In a finite lattice and at temperatures well
below the critical temperature, S,'(qa„s, r, g, L ) is bound-
ed by L . We assume the following scaling behavior for
the structure factor, valid for late times [when
S,'(qri„ss, t, g,L)-L ]
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dom distribution of spins ( T= ac ). The dynamical evolu-
tion is defined in this case by the standard spin-flip algo-
rithm: A spin is chosen at random and its sign reversed
according to a probability distribution p given by

p =min[l, eaH/"& ]. b,H is the configurational energy
difference in flipping the spin. The unit of time is one
Monte Carlo step (MCS) per spin defined as N attempts
to flip individual spins. The system evolves in this
manner until the final equilibrium state is reached. Such
a procedure is then repeated a number of times ("runs")
to average over both initial configurations and dynamical
evolutions.

The four systems have been quenched to the same final
temperature, ka T/J= 1.0 (T=0.5T, ). Their evolution
has been monitored for 200 MCS's (L=32), 800 MCS's
(L=64), 3200 MCS's (L= 128), and 7200 MCS's
(L=192). The results presented for S,(q=O, t,L) are
averages over 950 runs for the L=32 lattice, 480 runs for
L=64, and 150 runs for L=128. Figure 2 also includes
14 runs for L = 192. We have formed the time-dependent
structure factor,

S(q, t, (,L)=—pe ' ' (cr;tr ),
l,J

and circularly averaged it according to Eq. (4). The re-
sults which will be presented for S,(q, t, L ) are averages
over 300, 250, and 160 runs for L=32, 64, and 128, re-
spectively.

We show in Fig. 1(a), S,(q=O, t, L) as a function of
time for three of the lattices analyzed (L=32, 64, and
128). Figure 1(b) shows the same data scaled with Eq. (6),
x =2(n = —,

' ). The scaling ansatz described in the preced-

ing section is expected to hold only for relatively long
times, such that S,(q=O, t, L) becomes comparable to
L". Nevertheless, good scaling is observed in this case
over the entire range of times studied.

Two additional remarks should be made on Fig. 1(b).
Firstly, the quality of the scaling, especially at long times,
appears to be very sensitive to the number of runs includ-
ed in the averages. Secondly, the saturation value for

S,(O, t,L )/L2= (nt 2)(t)

as t~ao is not 1, as it should be at low temperatures.
We attribute both facts to the appearance of a significant
fraction of runs which evolve into very long-lived meta-
stable configurations. ' These metastable configurations
are mostly one strip of one equilibrium phase surrounded
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FIG. 1. (a) Peak of the structure factor, S,(q =O, t, L), as a function of time for the kinetic Ising model with nonconserved order
parameter for three different lattice sizes. From top to bottom they correspond to L=128, L=64, and L=32. (b) The same data
scaled with Eq. (6). The exponent used is n = 1/x = 2, (o), L=32; ( X ), L =64, and (Cl), L = 128.
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by the other phase in such a way that m (t)=0 for long
times after the quench. Since the value of (m )(t) for
t ~ ~ is very sensitive to the fraction of such
configurations present in the sample, we conclude that a
large number of runs is essential in order to obtain the
correct scaling behavior.

A possible way to overcome this diSeulty would ap-
pear to be to discard from the analysis all the runs which
do not reach equilibrium in observable times. %e show
in Fig. 2 S,(q=O, r, L) averaged over only those runs in
which m ( t ~ 00 ) & 0.95. We do not observe a good scal-
ing in this case.

We have finally analyzed the scaling form for the circu-
larly averaged structure factor at finite q [Eq. (6)]. Fig-
ures (3a) and (3b) show the scaled structure factor at
qL=6rr and qL =10m, respectively. The scaling ex-
ponent used in this figure is again x =2. The data follow
Eq. (6) quite accurately even though a significantly small-
er number of runs have been included in our calculation
of the structure factor at finite q. In fact, S,(q, t,L) at
finite values of q is seen to be less sensitive to the addition
of new runs than S,(q=O, t,L). There are two possible
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explanations for this observation. On one hand, the fact
that averages over large samples are necessary to obtain
the scaling behavior of S,(q =0, t, L ) seems related to the
appearance of a significant number very long-lived meta-
stable configurations. Such runs are likely to contribute
more strongly to S,(q=O, t, L) that to S,(q, t,L) for
finite q. On the other hand, S,(q=O, t, g, L) has been
shown to be a non-self-averaging quantity. There is,
however, some self-averaging of initial conditions at finite
q.

IV. KINETIC ISING MODEL
WITH CONSERVED ORDER PARAMETER

We have also analyzed the kinetic Ising model defined
by the Hamiltonian [Eq. (10)] with a conserved order pa-
rameter. We have considered here a system of N spins
(N=16, 24, and 32 ) on a two-dimensional square lat-
tice with periodic boundary conditions. The initial
configuration has also been chosen at random; i.e.,
(m )(t =0)=0. The dynamical evolution of the system is
defined by a spin-exchange algorithm: A pair of nearest-
neighbor spins is chosen at random and their location on

the lattice is interchanged (provided they have a different
sign) with a probability

p =— 1 —tanh
1 hH
2 2k~ T

hH is the di6'erence in energy between the configuration
after and before the attempted exchange. N attempted
exchanges is the unit of time (1 MCS).

The three systems analyzed have been quenched to
k~ T/J= 1.5 (T=0.7T, ) and their evolution followed for
50000 MCS's (L=32), 140000 MCS's (L=24), and
400000 MCS's (L=32). All of our results have been
averaged over 160 runs (L=16), 110 runs (L =24), and
100 runs (L=32). We have calculated the structure fac-
tor defined in Eq. (11)and circularly averaged it [Eq. (4)].

We show in Fig. 4(a) S,(q,„,t,L } for the three system
sizes studied. Figure 4(b) shows the best scaling accord-
ing to Eq. (9} obtained with n=0 27 T.his. value is in
agreement with other Monte Carlo simulations of the
same model. ' It disagrees, however, with the value of
n =—,

' given in Refs. 14 and 15, where an extrapolation to
R (t)~ ~ was used (our result agrees, however, with the
exponent obtained from their Monte Carlo data without
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