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Macroscopic dynamics of uniaxial spin glasses
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An earlier study of the long-wavelength excitations in XY spin glasses has been extended to in-

clude the LT phase (possessing both /ongitudina1 and transverse spin-components), where the uniaxi-

al anisotropy is not strong enough either to force the spins completely into or normal to the (x,y)
plane. For an ideal case there is a Goldstone mode with linear dispersion, corresponding to rota-
tions about the z axis, For real systems, with in-plane remanence mo, an external 6eld 8 along no,
and in-plane anisotropy K, one finds a macroscopic mode with frequency coo= y[(K + rnoH)/X ]' '
in the long-wavelength limit, as for the planar spin glass.

I. INTRODUCTION

In this work we consider the theory of long-wavelength
normal modes of spin glasses with uniaxial anisotropy,
using the methods of macroscopic dynamics. One can
realize this possibility experimentally by employing hex-
agonal metallic host crystals to provide the anisotropy,
and various impurities to provide the magnetically active
systems. ' Typically, the uniaxial anisotropy D is nearly
independent of the impurity concentration c, but the
characteristic exchange J is roughly linear in c.

For the Sherrington-Kirkpatrick (SK) model, which
has long-range interactions, such systems are predicted to
possess a richer phase diagram than in the case of vanish-
ing anisotropy D. In the limit of large Ising-like an-
isotropy„so that the spins favor an axis, a low-
temperature Ising-like (longitudinal) spin-glass phase (L}
makes a transition to a high-temperature paramagnetic
phase (P}. In the limit of large XF-like anisotropy, so
that the spins favor a plane, a low-temperature planar
(rransuerse) spin-glass phase (T) makes a transition to a
high-temperature paramagnetic phase (P). (Note that
the correlations in these two I' phases are di6'erent, due to
the different anisotropies. ) More interesting than these
limits are the predictions, for weaker uniaxial anisotropy,
that: (1) at low temperatures the system will be in a
phase (LT) possessing both longitudinal (Ising-like) and
transverse (XF like) -spin components (with one type
dominating, according to the sign of the anisotropy D);
and (2) that there will be an intermediate-temperature
phase of either pure Ising-like (L) or pure XY'-like (T)
symmetry (according to the anisotropy D) before the
high-temperature paramagnetic phase is reached.

The dynamics of the isotropic SK spin-glass without
anisotropy has been treated by Bray and Moore, using a
microscopic approach. (A macroscopic approach, ap-
propriate for any isotxopic spin glass in the long-
wavelength limit, had been worked out earlier. ' ) In ad-
dition, zero-temperature dynaInics of the SK model, in-
cludlIlg uniaxial anlsotfopy, has been studied in Ref. 9,
where no energy gap was found in any of the phases L, T,

or LT. This is contradicted by a more recent work,
which finds that the spin waves in the L phase have a gap
which goes to zero as the system goes toward the LT
phase (i.e., on weakemng the Ising-like amsotropy). '

It is the purpose of this paper to discuss the long-
wavelength spin waves of the L phase and the LT phase
(the spin waves for the T phase having already been dis-
cussed thoroughly). In Sec. II we briefly argue that in the
L phase excitation spectrum there is a gap which should
go to zero as one enters the LT phase, as found in Ref.
10. In Sec. III, we discuss the nature of the gapless exci-
tations of the LT phase. In Sec. IV we include
remanence, an external field, and random in-plane aniso-
tropy, in order to discuss the expected ESR frequency in
real materials in the LT phase. This constitutes an exten-
sion of the work of Refs. 11 and 12 from the T phase (i.e.,
the XF spin glass) to the LT phase. The ESR frequency,
Eq. (4.7), has the same unusual field dependence as for
the planar (T) spin-glass phase.

II. GENERAL ARGUMENTS

We consider the Hamiltonian

(2.1)

(2.2)

HD= ——,'D QS, . (2.3)

We assume that for D suSciently large and negative,
the spins are forced into the XY'plane, where they are ar-
ranged by the random-exchange term 0,„, yielding an
XY' spin glass (the T phase). Above a critical negative
value of D (0~D &Dr), the spins begin to point in the z
direction (the LT phase), their tips forming an oblate
shape when their tails are all placed at a common origin.
For D =0 the system is an isotropic spin glass. As D be-
comes positive, the spin tips form a prolate shape, and for
large enough positive D (D & DI & 0) the spins point only
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along +z (the L phase}.
Now consider a uniform spin rotation about the z axis,

and its effect on these states and their energies. For the T
and LT phases, which have spin components in the (x,y)
plane, the states change (whereas for the L phase the col-
linear state is unaffected), but there is no change in ener-

gy. Thus, for the T and LT phases this corresponds to a
broken symmetry, and, hence, one expects a Goldstone
mode with vanishing frequency in the long-wavelength
limit. "" Such a mode does not exist for the L phase.
However, in the L phase, as D ~DL it is not unreason-
able to expect a soft mode involving a tipping of spins
into the (x,y) plane (this does not correspond to a rota-
tion about z), thus signaling this continuous transition.
Such a mode is predicted in Ref. 9: the macroscopic
analysis which follows cannot confirm this, but it does in-
dicate that the expected soft mode and the Goldstone
mode of the LT phase have a diferent symmetry.

Earlier we performed a detailed analysis of the dynam-
ics of the T phase. "' Using the same methods, in the
next section we analyze the LT phase, first considering
the case where there is no remanence mo, no external field

H, and no random anisotropy.

III. MACROSCOPIC DYNAMICS

We expect the macroscopic dynamics to be described
by the energy density'

m m

2Xzz 2+j
(3 I)

Here m is the magnetization, X is the susceptibility in
the z direction, and includes the effects of both exchange
and anisotropy in (2.1), Xj is the in-plane susceptibility
(due to exchange), Kj is a measure of the anisotropy ener-

gy of the system if the normal to the spin plane q is not
aligned with the normal to the lattice plane z, p, is the
exchange stiffness, and O, is a measure of the rotation
about the z axis. [No similar term in O„or 8 need enter
because of the much larger K~(q.z) term. Thus our re-
sults do not go continuously to the isotropic limit, where
K~ =D =0.]

Because of the Kj(q.z) term, even long-wavelength
rotations O, and O„of the system will be suppressed, and
therefore only m, and O, are the proper macroscopic
variables. "' Taking the usual equations of motion

~2 c2k2 c2 y2
Ps

X
(3.6)

This is precisely as in the case for the T phase, except
that now X is less dominated by the planar anisotropy. '

Indeed, as D~0, one has X ~X, the isotropic suscepti-
bility. [Moreover, for D =0 the angles O„and 8 become
macroscopic variables, and one obtains two more modes
satisfying (3.6).] Since co~0 as k ~0, this is a Goldstone
mode, and the terminology hydrodynamics is appropri-
ate.

IV. EFFECT OF REMANENCE, FIELD,
AND RANDOM ANISOTROPY

The energy density in this case is expected to take the
form'

m m
+ ——,'K[(n N) +(p P) ]——,'K~(q. z)

2X 2X, 4

zz

(4.l)

which is the same as for the T phase except that we per-
mit a remanence mo out of the plane and we include the
(VO, ) term. Here K includes the memory effects of ran-
dom anisotropy in the plane, " (n, p, q) represents the
orientation of the spin triad, where dn=d8&(n, etc. , and
(N, P, Q=z) represents the orientation of the anisotro-

py triad. ' ' (For D =0=K~, Q need not be fixed along
z.) It is important to recognize that K is expected to be
second order in the microscopic random anisotropy, and
is unrelated to the (nonrandom) uniaxial anisotropy K~,
which is first order in the microscopic anisotropy B.
(Section V discusses K and gives further references. )

The equilibrium condition on m is

0= =X ' m —(H+X ' mo),
m

(4.2)

or

m=mo+X H, X—=X qq+X~(pp+nn) . (4.3)

The equilibrium condition on 8, 5s/58=0, gives n =N,
p=P, and q=z.

For simplicity, we consider mo and H to lie in the (x,y)
plane, so that mo~

——mo and Mo, ——0. The equations of
motion then yield

6c.
mz = —'1/'

5O,

5c
O, =r

~m,

(3.2)

(3.3)

m, = y(KO, +moHO, —p, V—' 8, ),

O, =y
X

(4.4)

(4.5)

we find that

m, =yp, V O, , (3.4)

The normal modes of (4.4) and (4.5) have the dispersion
relation

O, =y
X„

(3.5}
N =COO+C k

where c =y p, /X (as in Sec. III) and

(4.6)

whose normal modes m„O, -e'"' ", have the disper-
sion relation

~
K+moH

COO= f X
(4.7}
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The same type of mode was found for XF spin glasses. '

The in-plane anisotropy j and the in-plane 6eld both act
to provide s restoring torque on the system. Because
there is s gap in ~ for k ~0, this mode is not a Goldstone
mode, and the dynamics should be called macroscopic,
rather than hydrodynamic.

Recent work by Alloul and co-workers indicates that
thermal excitations in isotropic spin glasses, which are
predicted to have the form (4.6) with F0~0 and X —+X,
do not have a noticeable efFective anisotropy K. '

This apparently contradicts the fact that K is quite no-
ticeable in ESR and torque experiments, for which the
wave vectors k~0. The resolution may be that thermal
excitations, having k finite, are sufficiently localized that
the efkctive anisotropy is relatively less important than
when k ~D. Theoretical calculations have so far only fo-
cused on the effects of anisotropy for the k ~0
modes. ' ' However, uniform rotations (k =0) certainly
involve the anisotropy everywhere, whereas localized
modes might "see" the anisotropy in a different, and less

extreme fashion. Therefore, we expect that co =~0 will
reliably describe the ESR modes, but that the snisotropy
"gsp" uo may not be characteristic of the shorter wave-
length modes which, for the reasons given above, may
have a lower frequency than coo.

It should be noted that the analysis presented in Sec.
IV only includes the case where mo and 8 are collinear.
Reference 12 treated the T phase in the noncollinear case,
finding a complex behavior that would also be expected
for the LT phase in the noncollinear case. It would be of
interest to verify (4.7) experimentally, due to its unusual
dependence on the Seld H.
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