
PHYSICAL REVIE% 8 VOLUME 37, NUMBER 2 15 JANUARY 1988-I

(A 8„)„copolymers: A computational study of electronic and excitonic properties
of quasi-one-dimensional superlattices

M. Seel
Department of Physics, Michigan Technological Uniuersity, Houghton, Michigan 4993l

and Lehrstuhl fur Theoretische Chernie, Friedrich Alex-ander Univ-ersitat Erlangen Nu-rnberg Egerlandstrasse 3,
D-8520 Erlangen, 8 est Germany

C. M. Liegener, W. Forner, and J. Ladik
Lehrstuhl fii r Theoretische Chemic, Friedrich Alex-ander Uniu-ersitat Erlangen Num-berg, Egerlandstrasse 3,

D-8520 Fr1angen, 8'est Germany
(Received 20 May 1987)

Periodic copolymers representing quasi-one-dimensional superlattices (A 8„), have been stud-

ied within the tight-binding approximation. The linear-combination-of-atomic-orbitals (LCAO)
approach was used to calculate the splitting into subbands, the widths of the subbands, and the
number of subbands in the well as a function of segment lengths m and n (barrier and well width}.
The Stark shift of subbands and the perturbed %annier functions for a (3 &6832), superlattice have

been calculated for various electric field strengths using perturbation theory. Exciton resonances
and the shift in exciton excitation energies due to an applied electric field have been computed by
using a Pariser-Parr-Pople parameter for the electron-hole interaction. The parameters for the

empirical tight-binding calculations were determined from fully self-consistent Hartree-Fock cal-
culations and first-principles Green s function calculations for the exciton energies for superlattices
of shorter segment lengths. For the Stark shift of the exciton peak a red shift of -25 meV for
2g10 V/cm is calculated, similar to the shifts calculated and observed in three-dimensional su-

perlattices.

I. INTRODUCTION

Semiconducting superlattices or quantum-well struc-
tures have been studied extensively in recent years. '

These arti6cial structures are made by the alternating
epitaxial growth of thin layers of two semiconductors
and are currently of great technological interest with
possible applications as semiconductor diode lasers,
electro-optical modulators, and nonlinear optical de-
vices. In this paper we study the electronic structure of
polymeric quasi-one-dimensional superlattices. They are
not yet synthesized, but their realization as copolymers
with a periodic sequence of m monomeric units A and n

monomeric units 8 is conceivable, perhaps by using the
Langmuir-Blodgett or the Merrifield synthetic tech-
nique. Copolymers having a random sequence of the
constituent monomers A and 8 have already been syn-
thesized, for example, copolymers of pyrrole with X-
methyl-pyrrole or pyrrole with thiophene. A discus-
sion of their electronic structure is given in Ref. 8.

Several theoretical approaches have been used to cal-
culate the band structure of superlattices. Early experi-
mental results could be explained qualitatively by means
of simple quantum wells and Kronig-Penney models.
Other approaches are the envelope-function approxima-
tion, ' ' the tight-binding method, ' ' a Green's func-
tion theory, ' momentum Bloch functions, ' ' and k-p
theory. The efFect of an electric field (perpendicular
to the layers) on the subbands and exciton resonance en-
ergies has been studied using exact numerical solutions,

perturbation, and variational calculations in order
to explain the large shifts and persistence of the exciton
peaks due to the confinement of carriers. The dominant
contribution to the observed red shift is the shift of the
single-particle electron and hole energies. The decrease
of the exciton binding energy due to the induced spatial
separation between electrons and holes has less influence
on the peak position. "

Our objective is to investigate the new electronic prop-
erties of quasi-one-dimensional superlattices, possible
modifications of the electronic and optical properties,
and difterences to three-dimensional quantum-well struc-
tures. This should provide us with guidelines for the
molecular engineering of organic polymers with tailor-
made properties. The linear-combination-of-atomic-
orbitals (LCAO) tight-binding (Hiickel) approach is used
to study the electronic properties. For the study of the
band structure of the constituent materials and for su-
perlattices of shorter segment lengths the full ab initio
self-consistent-field (SCF) Hartree-Fock (HF) solution
is obtained. The lowest exciton energy is calculated by
using a first-principle charge transfer exciton formal-
ism which is based on Takeuti's intermediate exciton
theory and bridges the gap between the localized
Frenkel exciton and the %annier-Mott exciton with a
large radius. This is important for organic polymers be-
cause, due to the strong covalent interaction between the
monomeric unit cells, intracellular and intercellular exci-
tations must be treated on the same footing. These
first-pnnciples SCF HF band-structure and exciton cal-
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culations provide a check for the parameters used in the
simple tight-binding calculations for superlattices with
larger segment lengths. They show to what extent it is
permissible to use the same parameters for the superlat-
tice calculations as for the band-structure calculation of
the constituent materials. They also provide a "reason-
able" coupling parameter for the interface region.

The paper is organized as follows. In Sec. II method
and computational details are described. Section III
gives the results. In Sec. IIIA the HF band-structure
and exciton calculations are discussed. The results for
the superlattices with (A,6832) as the largest unit cell,
and for the perturbation calculation of the quadratic
Stark shift of the exciton peaks, are presented in Sec.
III B. Finally, in Sec. IV a summary and the conclusions
are g1ven.

II. METHOD AND COMPUTATIONAI. DETAILS

and two-electron matrix elements g; ~,

Op Av
gg"=X X X XFt'" 2;J
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The computation of the exciton band E(K) consists of
the following steps.

(i) Transformation of the Bloch functions to Wannier
functions

are constructed from the one-electron matrix elements
pOp

ij

ZA

r —R —R„

A. Summary of Hartree-Pock and exciton theory expressions W„(r—R„)= —g e "it(t„(k), (8)

To assess the applicability of the one-orbital-per-site
non-self-consistent tight-binding method for superstruc-
tures of larger segment lengths, the SCF HF I.CAO
method for in6nite periodic polymers~ is employed to
calculate the band structure of the constituent materials
and of the quantum-well structures of shorter segment
lengths. In this method a Bloch wave function g„(k,r)
is represented as

i(„(k,r)= g c;„(k}{(};(k,r)

w1th

P;(k, r) = g e "u;(r—R„),
N

F(k)c„(k)=E„(k)S(k)c„(k). (3)

The Fock matrix elements

F, (k)= pe "Ft',
P

with

(4)

pOp I Op+Op
ij ij ij (S)

u, (r —R„)=ut' being the ith atomic orbital centered in
cell p.

The advantage of the I.CAO description is that the
coefficients in the wave function (either as Bloch or
Wannier function) yield immediately a picture of its
physical properties: for example, for a miniband near
the bottom of the well, nonzero coeScients for atomic
orbitals centered on sites in the low-gap material and
vanishing amplitudes in the high-gap material describe a
wave function which allows for resonant tunneling '

of an electron through the array of these wells and bar-
riers.

The energy bands and wave functions are determined
from the self-consistent solution of the HF equation

and calculation of the matrix V of the electron-hole
(e-h) interaction. This involves basically two-electron
integrals of the type given in Eq. (7), but integrals over
Wannier functions instead of atomic orbitals. The
lower-lying triplet exciton state is determined by
Coulomb-type integrals —J„, (U and c stand for valence
and conduction band, respectively}. For the singlet
state, additional exchange terms 2K„, shift the singlet
state to higher energies.

(ii) Calculation of the Green matrix G(E):

exp[ik(R„—R,, )]
N q E(K)—[E,(k) —E„(k—K)]

(iii) The zeros of the determinant D =
~

1 —6 V
~

determine the exciton energy E(K).

B. Computational details for ab initio calculations

The simplest quasi-one-dimensional systems which al-
low, on the ab initio level, for the modeling of low- and
high-energy gap polymers, for superlattices with any
reasonable unit-cell size, and for exciton calculations of
the type described above are chains of Li and H atoms.
These model systems served as test cases for HF calcula-
tions of in6nite periodic systems. For the present
study the simplest possible approximations are used. To
model a low-gap polymer a linear I.i chain with alternat-
ing bond distances d „dz, and d, +d 2

——6.06 A (twice
the nearest-neighbor separation in a bcc Li metal) is
used. The degree of bond alternation determines the
value of the fundamental gap. A linear hydrogen chain
with alternating bond distances (d, +d2 = 1.9S A) serves
as a model for a high-gap semiconducting polymer. The
basis set is an STO-3G basis (two functions on Li, one s
function on H, each constructed from three Gauss-
ians ). Using this minimal basis, Hartree-Fock and ex-
citon calculations for a (Lii2H4)„quantum-well structure
(28 orbitals per unit cell, well width of -36 A, barrier
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0 ~ 0
width of -4 A, "interface" Li-H distance of -3 A) are
quite feasible.

C. Tight-bllldlllg (Hllckeo expressions

The energy bands of the m electrons of conjugated
polyene chains represent, within the framework of the
Huckel approximation, the simplest case of a spectrum
which consists of a valence and conduction band. If the
alternating bonds are described by resonance or hopping
parameters p, and p2, the allowed energy bands are's

E,(k) =a —(P2i+P', +2P,P, cosk )'i',

E,(k) =a+(P, +Pi+2PzP2cosk )'i (10)

Both bands have a width of 2
I P2 I

and are separated by
a gap 4E =2

I Pi —P2 I
. The "on-site" parameter a fixes

the position of the band (see Fig. 1). Therefore, by a
suitable choice of the parameters a, P„and Pz, a variety
of two-band systems (constituent materials of the super-
lattice) which differ in bandwidths, band gapa, and rela-
tive positions of the band gaps can be modeled.

Once the parameters are fixed ("tuned" to the ab initio
or experimental' valence- and conduction-band struc-
ture), the same parameters are used for the calculation of
the band structure of a superlattice. The only variable

parameter is the hopping parameter which describes the
coupling between segments A and 8.

After diagonalizing the tight-binding or Hiickel ma-
trix for a (A 8„)„superlattice with m+n=l sites in
the unit cell, the Bloch function is

i'
Q (k, r)= g c;,(k) ge "u, (r—R„) .

i=i p,

p denotes a unit cell of the superlattice, i an individual
site in the unit cell (one orbital per site}. The specific
form of ut' is unimportant. For the evaluation of matrix
elements in the perturbation calculations described
below, only certain symmetry restrictions with respect to
the form of the orbital apply. To compute Wannier
functions, the undetermined phase of the Bloch function
can be chosen so as to obtain real, highly localized Wan-
nier functions (see Ref. 28 and references therein). In
the case of the superlattices considered here, the LCAO
coeScients c;/(k) of low-lying minibands show almost no
dispersion, c,, (k =0}-c;,(k =m/tt). Wannier functions
which approximate the exact function quite accurately
can be constructed in a very simple way, starting from
Eq. (8) and using the summation relation for it vectors in
the Brillouin zone:

W/(r —R„)= pe " pc/(k =0)ge "u;(r—R„)J P ~ ~ V

=—gc,/(k=0)g ge " "u, (r R.„)—1 —i k(R —R„)

v

=—g cq(k =0)g N5q„u;(r —R, )
1

= gc;/(k =0}u;(r—R„) . (12)

Equation (12) shows that the Wannier function for a su-
perlattice band j with almost no dispersion is locahzed
within one unit ceil. In addition, the LCAO coeScients
give a direct measure of how far the tails of the Wannier
function are extending from the well into the barrier.

Using the %'annicr functions, the CFect of an electric
field perpendicular to the segments defining the quantum
wells (along the polymer axis) can be calculated. The
subbands E„ in the energy region of the conduction-
(valence-) band discontinuity are the allowed energy
states of a particle in a quantum well with a finite
height, separated from another well by a barrier with a
6nite thickness. Perturbation theory to calculate the
Stark shift 1s appllcablc 1f thc sh1ft 1n thc encl gy sub-
bands is small compared to the separation between two
bands without a 6eld. If the origin of the electrostatic
potential is chosen at the center of a weH, the second-
order Stark shift due to a Seld in the z direction is given
by

IP~ P~I-
& /p/-pp/

pl Pzi--

IPi+PzI-

FIG. 1. The energy-band structure of an alternating-bond
system described by hopping parameters P& and Pz [see Eq.
(10)].
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E„=E„+(eE)g'—

The perturbed %Pannier function is then

W„(r—R„)=W„+eEg' W (r —R ) . E„=E,+~h+EExB (21)

and the excitation energy for the first exciton absorption

ionization potential and electron afFinity value. In our
case y, , is a parameter used to reproduce approximately
the first exciton resonance as calculated from first princi-
ples, as described in Sec. II A. The resultant energy of
the lowest exciton resonance is then

Using Eq. (12) the matrix elements (W„~z
~

W ) be-
come

(W„ iz i
W )= gc;„(k =0)c (k =0)

X (u, (r —R„)
~

z
~ u, (r —R„))

c]~cj~ Q] z Qj

If the atomic orbitals Q; are symmetric with respect to
an axis which is perpendicular to the plane of the unit
cell and goes through atom i and if overlap integrals are
neglected, the matrix element is simply

(W„ized

W )=pc,„c; z;, (16)

eh

In first-order perturbation theory, the energy shift which
defines the exciton binding energy EExa is given by

where z, is the z coordinate of atom i.
To analyze the problem of the exciton energy we can

treat the Coulomb interaction between the excited elec-
tron and the hole left behind in a 6rst approximation as
a perturbation, using as the zeroth-order wave function a
product of the %'annier functions of the electron and the
hole:

Eabs Ee +~h ++EXB 2Eh Ee Eh +EEXB (22)

The same expressions would have been obtained if one
uses Takeuti's exciton formalism together with the fact
that the valence- and conduction-band %annier func-
tions of a quantum-well structure are localized within
one unit cell of the superlattice and excitations between
wells across the barrier are highly improbable. The ma-
trix and determinantal equations reduce to simple scalar
relations:

1 —GV=O,

1 —lE —«. Ei )I '—EExa=o

E =Ee —Eh+EEXS

Shifts in the exciton absorption energies due to an
electric field can be calculated by substituting the per-
turbed energies and Wannier functions from Eqs. (13)
and (14) in the above expressions. However„ if we first
apply perturbation theory to calculate the efFect of the
electric field on the electron and hole states (small effect),
and then use this wave function in a second application
of perturbation theory to take into account the electron-
hole interaction (large effect if zero-field exciton binding
energy is large), the results become unphysical for large
zero-field exciton binding energies. A more consistent
way to calculate approximately the Stark shift of the ex-
citon peak is not, to separate the problem of electron-hole
interaction and electric field but to treat both efFects
simu1taneously in the same order of perturbation theory:

2

+xxB= &&'
l
H.h l

j'& —(&),~~= Ho H, +Bj, ,
——

2H =eEz eEzj, —e /r- ,p e

(24)

e
C~~Cjh Ck~Clh QE'Qj Qk Ql

i,j,k, l

The matrix elements can be evaluated as in the Pariser-
Parr-Pole (PPP) approximation' (equivalent to a Hub-
bard Hamiltonian with on- and ofF-site Coulomb interac-
tion):

using as unperturbed energies and states the energies and
wave functions of the lowest electron-hole pairs:

Eo =E,'+Ej' 4o= I W,'Wj,')
Ei E, +Ej,', f, =

i

——W, Wi,
' ),

E2 =E'+Ej'

In the parametrization of Nishimoto and Mataga y,- is
given by

YEJ ( lj+ !J ) & jj (YTl/ +YJJ )

The superscripts denote the nth electron and hole
states in the quantum well. Our numerical calculations
show that the %annier functions have the same symme-
try properties as the particle-in-a-box functions. There-
fore quite a few matrix elements vanish. In first order,
the exciton binding energy is obtained:

d; dcnotcs thc distance bctwccn atoms l and J. Thc
Coulomb integral y;; for electrons on the same atom i is
treated as a parameter, usually as the difFcrence between

2E"'=—rV,'w„' '
m,'m„' =E. .. (26)
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in second order the quadratic Stark shift

, J
( w,'

f

z
f

w,' ) t

'
E' '= —2(eE) ——

z
I,'27)

E2

but no field-dependent correction to the binding energy
which is a higher-order correction is obtained. There-
fore the excitation energy for the first exciton in the
presence of an electric field is in second order,

This result is consistent with variational calculations of
the quantum-confined Stark effect in three-dimensional
quantum-well structures which have shown that the
dominant contribution, at least at higher fields, is the
shift of the single-particle energies. This completes the
LCAO tight-binding description of a quasi-one-
dimensional superlattice and the Stark shift of the exci-
ton absorption peak. Note that the only adjustable pa-
rameters are the hopping parameters P and the Coulomb
integral y. The number and the dispersion of the sub-
bands in the well, the extent of the %annier functions
into the barrier segment, and the Stark shift of the
valence and conduction band and of the exciton binding
energy are determined by the lengths of the segments
that define the well and the barrier structure.

III. RESUI.TS AND DISCUSSION

A. Hartree-Pock band structures and exciton energies

D E -&.~2e Y
(/ I'2)~

4,52eV
G

~2,4/ pV
G

(L.
'

H

FIG. 2. The Hartree-Fock energy-band structure of I'Hz)„,
(Li2)„, and two "superlattice" energy bands in the valence- and
conduction-band region of the low-gap material as a function
of well width (Li =" —12 A, Li, =" -24 A, Li, 2=" -36 A) for a
constant barrier width (H4 ——"-6 A). The dashed range indi-
cates the lower and upper limit of the miniband. The circles
indicate the position of the lowest exciton level for the super-
lattices, the dashed line for the constituent material (Li), .

The results of the Hartree-Fock and exciton calcula-
tions are summarized in Fig. 2. The high-gap polymer is

E(t. VJ

modeled by a chain of hydrogen atoms. A band gap of
4. 5 eV is obtained for dl —0.978 A, d2 ——0.974 A.

The reason the gap is still quite large even for this small
bond alternation is that even in the equidistant case a
gap opens up, due to a charge-density wave. The width
of the valence (conduction) band is —16 eV (36 eV). For
the Li chain the choice of d& ——3.033 A, dz ——3.027 A
yields a gap of -2.4 eV and a valence- (conduction-)
bandwidth of -2.6 eV (5.8 eV). The conduction- and
valence-band discontinuities which define the barrier
height are 1.12 and 0.99 eV, respectively. Taking in-
teractions up to five nearest neighbors of the (Li2) unit
cell into account, one obtains an exciton excitation ener-

gy of -1.25 eV (binding energy of —1.15 eV). The
band structure does not change essentially if at least
three neighbor interactions are taken into account. The
exciton energy, on the other hand, is still not fully con-
verged. Extrapolation indicates an energy of —1.20 eV
for seven nearest-neighbors interactions. For the present
investigation it is sufBcient to know that the lowest exci-
ton state lies approximately halfway in the gap. The
values for the gaps of the constituent materials, the band
discontinuities, and the exciton energy are representative
values for actual polymer systems, The largest difference
to three-dimensional systems is in the exciton binding
energies: -4.2 meV for GaAs, 8.6 meV for a heavy-
hole exciton in the superlattice, 2 -0.4 and —1.2 eV for
singlet and triplet excitons in polydiacetylenes.

Figure 2 also shows the SCF HF band structures of
(H4Li„)„superlattices for n =4, 8, and 12. The energy
bands of the low-gap material are shown as a function of
the number of Li atoms, i.e., for the well width (Li+ Lis,
and Li&2 corresponding to —12, 24, and 36 A'. , respec-
tively) with a constant barrier consisting of four hydro-
gen atoms (-6 A barrier width). The valence and the
conduction bands of (Liz)„break up into minibands or
subbands with decreasing bandwidths for increasing n,
e.g., 130, 70, and 50 meV for the top valence miniband
for n =4, 8, and 12. The separation between the top two
valence bands decreases from —1 to 0.5 eV, i.e., it is
about ten times larger than the widths of these bands.
For increasing n, the bands move slowly into the well re-
gion defined by the band-gap discontinuities. It is only
for n &8 that one valence and one conduction band fall
into the well region.

The lowest-lying exciton resonances for these superlat-
tices are indicated by circles in Fig. 2. Again they are
about midway in the gap defined by the minibands. The
excitation energy decreases from 2.66 to 1.89 to 1.63 eV
for n =4, 8, and 12, slowly approaching the value of
1.25 eV obtained for (Lii)„.

A Mulliken population analysis for the charge distri-
bution shows that a slight charge redistribution occurs
at the interface. The charges on the first four Li atoms
are 2.96, 3.04, 2.99, and 3.01. Then the "bulk" value of
3.00 is reached. The values on the H atoms which
represent the barrier are 1.01, 0.99, and, by symmetry,
again 0.99 and 1.01. IIl agreement with 1Ilvestigations
on three-dimensional systems, ' ' ' these corrections
to the charge distribution are small enough to make it
not unreasonable to proceed to tight-binding calculations
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of larger superlattice structures using input parameters
which are fitted to the band structures of the constituent
materials.

B. Tight-binding results

In the tight-binding calculations, polymers with gaps
and band discontinuities which are slightly lower than
the ab initio values were modeled. Qualitatively, all the
characteristic features of the first-principle SCF calcula-
tions are preserved. The parameters which describe the
barrier material A are a "=0, P,"= —10.155, and
Pz" ———8.085. The corresponding parameters for the
low-gap material 8 are a = —0.03, P, = —2.475, and

P2 ———1.325. The resulting band discontinuities are in-

dicated in Fig. 3. As the first trial value for P„s, the pa-
rameter which describes the interaction between neigh-
boring atoms A and 8 at the interface of the superlat-
tice, —1 was chosen. This describes an interaction
which is slightly weaker than the weak bond in the
(Li2), system. The resulting superlattice energy bands
are shown as a function of the well width and constant
barrier in Fig. 3(a). For all practical purposes of the
present investigation the qualitative agreement with the
Hartree-Fock calculations for n =4, 8, and 12 is satisfac-
tory and, therefore, no further optimization of P„s was

performed. The main difference from the HF calcula-
tions is that, as a consequence of Eq. (10), the minibands
in the valence- and conduction-band regions are sym-
metric with respect to u= —0.03 and have the same
dispersion.

Going from n =4 to n =32 the dispersion decreases
from 150 to 3 meV for the lowest-lying band (ground
state of the well). Its position shifts from -650 meV
above the bottom of the mell to about 40 meV. For
n =32 the dispersions of the five minibands in the well
are 3, 9, 16, 21, and 24 meV, respectively. The separa-
tions between the minibands are 112, 164, 196, and 213

I

E =4!4 ~V E~=z.~ae~

2 I&

V

Q,89eI/

4 8 i'6 24 32 4 0 lG Z4 32
n (rn~ 2) (i) -32)

FIG. 3. The tight-binding band structures of (A 8„)„su-
perlattices (a) as a function of well width for a constant barrier
width A2 and (b) as a function of barrier width for constant
well width (832).

meV. One consequence of the strong dependence of the
band structure on the well width is that electron trans-
port by miniband conduction will be strongly a8'ected.
The larger the low-gap polymer segment becomes, the
smaller the bandwidth and, therefore, the larger the
erat'ective mass of the carriers will be, resulting in a de-
crease of conductivity. It was sho~n recently for a
GaAs/A1As double-barrier diode structure that the reso-
nant tunneling current decreases by 2 orders of magni-
tude if the well width is increased from 5 to 9 nrn.

On the energy scale of Fig. 3, the miniband structure
as a function of the barrier width [see Fig. 3(b)] seems al-
most independent of the width of the barrier (number of
A atoms). There is, however, a very important inhuence
of the barrier width on a me V scale: it strongly
influences the width of the minibands. Going from a
barrier width of -4 A (defined by ni =2 A atoms) to a
width of -34 A (m =32) the ground state is shifted
downwards by about 1 meV and its bandwidth decreases
from 3 to 0.16 meV, i.e., almost by a factor of 20. For
bandwidths in this range, miniband conduction breaks
down completely, since the slightest perturbation will
localize the associated wave function: if 5 defines the
range of random changes in the potential (a parameter
of a lattice site) and W the bandwidth, then the parame-
ter for Anderson localization b, /W will always be
larger than the critical value if 8' is small enough. Due
to localization of the wave function, electron transport
will be dominated by tunneling through the barriers,
which is observed for three-dimensional superlattices
with a ground-state bandwidth of -0.4 meV. The ex-
pected exponential decreases of the resonant tunneling
current for increasing barrier width have been verified
experimentally.

C. KfFect of an electric field

The effect of an electric field on the electronic and ex-
citonic structure of quasi-one-dimensional superlattices
is investigated for a (A,68~2), quantum-well structure
(barrier width —16 A, well width -96 A). The band-
widths of the first minibands in the well are 0.7, 2.6, 4.8,
7.0, and 9.3 meV (by symmetry the same for valence and
conduction bands). The separations between the bands
are 115.6, 171.5, 207.2, and 225.9 meV, respectively.
The lowest conduction band for the first confined elec-
tron lies at 1.1612 eV, 41.2 meV above the bottom of the
well. The highest valence band defines the lowest band
with respect to the bottom of the well for the first
confined hole and lies at —1.2212 eV, against 41.2 meV
above the bottom of the well.

Figure 4 shows the z dependence of the wave func-
tions for the three lowest subbands in the well
(n =1,2, 3) by plotting the LCAO coefficients c;„(k) [see
Eq. (11)]and their squares for k =0 as a function of the
site index i. They have amplitudes almost exclusively in
the well region, but the amplitudes in the barrier are in-
creasing from n = 1 to n =3, indicating that the barrier
becomes more transparent. Figure 4 also shows that the
Bloch functions and, by virtue of Eq. (12), the Wannier
functions for a single well have the same symmetry as
the particle-in-a-box functions: with respect to the
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t'k= 2&
/ f)

/'c &k-0)/ 2

center of the well the wave functions alternate between
even (ground state n =1, n =3,5) and odd (n =2,4).
This is corroborated in the numerical computation of the
matrix elements ( fV„r z

r
W ) [see Eqs. (15) and (16)]

where nonzero elements are obtained only if (n —m) is
odd.

In the presence of an electric Geld the second-order
Stark shift of the first confined electron energy (lowest
conduction miniband) and the first confined hole energy
(highest valence miniband) is calculated using Eq. (13)
and taking the next five states m =2-6 into account in
the summation. The results for fields up to 20)&10
V/cm are shown in Fig. 5. For the largest Seid the
m =4 state still contributes -0.1 meV, for all other
fields the Stark shift is determined by the first term in
the sum. For E=20X10 V/cm the shift is —13 meV,
about the same order of magnitude as the shift for the
first confined electron energy in a three-dimensional (3D)
(GaAs-AIGaAs) quantum-well structure. 2' This shift is
approximately ten times smaller then the separation be-
tween the first two minibands, so the application of per-
turbation theory is warranted.

The effect of an electric field on the electron and hole
wave function is shown in Fig. 6. In the presence of the
field the even ground state is admixed with higher-lying
odd states [see Eq. (14)] which have amplitudes near the
well walls. The electrons and hole wave functions are
pulled apart, which weakens the electron-hole interac-
tion and therefore the exciton binding energy. But due
to the confinement there is still an appreciable overlap
and binding. The binding energy has been computed us-
ing Eq. (19). The first trial value for y =5.6 eV (ioniza-
tion potential —electron ai5nity of Li) yielded too large a
binding energy. y =2.8 eV positions, for zero field, the

-/ /80 +—

I

-/. 2/0-'
I

-/. 220

0 /0 /5

E/. / I E. l 8 |'/0 yj~m)

FIG. 5. Stark shift of the first confined electron (e) energy
E, in the lowest conduction miniband and first confined hole
(h) energy E/, in the highest valence miniband and of the first
exciton (ex) absorption peak ( ———). The bottom of the
quantum wells for the electron and the hole in the (A &68»)„
superlattice are indicated by dashed lines.

20

fI[rst exciton peak at 0.37 eV with a binding energy of
785.4 meV, which is about halfway in the gap as predict-
ed by the ab initio calculations for superlattices with
smaller unit cells, and is a sumicient approximation for
aB practical purposes of this first qualitative study. As

fc,i/.
E = 8 9& Ij V/(." ni

Q05 -'- E-&o~io v/cm4

I I I I I I I I

I I I I J I I I I I
i

Zo 40 60 80
5I T'E INDEX i

FIG. 4. The wave functions for the three lowest subbands
(n =1,2, 3, ) in the well of a (A &68»)„superlattice. The LCAO
coefficients c;„()'t) [see Eq. (11)]and their squares are plotted as
a function of the site index i for k =O.

Q.O I I

I I

I 7 5/&E INDEX &8
FIG. 6. Wave-function amplitudes [squares of the LCAO

coeffirients of the Wannier function as defined by Eq. (12)] vs

site index for the first confined electron (solid line) and hole
(dashed line) in a (A&68»)„superlattice for various electric
field strengths.
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FIG. 7. Shift of the exciton peak position with applied field
for various zero-6eld exciton binding energies Epxs if Eq. (19)
is used together with the perturbed wave functions from Eq.
(14). C3, EExa ——785 meV (y=2. 8 eV); 6, EExs ——563 meV
(y=1.4 eV); C', EE„a=380 meV (y=0.7 eV); X, Esxs ——239
meV (y =0.35 eV}; and +, EEx& ——46 meV (y =0.05 eV). The
dashed line is the red shift as calculated from Eq. (28),

already mentioned in Sec. IIC the first way of applying
perturbation theory to calculate the Stark shift of the ex-
citon peak fails. As illustrated in Fig. 7, it leads to a
blue shift for large zero-field exciton binding energies.
For an electron-hole system that is symmetric at zero
field, this is unphysical, as is pointed out in footnote 53
of Ref. 25. Using the second approach [Eqs. (26)-(28)] a
red shift of -25 meV for 20)(10 V/cm is obtained (see
Fig. 5 and dashed curve in Fig. 7), comparable to the
shifts calculated and observed in 3D quantum-well struc-
tures.

quence ( A 8„)„ofm constituent monomers A and n

monomers 8 which represent prototypes of quasi-one-
dimensional superlattices. An LCAO methodology
based on %annier functions has been developed for the
calculation of the effect of an electric field on the elec-
tronic and excitonic structure of these quantum-well
structures. Instead of using the empirical fol m of the
equations, ab initio results can be obtained by substitut-
ing first-principle Wannier functions (calculating dipole
moment expectation values for the computation of the
Stark shift and two-electron integrals for the exciton
binding energy). Tight-binding (Hiickel) calculations
have been presented together with Hartree-Fock results
to assess the importance of self-consistent field effects.
The splitting into subbands, the bandwidths, and the
number of subbands in the well have been investigated as
a function both of the well and the barrier width. The
number of minibands, their bandwidths, and their posi-
tion with respect to the bottom of the well are deter-
mined by the well width. An additional decrease in the
bandwidths is obtained by increasing the barrier width.

The Stark shift of the first confined one-particle elec-
tron and hole energies, the perturbed Wannier functions,
and the shift of the first exciton absorption peak have
been calculated using perturbation theory. The results
show that —up to second-order perturbation theory-
the only contribution to the shift is the shift of the one-
particle electron and hole minibands. A red shift similar
to the one observed in three-dimensional quantum-we11
structures is obtained. Since the exciton binding ener-
gies in polymeric materials are much larger (-800 meV
or by a factor of 100) than in typical 3D superlattices
they are less perturbed by the applied electric field (10s
V/cm corresponds to 100 meV potential difference
across 100 A). The results indicate that polymeric su-
perlattices would be excellent materials for optical appli-
cations in which high electric fields play a role.

IV. SUMMARY AND CONCI. USIGNS

In this paper we have studied for the first time the
electronic structure of copolymers with a periodic se-
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