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A method is presented of using the known Green functions or densities of states (DOS) for a given
Hamiltonian H to find Green functions or DOS for any lattice Hamiltonian H, in the algebra of H,
or H, =f(H). The procedure is further developed to permit using the known Green functions and
DOS of two Hamiltonians H and K to obtain those of any Hamiltonian H, in the algebra generated

by the direct products HI and IK. The method does not depend on translation symmetry, and
rather general extension formulas are derived. Several analytical and numerical results are present-
ed as examples. Green functions well known for the nearest-neighbor lattice Hamiltonian in one di-

mension are used to solve a one-dimensional (1D) second-neighbor model, a 1D model with infinite

range, a 2D model on a square lattice with first-, second-, and third-neighbor interactions, a 2D
square-lattice model with edges and corners, and a simple-cubic lattice Hamiltonian with surfaces,
edges, and corners in three dimensions. Green functions for the threefold-coordinated Sierpinski
lattice Hamiltonian treated by O'Shaughnessy and Procaccia are extended to the treatment of a
Sierpinski model with first and second neighbors, and then are further extended to treat a new frac-
tal Hamiltonian on the Cartesian product of two Sierpinski lattices. Green functions of )he 1D Fi-
bonacci lattice treated by Kohmoto are extended to the treatment of quasiperiodic Fibonacci plaid
lattices in two and three dimensions. These lattices are quasiperiodic and admit inflation-deflation
transformations, but do not have interesting or forbidden rotation symmetry.

I. INTRODUCTION

The purpose of this paper is to present a means of us-

ing the known Green functions of a given lattice Hamil-
tonian H to find the Green functions of related Hamil-
tonians.

Here the term lattice is used only abstractly to denote a
set of sites spread out in space in a certain way. We as-
sume that on a lattice consisting of a collection of sites, a
model for some phenomenon such as spin waves, lattice
vibrations, or the behavior of independent electrons, can
be defined by a Hamiltonian matrix H. The sites are the
index set for H, and for a given lattice there can be many
Hamiltonians. The square lattice, for example, can have
a Hamiltonian with elements connecting only nearest-
neighbor sites, or it can have another Hamiltonian that
connects also second-neighbor sites. The lattices treated
in the following sections may or may not have translation
symmetry.

The Green function G,"(z) is the (i,j) element of the
resolvent matrix G (z) defined for each z outside the spec-
trum of H by

G(z)=[zI H]—
with I the identity on the lattice of H. Green functions
for 1D lattice Hamiltonians have been treated by Dyson, '

and the second-neighbor case has been solved in some de-
tail by Davison and Levine. Green functions for
nearest-neighbor interactions on finite chains have been
found by Bass for various boundary conditions. Green
functions for basic Hamiltonians on 2D and 3D lattices
have been computed in terms of complete elliptic in-

tegrals by Morita and co-workers.
Using the known Green functions of a given Hamil-

tonian H, or of a pair of Hamiltonians H and K, to com-
pute Green functions for a related Hamiltonian H, will

be referred to as extending the Green functions of H, or
of H and E, to the Green functions of H, . Likewise, we

speak of extending the densities of states (DOS).
Two kinds of extensions are presented below. In the

first, the Green functions or DOS of H are extended to
those of another Hamiltonian H, on the same lattice.
The basic idea is that it is easy to do the extension to a
particular set of Hamiltonians having the same eigenvec-
tors as H, namely, the algebra generated by H. An ele-
ment of the algebra generated by H is of the form

H, =aQI +a]H +a2H'+ = y a„H"=f (H)

where the coeScients are real and the sum is over a11 in-

dependent powers of H. It is assumed for the time being
that singularities of f (x) lie outside a circle in the com-
plex plane containing the eigenvalues of H. Not all Ham-
iltonians on the lattice of H can be expressed in this form,
but if H is uncomplicated and physically reasonable, then
its algebra contains many other physically reasonable
Hamiltonians of a more complicated form. For example,
if H is a Hamiltonian on a 1D lattice with first-neighbor
interactions only, then its algebra contains all physically
reasonable Hamiltonians of any range having translation
symmetry. Section II treats the problem of extending the
Green functions and DOS of H to the Green functions
and DOS to H, in the algebra generated by H. As an i1-

lustration of the general method, two Hamiltonians are
treated for the 1D lattice, the first having second-
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neighbor interactions and the second being of infinite

range. These models are solved by extending from H for
the nearest-neighbor case.

The second kind of extension is treated in Sec. III
where Green functions and DOS for a pair of Hamiltoni-
ans H and I( are extended to those of certain Hamiltoni-
ans defined on the Cartesian product of the lattices of H
and K.

Let V(H) represent the lattice that is the index set of
H, and let V(K) be the lattice of K. The Cartesian prod-
uct of the two lattices is the set of pairs of index values
such as (ij ), where i E V(H) and j E V(K). The square
lattice, for example, is naturally represented as the Carte-
sian product of two linear chains. It should be recalled,
however, that the lattice is only a sei of sites. No connec™
tions or interactions between sites are implied until a
Hamiltonian is defined.

The key for extending to Hamiltonians on the Carte-
sian product is again the use of transformations that
preserve the eigenvectors. Thus in Sec. III we treat the
extension of Green functions and DOS of H and K to
Hamiltonians in the algebra generated by the pair of ma-
trix direct products HI and IIC, where I stands for
the identity on the lattice of K and H, respectively. Ele-
ments of this algebra are of the form

H =aooII +a )OHI +aoiIK +a)iHK

+a&OH I+a02ISK + = g a „H SK"
m, n

where the coef5cients are real and the sum is over all in-
dependent powers of 0 and K. %e refer to this as the
product of the algebras of H and I(:. The subspace
spanned by the first four terms in Eq. (3) has been treated
in the context of graph theory of Cvetcovic, Doob, and
Sachs' and references cited.

As a first application, a study of nearest-neighbor
Hamiltonians on the square and the simple cubic lattices
is presented using results for the nearest-neighbor model
on the linear chain. This includes a treatment of sites at
boundaries of semiinfinite crystals, such as edge and
corner sites of a square lattice.

A second example developed in Sec. IV involves a
Sierpinski fractal lattice. "' Alexander has computed
Green functions for a nearest neighbor Hamiltonian on a
Sierpinski lattice with perpendicular magnetic field. '

%e outlined the calculation by Alexander's renormaliza-
tion method of Green functions for a slightly modified
Sierpinski lattice with nearest-neighbor interactions. The
results are extended to a second-neighbor model, and
then to a nearest-neighbor Hamiltonian on a new fractal
lattice that is more connected than the original Sierpinski
lattice and has fractal dimension between 2 and 3. Possi-
ble spectral properties of such extensions are discussed in
general terms.

As a final example, we again use the renormalization
method in Sec. V to find the Green functions for a quasi-
periodic Hamiltonian on a 1D lattice. The 1D Hamil-
tonian having strong or weak interactions between neigh-
boring sites alternating in Fibonacci sequence' has been

treated by several authors. ' ' The calculation is extend-

ed to an exploration of the spectrum of Fibonacci quasi-

periodic lattices in 2D and 3D. These admit inflation-

deAation transformations, but do not have the interesting

rotation symmetry of the Penrose lattice. 14

A summary of the procedures and the results for the
models treated is presented in Sec. VI.

II. EXTENSION TO HAMII. TONIANS
OF THE FORM f (H)

For a given H, the characteristic equation,

g H~ uj~=cx„u;~,
J

(4)

The projected density of eigenvalues, or local density of
states (LDOS) at site i will be defined' by

D;(E)= g i u;, i
5(E —a„) .

Since the eigenvectors are normalized, the sum over i of
D, (E) yields the total DOS

D(E)= +5(E —a„) .

The objective is to extend the set 6 (z) of Green func-
tions and the LDOS and DOS for 0, as expressed in Eqs.
(5)-(7), to the corresponding quantities 6"(z), D,"(E),
and D"(E) for H, as defined in Eq. (2). The extension of
6 (z) automatically gives an extension of the LDOS and
DOS since, if i1 is a small positive number, Eq. (5) implies
the approximate relation'

D, (E)= ——Im[6;;(E+&rl)] .
1

If rl is small, the approximation in Eq. (8) replaces the
delta functions in Eqs. (6) and (7) with Lorentzians of
width q. This broadening is important in that it softens
certain singularities that occur in the following develop-
ment. That is to say, q & 0 moves the singularities off the
real E axis.

However, it is also useful to have a simple formula for
D "(E) directly in terms of D(E), and this extension is
easily derived. Thus a separate treatment is presented of
the extension of the DOS and LDOS.

First consider the spectrum I
a'"

) of H, . From Eq. (2),

a'„"=ao+a,a, +azu, ,+ = g a„a"„=f (a„) .

The sequence of coeScients Ia„I defining the function
f (x), which in turn defines the Hamiltonian H„may be
freely chosen. Formally, f (x) is a generating function'
for the sequence, and the elements of the sequence are in-

defines the set of normalized eigenvectors Iu, ) and the
corresponding set I a„I of eigenvalues that is the spec-
trum of H. The Green function 6,, (z) is the i,j element
of the resolvent matrix 6(z), as defined in Eq. (1), and it
can be expressed as

6;,(z)= g u;„u,'„[z —a, j
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dependent parameters of the Hamiltonian H, .
For several reasons, it is usually sufficient to consider

only a finite sequence of coefficients, so f (x) becomes a
polynomial. First, the range of H, increases with the in-
clusion of higher powers of H, and interesting Hamiltoni-
ans normally are of shorter range. Second, if V(H) con-
tains a finite number N of sites, then there are not more
than N independent powers of H.

From Eq. (7) applied to H, one has

D "(E)= g 5(E —f (a„)) . (10)

Let I xk(E) ] be the set of real zeros of E f (x—) as a func-
tion of x. Then, if all the zeros were simple, one would
have

D"(E)=+ +5(xk(E)—a„}[
~

f'(xI, (E))
~ ]

v k

convenient than a numerical integral of Eq. (12).
One may wonder what advantage numerical integra-

tion of Eq. (12}would have over computing D "(E)by in-
tegrating directly over the band structure of H, . If H,
has a band structure, then one advantage of Eq. (12), as-
suming D (E) is known, is that it is always a 1D integra-
tion, while H, may be defined on a 2D or 3D lattice. But
a more important advantage of Eq. (12) is that it applies
equally well to H, without translation symmetry, thus
having no band structure. Examples of such cases will be
treated explicitly in the following sections.

Starting from Eq. (6), one can treat the LDOS in the
same way. The weighting coeScients cause no new com-
plication. It follows that D;(E) extends to D '(E} also

by the same formulas. Thus to obtain D '(E), replace
D (x) by D, (x) in any one of Eqs. (11), (12), or (14).

Next consider the Green function G "(z). In view of
Eq. (5),

= g D(xl, (E))[
~

f'(xk(E))
~ ]

k G j"(z)= g u;„MJ.'„[z—f (a„)) (15)
The E values at which a confluence of two or more roots
causes denominators to vanish in terms on the right-hand
side of Eq. (11)correspond to new Van Hove singularities
of H„not inherited from H but rather introduced by the
nonlinearity of the transformation of Eq. (2).

The new singularities are physical, but since they do
not correspond to singularities in D(E), they are not
broadened by the damping parameter rI of Eq. (8). To in-
troduce broadening, the most natural procedure is to
convolute the newly introduced features also with a
Lorentzian of width g. This results in the integral

D "(E)= f D(x)I[E f(x)] +rl —
I

'dx . (12)

To avoid introducing another integration, Eq. (11) can
be simply modified to soften the singularity. The method
of introducing the damping is somewhat arbitrary to be-
gin with, and the following is convenient. Define I (x }by

I (x)=[(f'(x)) +g ]'~

then

(13)

D "{E}=y D(x„(E)}[r(x„(E)}]-',
k

(14)

where the sum is over real roots.
The formula on the right-hand side of Eq. (11) is exact

when there is no damping, i.e., when g~0. To insert
damping, thus removing singularities in the DOS, there
are three options. First, the Green functions of K can be
extended by methods to be given presently, and these can
in turn be used to get the LDOS via Eq. (8). Second, the
smoothest extension directly from D(E} to D "(E}is
given by the integral of Eq. (12). When the forms of
D(x) and f (x) are both simple enough, this integral can
be done in closed form. When D(x) is not given analyti-
cally, Eq. (12) can be done by numerical quadrature.
Third, when D (x) is given analytically, or is easily com-
puted at arbitrary x, and the extension function f{x}is
more complicated, but with the real roots t xl, (E}) easy
to find, then the approximation of Eq. (14) may be more

Consider the function F(s)=[z —f(s)] ' where both z
and s are complex. We restrict our attention to those
choices of f (s) such that F(s) has the following proper-
ties. (a) F (s) has no other singularities than poles, the po-
sitions of which are naturally functions of z. For most z
values, we assume the poles are isolated and simple. (b)
The behavior of F(s) is such that there exists a sequence
of circles of radii I r ] with r ~ oo, and with

~

F(s)
~

&M whenever s is on a circle
~

s
~

=r and with
M independent of p. With these restrictions, F(s) can be
expanded in partial functions using a simple form of the
Mittag-LeSer theorem. '

The expression for G "(z) resulting when the Mittag-
Leffler expansion is used for the denominators in Eq. (15)
1s

G;, (s/, (z))
G,',"(z)=R (z)S,,+ y

sk z
(16)

where the sum is now over the set Isk(z) J of complex
zeros of z —f (s). If f (x) is a polynomial or a rational
function unbounded at infinity, then the residual R (z) is
zero. If f (x) is a rational function having a finite value
at infinity, then R (z) is F(s~ao). Otherwise, R (z) is
given by

R (z}=[z—f (0)] '~ g [sk(z)f'(sl, (z)))
k

(17)

Notice that in Eq. (16}the original Hamiltonian H con-
tributes to G,-"'(z) only through the Green function

G;J {sk(z})in the numerator of each term in the sum. The
rest af the formula is determined by f (x). Singularities
occur in individual summands for values of z such that
poles coalesce, thus causing derivatives in the denomina-
tors to vanish. For functions f (x) such that there is no
residual R (z), the coalescence of poles at a particular z
represents a physical Van Hove singularity induced by
the transformation from H to H, . If there is a residual
R (z), then it cancels unphysical singularities that would
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H „=5 +, „+5 (18)

The Green functions also have translation syrnrnetry, so
we need only be concerned with the zeroth column of
G(z). In view of Eq. (1), 6(z) satisfies the matrix equa-
tion [zI H]G—(z) =I, whence

occur in the summation at z values such that a pole goes
to infinity. The physical Van Hove singularities occur
due to poles merging in the finite s plane. An example of
the cancellation will be encountered below.

As an example of the use of the formalism, we treat 1D
Hamiltonians with translation symmetry. The basic
starting point is the set of Green functions for a nearest-
neighbor model on a 1D chain

q(z}=—,'[z —(z —4)' ],
and the branch cut is determined by choosing
(z —4)' =(z —2)' (z+2)' . The DOS at any site is
found from Eq. (8). In the limit of zero damping, it is

D (E}= (4—F. —)
' 8(4 E—), (24)

the unit step function 8 being 1 for positive argument
and zero otherwise.

%e first extend these results to the second-neighbor
Hamiltonian treated by Davison and Levine

(H, ) „=(5 +, „+5,„)+b(5 +2 „+5 i „) .

(25)
zG o(z) —6 +i,o(z) —6 -i,o(z)=5 0.

The difFerence equation of Eq. (19) is conveniently solved
using a generating function g (x) defined by'

Squaring H defined in Eq. (18) demonstrates that

0 =b~'+0 —2bl . (26)

g(x)= gx 6 0(z) .

Multiplying Eq. (19) by x and summing on m yields

(2()) Thus, the extension is generated by

f(s)=bs +s 2b, —

so that characteristic roots of z f (s) are—

(27)

1g(x)= z -x ——
X

(21) s+(z)=(2b) 'I —1+[1+4b(z+2b)]' (28)

Therefore, the Green functions for the new model H, are
which is to be expanded in powers of x to obtain t 6 OI
as the coeIFicients. However, there are three difFerent
Laurent expansions in x, each with a di8'erent annulus of
convergence. The physical solution is determined by the
asymptotic boundary condition that

~

6 0 i
not diverge

as
~

m
~

~~. The annulus containing the unit circle
~

x
~

= 1 is thus the proper choice. The expansion
coeScients are

[q(s+ (z))]
6(e~)(z)

[2bs+ (z)+1](s+(z) —4)'

[q(s (z))] i

+
[2bs (z)+1](s' (z) —4)' ' (29)

6 0(z}=(z —4) ' [q(z)]'

with q (z) defined by

(22) After some algebra, Eq. (29) can be shown to agree with
Eq. (2.55) of Ref. 2. The corresponding DOS without
damping follows from Eq. (11):

1 [4—s+(E)]-'" 1, 1 [4—s' «}] '"
D~~"(E)=— + 8 2b Ee—(4—s+ (E—))+- e —2b —E e(4—s' (E) ) .+ n 2bs (E)+1

(30)

%e now proceed to outline the forrnal treatment of the
general model with translation symmetry in 1D. If H,
has translation symmetry, then it is completely defined by
the list I (H, ) OI of elements in its zeroth column. For a
translation symmetric 0, the column-generating function
/i (x) ls defllled by

h(x)= gx H 0.

To obtain the column-generating function for H„multi-
ply the mth element of the zeroth column of Eq. (2}by y
and sum on m, taking advantage of the translation sym-

metry of H. The result is

&,(y)=~0+~, & (y)+~,&'(y)+a, h'(y)+
=f(& (y)) . (32)

f(x)=h, (h '(x}) .

A formal solution for the function f (x) can be found as
follows. Let x =h(y) and assume an inverse exists for
some range of y. The inverse need not be single valued,
any inverse will do. Thus let y =b '(x). Then, formal-
ly,
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Choosing H defined in Eq. (18) as a base Hamiltonian,
h (y) =(y + 1/y). For an inverse, one can choose the root

h '(x)= —,'[x+(x —4)'«] ( (x
~

&2) . (34)

In fact, since H, is Hermitian and translation sym-
metric, h, ( —y)=h, (y). Thus h, must always be a func-
tion of x =(y +1/y). A given term in the expansion of
h, (y) can be paired with another to yield a contribution
proportional to (yl'+y «) for some power p, which can
in turn be expressed as a polynomial of degree p in
x =(y+1/y}. Thus, if K, is of finite range, f (x) is a po-
lynomial.

Having found f (x), the next step is to find complex
zeros [sk(z)) of z f (s).—This may need to be done nu-

merically, as with any method of finding G, (z). After
computing f '(sk(z)) at each sk(z), Eq. (17) gives Green
functions for H, . If f (x) is a polynomial or a rational
function with a pole at 00, then only the last sum on the
right-hand side of Eq. (17) contributes. Densities of
states can be found by Eq. (11) from the real zeros when
z =E is real.

As a final example of this kind of extension, we consid-
er a Hamiltonian H, of infinite range having interaction
strengths decrease exponentially with distance between
sites:

stood by examining the expression for the resolvent G (z)
in Eq. (1). Assuming the spectrum of H is bounded, then
G(z)~Iz ' as z~a().

Thus, the extension of Green functions from a given H
to those of H, by Eq. (2) is provided by Eq. (16). The
DOS or LDOS are extended directly using Eq. (11), or if
broadening is required, by Eq. (12) or Eq. (14).

III. EXTENSION TO THK PRODUCT
OF THE ALGEBRAS GENERATED BY H AND K

The main motivation for exploring the extension to
Hamiltonians of the form of H, in Eq. (3) is that the
dimensionality of the lattice can be increased by this
method.

As well as the eigenvalues [a„j and the eigenvectors

[u„I for Hamiltonian H, as defined in Eq. (4), suppose
the eigenvalues [P„I and corresponding eigenvectors

[ v„[ of another Hamiltonian K are also known. The lat-
tices V(H) and V(K) may or may not be the same. Let
pairs of index values such as (i,j ) represent elements of
the Cartesian product lattice. If A is an arbitrary matrix
with index values from V(K) and B is an arbitrary matrix
with index values from V(K), then the matrix elements of
the direct product ( A SB)are

( A B)(& )(k l)=( A(k )(B~( ) (42)

(H, ) ()
——Q (5 «+5 «)b«

p=1

where
~

b
~

& 1. Hence f (x) is not a polynomial;

h, (y) =y (1 by) '+——(1 b/y)—1

(y +1/y) 2b—
1 b(y +1/y)+—b

so

(35)

(36)

The eigenvectors [ u)„[ of H, defined in Eq. (3) are the
direct products of the eigenvectors of H and K, thus hav-
ing components defined by

(k, l)p (uk@)(vl (43)

And, in view of Eq. (3), the corresponding eigenvalues are
given by

(44)
m, n

f (x)=(x —2b)/(1 bx+b ) .—

There is only one zero of z —f (s).

s (z) =[(1+b')z +2b] /(bz + 1),
f'(s(z))=(hz+1) /(1 b) . —

(37)

(38)

(39)

Because f (s) has a finite value at s = ao, there is a residu-
al term R (z) =b /(bz + 1). Equation (16) gives

b
5

(1 b}[q(s(z) ) ] —
(4O)bz+1 ' (hz+1)'[s'(z) 4]'" '

This-expression seems to have a pole at z = —1/b, which
is independent of the nature of H. In fact, G'0(z) is well
behaved at z = —1./b, the limit being

D "(E)= g 5(E —f (a„,P„))
P, V

= f +5(y —P„)
V

X +5(E —f(a„,y)) dy . (45)

The function f (x,y) introduced here is a generating func-
tion for the coefficients [a „) of the transformation. We
tentatively assume the singularities of f (x,y) lie outside
the spectra of H and K.

The total DOS can be extended in the following way.
Let the symbols D' '(E) and D' '(E) represent the DOS
for Hand K. From Eq. (7), the DOS D "(E)for H, is

() b(1+b )
5

b
mo

l ~2 mo ) g2 mo (41)
Considering y as a parameter in the second factor one can
express this symbolically as

as can be seen by considering the corresponding limit of
F(s} directly. The H-independent singularity in the first
term cancels with a singularity in the second term that
occurs as s(z)~ao. This implies that G 0(z) must be-
come independent of H as z~oo, which can be under-

D(e)(E) I D(f(H, «))(E)D(K)(y)dy

where in view of the results Eq. (11) through Eq. (14) of
Sec. II, D'I' '«"(E} can be expressed in various ways.
With no damping, Eq. (11)gives
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D'"'(x (y, E))D(f (H.«))(E}
i f„(x,(y, E),y )

i

The set [x (y, E)) in Eq. (47) is the set of real zeros in x
of the function E f—(x,y) with real parameters y and E.
In the denominators, f„(x,y) indicates the partial deriva-
tive df(x, y)I)3x. To include damping, and thus to re-
move the potentially problematic singularities from the
integrand of Eq. (46), the method presented in Eqs. (13)
and (14) can be used. With finite broademng rj in both
D' '(x) and D' '(y), we replace the denominators of Eq.
(47) by modified denominators of the form

I'«(y, E)= ff„'(x«(y, E),y )+rid]( j' .

Because the vector coefficients carry through the steps of
the derivation given for the DOS leading to Eq. (46) and
Eq. (47), the LDOS satisfy similar expressions. To obtain
the LDOS at site (i,j ) for Hamiltonian H„replace

(E) by D(. .)(E) and D( (x) and D x (y) by D.H)(x)
and D' '(y), respectively in Eqs. (46) and (47). Thus
these equations give an extension of the DOS and LDOS
for 0 and E to the corresponding functions for 0, be-

~i pUj vllkpVlv Z CXp (49)

Factoring the summation of Eq. (49) requires an in-
tegration device to play a role similar to the role played
by D' '(y} in Eq. (46). Such a device is obtained by ex-
amination of Eq. (5). If one approximates the delta func-
tions by Lorentzians, one has for small positive g,

——Im[G,'( )(y+ig)]= g u; u&*„5(y —P„) .

Thus

longing to the algebra generated by HI and IE.
A formal extension of the Green functions also results

from a development similar to that of the section above.
The Green functions for H and E are assumed known.
The Green function for 0 between sites i and j is denoted
by Gj '(z), while that for K between sites k and / is

Gk( '(z). For the extension to H„one has

G(; j)(k 1) (z) = g w((j)p~w(k l)p„[z f (Dp—,P~)]

G(i j 1(k l)(z) = ——J Im[Gj( '(y +irj)] p u &uk'„[z f(a,y)]—'
dy

P

where, using Eq. (16),

G,.'k '(s«(y, z) }
G,'f("«"(z}=Z (y, z)5,„+g

s sp y, z,y

(52)

(53)

Again applying the results of the previous section with y
considered as a parameter in the second factor of Eq. (51)
yields the formal expression

G,', , „„(z)=——J Im[G,', '(y +i'}]G(kj' '«"( )zdy,

the sum being over all complex poles [s (y, z) ) of
F(s)=[z f (s,y)] '. Eq—uation (53) holds at values of
real y and complex z such that the poles of F(s) are sim-
ple and isolated. The discussion regarding R (z) in Eqs.
(16) and (17) applies here to the residual term R (y, z), y
being considered a parameter.

For an arbitrary H, deffned in the manner of Eq. (3),
the formulas in Eq. (46) and Eq. (52) give at least formal
expressions for the DOS and the Green functions. To il-
lustrate, we find an integral formula for the Green func-
tions of a model on a square lattice with 6rst-, second-,
and third-neighbor matrix elements 1, a and b:

}(, )(0,0) (5,1+5,—1 }5,0+5,0(5,1+5,—1
}

+a (5,+5,)(5„,+5„,)+b [(5 2+5 2)5„()+5 ()(5„2+5„2)].
Using H of Eq. (18) as a base Hamiltonian,

H, =I{8H+Ha I +aH@H +hie(H2 2I)+b (H2 —2I)g—I
= —4bIg I +IeH+Hg I +aHg H +AH'gI +bIg H' .

The function f (x,y) generating the transformation is

f (x,y) = 4b+x +y+axy+—bx +by

The roots of z f (s,y }are therefore-

s+(y, z) =(2b) '[ —(ay + 1)+[A (y, z)]' ],
where the discriminant A' (y, z) is

(54)

(56)
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A (y,z)=(a 4b )y —2(2b —a)y+(16b +4bz+1) .

Thus the integral expression for the Green functions is

Gi" „xooi(z}=——I Im[G„'o'(y+iq)][A(y, z)] ' [G' o'{s+(y,z))—G' o'{s (y, z))]dy .

(58)

(59)

Expressions for the Green functions for K are given in
Eq. (22).

Singularities of the integrands are apt to occur along
the real y axis that is the integration contour in Eq. (46}
and Eq. (52). They may be integrable, as are the singular-
ities of D' '(y) in Eq. (46), or they may be nonintegrable.
Indeed, the occurrence of nonintegrable singularities in
the integrands is the mechanism by which Van Hove
singularities of E and f (H,y) are transmitted to H, . In
the case of branch points, care must be taken to keep the
integrand on a consistent sheet of the y plane. In Eq.
(59), for example, this requires two precautions. First,
the root functions occurring in the definition of 6'
must be cut as in the discussion following Eq. (22). Then,
the function [ A (y, z)]'~ must be cut as follows:

[A (yiz)]' '=(a' —4b')' '(y —y+(z))' '(y —y (z))' '
I

(60)

p. 32 (a)
p. 24

0.16

piete elliptic integrals by solving directly the difference
equations implied by Eq. (1).

Figure 1(a) shows the result for DIo'oi(E) obtained by
direct numerical convolution as prescribed by Eq. (63)
with both factors in the integrand obtained from Eq. (24).
The integral can also be done in closed form. On using
Eq. (24) for the integrand in Eq. (63), and assuming E is
in the range 0 g E & 4,

y+(z)=(a —4b )[(2b+a)+[B(z)]' ],
with

(61) 0.08

0.00 .

B (z) =4b(2b —a)[1+4b (2b +a)+(2b +a)z] . (62) -6 -4 0 2 4 6 8

With these conventions, Eq. (59) can be integrated nu-
merically. However, as f (x,y) becomes more complicat-
ed, the choice of branch cuts becomes more difficult.

For a certain set of special cases, the formulation
simplifies quite a bit. If K, =K I +I K, so that
f (x,y)=x +y, then the extension integrals Eq. (46) and
Eq. (52) become convolutions. An extension theory for
eigenvalues is developed in Ref. 10 for special cases of
this sort. One sees formally that G' +~'(z)=G' '(z —y)
and D' +~'(E)=D' '(E —y). Thus the integral formu-
las are

LaJ
CD

UJ

0.20

0. 16

0.12

0.08

0.04

~ QQ ~ - ~ ~ . ~ - ~ - ~ - e - ~ - ~ I - ~ - ~ - ~ r ~ - ~ ~0.
-8 -6 -4 -2 0 2 4 6 8

D "(E)=J D' '(E y)D' '(y)dy, — (63) 0.30

G(i j Nk, l) (z}= ——I Im[ G&& '(y +i'�)]GP'(z y)dy—
(64}

As an example consider a simple square lattice Hamil-
tonian with nearest-neighbor elements + 1.

I",.)(o,o) =(~,i+~, i)fi.,o+fi,o(~., i+~.,
(65)

0.25

0.20

0. 15

0. 10

0.05

0.00

(c)

H"=I{3K+HI . (66)
2 4 6 8

where the base Hamiltonian is again that of Eq. (18). The
Hamiltonian of Eq. (65) reduced to a finite lattice is treat-
ed as an example in Ref. 10. Morita has expressed its
Green functions on the infinite lattice in terms of corn-

FIG. 1. LDOS for square lattice. (a) Typical site of infinite
lattice. (b) Site at edge, far from corner, on semiinfinite lattice.
(c) Corner site.
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1

E —2 [(4—x )(4—(E —x) )]'

K((4 E—) /(4+ E)),
m (4+E)

(67)

-2 [(4—x')((z —x)' —4)]'"

K(4/z) .2
(68)

with K (u) the complete elliptic integral of the first kind.
The DOS is symmetric, and is zero outside the range
IE I

&4.
For the Green function G(o'())(o o)(z), the integrand fac-

tors for Eq. (64) are provided by Eq. (24) and Eq. (22).
Thus, choosing the phase of the integrand zero for z real
and y4,

Analytic continuation together with the Landen identi-

ty recovers Eq. (67) from Eq. (68) via Eq. (8).
Due to translation symmetry, an arbitrary Green func-

tion for the square lattice Hamiltonian of Eq. (65) reduces
to the form 6("„),o o, (z). It is clear that this can be ex-

pressed in terms of complete elliptic integrals, since the
integrand of

(,) 1 - [q(x +ill)] ~

G(m, n)(o, o) (z) = — Im [(x+i~)'-4])"
[q(z —x)])" ~

[(z —x) —4]
dx (69)

is a rational function of x and of the square roots of the
two quadratic functions x —4 and (z —x) —4.

To see the utility of the formalism in cases where there
is no translation symmetry it is interesting to treat a
semiinfinite square lattice. One can imagine a square lat-
tice with points indexed by t(k, l) j covering only the half
plane I & 0, or the quarter plane l &0, k& 0. To treat a
square lattice with edges and corners, the necessary tool
is the base Hamiltonian E for a semiinfinite line. Let KI„
be given by Eq. (18) when both l and n are & 0, and let it
be zero otherwise.

A convenient way of getting 6' '(z) from 6' (z) is
given by Freeman. A barrier potential V is introduced
on site 0 in the linear chain Hamiltonian H of Eq. (18).
The Green functions of K are the Green functions of
H+ V in the limit of large V, when the site indices are
positive. One finds

g ~)r (z) =g H)(z) —6(H)(z)[6(H)(z)] —ig(H)(z)

(z24)) l2I [q(z)]}( Il ~[q(z)](+nI (70)

where the indices are restricted to be positive. The
LDOS are thus given by

D(' '(E)=Do '(E)[1—T2(( —,'E)], (71)

polynomialwith T((x ) the lth Chebyshev
cos[l cos '(x)].'

A complete study of the square lattice proceeds as fol-
lows. Sites far from any boundary are most easily treated
using the Hamiltonian of Eq. (65), which we now call Ho.
Thus, Ho ——0 I +I H. To study sites near an edge,
but far from a corner, we form H, =HI +IK, and to
study sites near a corner 02 ——K I +I K.

The LDOS for an edge site, DIo'))(E), is computed by
using Do( )(E —x) from Eq. (24) and D', '(x) from Eq.
(71) in the integrand of Eq. (63). The result of numerical
convolution for D((o",)(E) is shown in Fig. 1(b). The
LDOS for a corner site, D()'))(E) shown in Fig. 1(c), is
obtained using D', '(x) and D', '(E —x) in Eq. (63). No-

tice that D(o', }(E) corresponds to D(„' i)(E). Green
functions can likewise be found using Eq. (64).

All of the integrals encountered in the calculation of
Green functions and DOS for 00„0&, and H2 can be
done in closed form, for the reason mentioned in connec-
tion with Eq. (69). From examination of the integrand in

Eq. (63), with factors D' '(E —y) and D' '(y) selected ar-
bitrarily from either Eq. (24) or Eq. (71), it is clear it will

be a rational function of x and of the square roots of
4 —x and 4 (E —x)—. Thus the LDOS can be ex-
pressed as a combination of complete elliptic integrals. A
similar consideration of the integrand of Eq. (64) shows
that the Green functions can also be so expressed. We
have demonstrated that all Green functions and DOS for
a semiinfinite square lattice Hamiltonian with nearest-
neighbor matrix elements can be expressed in closed form
in terms of complete elliptic integrals.

A similar study of a semiinfinite cubic lattice is sho~n
in Fig. 2. A nearest neighbor Hamiltonian for the cubic
lattice is H3 ——Hg II +Ig Hg I +I@IsH. To
include surfaces, edges and a corner, one also
needs 84 ——HII +IHI +I@IK, 0& ——HIg I
+Is KgI+IgI@K, and H6 ——K@IgI+IgKgI
+Itg)ISK. Figure 2(a) shows D(o'oo)(E) for a typical
site far from any boundary. The curve is obtained by nu-
merical integration of Eq. (63). Noting that
H, =HoI +(II)e H, one substitutes D('o'o) (x) ob-
tained for the square lattice and Do(E —x) from Eq. (24)
into Eq. (63). The three curves in Fig. 2(b) represent
D(()'(), )(E), D(o, , )(E), and D(, ', ),(E) for sites at a sur-
face, edge and corner, corresponding to the lettering 3,
8, and C. The Green functions are also obtained by this
decomposition via Eq. (64).

Morita and Horiguchi have expressed Green functions
for H3 in terms of sums of simple integrals of complete
elliptic integrals. Since we see that each LDOS for any of
H3 through H& can be expressed by an integral in Eq.
(63) that is a convolution of a complete elliptic integral
(from the square lattice calculation) and either Do '(x) or
D' '(x), which contain at most rational functions of x
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p. 16

(a)

As an illustration of this kind of failure, consider the
triangle lattice Hamiltonian

p. 12

0.08

0.04

, Moo) =(5,&+5,- ] }5,o+5,o(5, i+5, —i)

+(5,5„,+5,5„,),
h, (u, v)=(u +1/u)+(v +1/v)+(ulv +vlu),

thus, applying Eq. (34) in Eq. (74) yields

f (x,y) =x +y + —,'xy ——,'(x —4)'~ (y —4)'~

(75)

(76)

(77)
0.00 .

-8

0.25.

0.20

P. 15

p. 10

0.05.

-6
~ ~ ~ ~ ~ ~ I \ ~ ~ ~ ~ ~ ~

-4 -2 0 2 4 6 8

(b)

Although f (x,y) has a Laurent expansion near x=0,
y=0, it has branch points. Thus Eq. (47) and Eq. (53) do
not apply. In retrospect, one should realize the transfor-
mation of Eq. (3) preserves rectangular symmetry. How-
ever lattices with hexagonal symmetry in 3D, for exam-
ple, can be reached by starting from a 2D lattice with
hexagonal symmetry.

The strength of the current method lies in its applica-
bility to lattice Hamiltonians without translation symme-
try. In the following sections, we take up two examples
of such Hamiltonians.

0.00,
-8 -6

~ I ~ % ~ ' ~ ~ 0 ~ ~ ~

-2 0 2 4 6 8
IV. FRACTAL LATTICES

and (4—x )'~, we can say all LDOS on the semiinfinite
cubic lattice are relatively simple integrals involving sums
of elliptic integrals. So are the Green functions.

In closing this section a limitation of the method is
noted. In 1D, the general H, can be expressed quite easi-

ly in terms of the basic H. This is because the fact that
H, is Hermitian and translation-symmetric forces its
column generating function h, (u) to be a function quite
naturally of u +1/u. The situation for H, with transla-
tion symmetry in higher dimensions is not so fortunate.

Let the column-generating function h, (u, v} be defined

by

h (uqv)= g Ht }(p p)u U

m, n

(72)

Following the steps outlined above in the 1D case, one
has

FIG. 2. LDOS for simple cubic lattice. (a) Typical site of
infinite lattice. (b) Curves A, B,C for sites at surface, edge, and

corner.

The sequence of graphs in Fig. 3 represents a sequence
of nearest-neighbor lattice Hamiltonians, the vertices
representing lattice sites and the edges representing non-
vanishing Hamiltonian matrix elements. Any graph in
the sequence is obtained by connecting together three
copies of the previous one. Taking a single vertex as the
zeroth generation, then the nth generation has N =3"1at-
tice sites and the length of one side of the graph is L -2".
Thus, as the sequence progresses, the graphs become self
similar and approximate a Sierpinski fractal with fractal
dimension" d=ln3/ln2. The sixth graph is shown in

Fig. 4(a). We refer to the the nth graph in this sequence,
or to the corresponding lattice Hamiltonian, as the nth
generation threefold coordinated Sierpinski lattice, since
each site except the corner site has three neighbors.

Such hierarchical families of lattices are well studied.
Eigenvalues of related fourfold Sierpinski lattices have
been found by Domany, Alexander, Bensimon, and Ka-
danoff' using a decimation procedure. The Green func-
tions of the fourfold case have been found by Alex-
ander. '

h, (u, v)= f(h (u), k(v)), (73)

where h (u} and k(v) generate columns of H and K, re-
spectively. Thus the formal expression for f (x,y) is

f(x,y)=h, (h '(x), k '(y)) . (74)

However, unless H, is symmetric with respect to both
n ~—n and m ~—m separately, thus having essentially
rectangular symmetry, the expression for f (x,y ) in Eq.
(74) does not have the properties necessary in order to use
the Mittag-Leffler expansion producing Eq. (53).

FIG. 3. Graphs representing generations 0, 1, 2, and 3 in se-

quence of Sierpinski lattice Hamiltonians.
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The threefold coordinated Sierpinski lattice, as illus-

trated in Fig. 4(a) has been studied by O'Shaughnessy and
Procaccia ~ who show that, like the fourfold case, it has

spectral dimension, or fracton dimension, d=2(ln3}/In5.
The spectral dimension is the dimension of an eN'ective

wave vector space such that D (E)
~

dE
~

~ d k, when E
approaches the maximum eigenvalue Eo. In the current
case, Eo= + 3. Thus, with

~

E Eo—
~

—kz, one would

expect D (E)~
~

E —Eo
~

' where c =( —,'d —1). More gen-

erally, there should be an a such that
D (Eo —a hE) =a'D (Eo bE)—for hE small enough. '

For an arbitrary graph of the sequence implied by Fig.
3, the corresponding Hamiltonian H is defined as follows.
%'henever sites m and n are connected by an edge,
H „=+ 1, otherwise H „=0. In Fig. 4(b), the sub-
graphs A, 8, and C represent three copies of generation
n Whe. n connected as shown, the (n+ 1)th generation
results.

Certain Green functions for the threefold Sierpinski
lattice are now computed using Alexander's synthetic
method. ' It is a renormalization method insofar as one
constructs a recursion between two consecutive Hamil-
tonians of the sequence. The strategy is to express Green
functions of the (n + l)th generation in terms of the cor-
responding ones on the nth, and so by induction to solve
for some subset of Green functions on the entire sequence
of lattice Hamihonians.

We therefore consider Fig. 4(b). By Ho we denote the
matrix corresponding to the disconnected subgraphs A,

8, and C. So Ho is the direct sum of three copies of the
nth Hamiltonian. The sparse matrix V connects the
blocks A, 8, and C to form the (n + 1)th Hamiltonian H:

0 =Ho+ V . (78)

The desired Green functions are elements of the resolvent

G (z)= [zI —H] (79)

It is assumed that the necessary Green functions are
known; thus we know the necessary elements of

g (z) = [zI Hp)— (80)

Substituting Eq. (78) into Eq. (79) and rearranging, one
has

G (z) =g (z)+g (z) VG (z), (81)

which is the principal formula giving recursion relations
between generations in any such hierarchy of Hamiltoni-
ans.

Since the subgraphs of Fig. 4(b) connect to one another
only at their corners, a recursion should exist involving
only two distinct Green functions on each generation,
namely, the corner-to-same-corner Green function and
the corner-to-other-corner Green function. On the nth
generation subgraph, these are respectively such func-
tions as g,l(z) or g (z), which we call go(z)„and such
functions as g, (z) or g„,(z), which we call g, {z). These
correspond on the next generation to functions such as
Gll(z), which we call Go(z), and G l(z) which we call
Gi(z).

To get a recursion for Go(z), Gll(z) is first computed
using Eq. (81)

Gll{z} gll( )+zglm{z) mnG I( )+glq( } q l(

=go(z)+2gi(z)G„l(z) .

Next, G„l(z) is computed, and so on, resulting in a set of
equations

G l(z) gO(z)G l(z)+g1 (z)G l(z)

G l(z)=gl(z)+[go(z)+gl(z)]G„l(z),

G„l(z)=go(z)G„/(z)+gl(z)G l(z) .

(83)

(85)

Equations (82)—(85) are solved for G«(z) in terms of go(z)
and gl (z). To find 6 l(z), one more equation is needed:

Gp, (z) =g, (z)[G ((z)+G,((z)] . (86)

FIG. 4. Sierpinski hierarchical lat tice Hamiltonian. (a)
Graph for generation 6. (b) Construction of generating n + 1 by
connecting graphs A, 8, and C corresponding to generation n.

The notation is simplified by introducing x =go(z),
y =g, (z) and the corresponding symbols X =Go(z)
=Gl(z} and Y=G, (z)=G l{z). Solving simultaneously
yields the recursion relations

X =I', (x,y) =x + 2, (87)
2y(x —x+y )

(1—x —y)(1 —x +y +y )

y (1—x+y)Y =I'&(x,y) =
(1—x —y}(1—x +y+y )

Thus starting with a single site as the zeroth Hamiltoni-
an, for which x =y =1/z, iteration of Eqs. (87) and (88)
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4 *'

I ~ ~ ~ ~ I 1 I 'I ~

-3 -2 -1 0 1 2 3 4

(b)

1.3 1.5 1.7 1.9
I ' I

2. 1 2. 3

(c)

Mt ~(

produces the pair of corresponding Green functions for
each lattice Hamiltonian in the sequence. %e note in
passing that starting with a different zeroth Hamiltonian,
such as that of a sixfold ring, defines another sequence of
Hamiltonians connected by the same recursion formulas.

The planar map (x,y)~(X, Y) of Eqs. (87) and (88) has
a line of stable fixed points for y=0 and an unstable fixed
point at x = —

—,',y =+—', . The line x +y=1 and the hy-

perbola 4x —(2y +1) =3 go into infinity. The two lines
x+2y=1 and y —x=1 are invariant in the sense that
any point on one of these lines goes into another point on
the same line. These invariant lines intersect at the un-
stable fixed point. The line x —y=1 maps directly into
the fixed point x = l,y=0.

Along x +2y = 1, the recursion reduces to
Y=(3y)/(5 —3y), so at the point x =l,y =O,y-( —,') .
Likewise for the line y —x=1, the recursion becomes
Y=y/[3(y —1)],and soy-( —

—,') near x = —l,y =0.
The LDOS for a corner site is computed using the re-

cursion of Eqs. (87) and (88). We let z =E +i ri for small
positive g and start with x =y = 1/z. Equations (87) and
(88) are iterated n times to get X for the nth generation.
The LDOS is obtained directly from —Im[X]/n.

Figure 5 is the LDOS for the corner site at n =20 itera-
tions for various ranges of E. The energy resolution of

each curve is limited by g to be a constant fraction, about—„',of the range shown. Thus g decreases from curve to
curve to maintain constant relative resolution. Since the
area under each peak in the LDOS corresponding to an
individual eigenstate remains fixed, the peak height is
magnified proportionately as the scale becomes finer.

The complete spectrum shown in Fig. 5(a) extends
from —2 to + 3. It has been shown for the fourfold
case' that the spectrum contains no continuum. In any
open interval there are gaps containing no eigenvalues.
The curves presented in Fig. 5 for the threefold case are
consistent with this. One expects the fine structure,
which depends on large length scales, to have similar
properties in the three and fourfold cases.

Figures 5(b)-5(d) illustrate self-similarity of the LDOS
near E= + 2. This self-similarity is also typical of
hierarchical lattices and is analyzed in Ref. 12. Self simi-

larity of the clustering of eigenvalues near E0 ——+ 3 is

demonstrated in Fig. 6. An E scale reduction of —,
' re-

sults' in an approximately similar LDOS. In successive
curves, the height of the peak at lowest E for each cluster
increases slightly, while the other peaks decrease slightly
in height. The area ratio is thus quite near —, also. Hence

the scaling exponent p defined by

DI (Eo —
—,
' AE) = ( —,

' /DE(EO —AE), (89)

for small enough hE, is close to + 1. The discrepancy
between p and the exponent c = —,'d —1 for the total DOS
is due to the inclusion in Eq. (6) of squared vector
coefficients to the definition of the LDOS. Both p and c
are of concern when the results for the Sierpinski model
are extended to Hamiltonians with higher dimensional
lattices.

The lattice Hamiltonian H of Fig. 4 is first extended to
a second-neighbor Hamiltonian on the same lattice. This
requires some preliminary adjustment of H. As specified
above, the sites of H are threefold coordinated, except
that the corner sites are twofold. To make H uniformly
threefold coordinated, the corner sites can be connected
to corresponding sites on another copy of the same lattice
with the same H. ' Alternatively, the LDOS can be ex-
amined for sites far from a corner, such as site m of Fig.
4.

A representative site 0 of a uniformly threefold Hamil-
tonian is illustrated in Fig. 7. Nearest-neighbor sites are
1, 2, and 3 while second neighbor sites are 4, 5, 6, and 7.
Thus

1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 H, =S (90)

0
1.992

I

1.996 2.000
I

2.004

It is interesting to add a second-neighbor term H2 and
study H +bH2 where

[H +bH2] 0=(5 &+5 2+5 3)

+b(8,+8,+8,+o, ) . (»)

FIG. 5. LDOS of corner site I near E= + 2. (a) Entire spec-
trum, (b) through (d) successive enlargements at higher resolu-
tion showing self similarity close to E= + 2.

Unfortunately, H2 is not in the algebra generated by H.
Therefore, we select a different base Hamiltonian defined
by making another adjustment to H.

Let H& be defined on the lattice of H. The matrix ele-
ments of H& are either 0 or 1 or b. If H „ is zero, then
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1.5,

0.5

0.0
1'0 15 20 25 30 35

1.5;

1.0

2.5 2.6 2. 7 2.8 2. 9 3.0 3. 1

1.5 '

FIG. 7. Representative sites of uniformly threefold lattice.
First neighbors of site 0, are 1, 2, and 3, w..'..ile 4 5 6, and 7 are

second neighbors.

1.0

0.0, . .
2.90

1.5

2.95 3.00

H~ is the base Hamiltonian and f (x)=x +x —(1+2' ).2

The Green functions and DOS are calculated from those
of Hi.

To get the LBOS for 0& at a corner junction, we start
iterating Eqs. (87) and (88) nat from x =y = I/z, corre-
sponding to a single site, but rather from the Green func-
tion of a seed 0 corresponding to a triangle with ele-
ments ~ between the sites. Thus we start from

1.0 x =(z —r)(z+v. ) '(z —2r)

y =r(z+r) '(z —2r) (96)
0.5

0.0 i

2.98 2.99 3.00 3.01

FIC)'. 6. LDOS of corner site near E= + 3. Success&ve en-

largements (b} through (d} show scaling at Eo ——+ 3.

(H, ) „ is zero. The nonzero elements of H, are b if they
correspond to edges of one of the generation-1 triangles,
and they are 1 otherwise. Thus, from Fig. 7,

Green functions X and F are found by iteration. To
make H, uniformly threefold, it is a very good approxi-
mation for a large lattice, i.e., after many iterations, sim-

ply to connect site I to a site I' of another copy of the lat-
tice. LDOS at the junction site is obtained, using Eq.
(81), from

(97)

The LDOS is extended by Eq. (11).

[D"'(x (E))+D"'(x (E))],

(98)
(Ht) 0——5 (+b(5 2+5 3)

One Ands that

(92)
with

x+(E)= —,'[ —1+(5+8~ +4E)' ] .
(H, +H)) 0——(1+2b )5 o+5

+b(1+b)(5 2+5 3)

+b(5 4+5 5+ 6+5 5 ) . (93)

The second and third term combine to forro H q.of E . (90)
if b +b —1=0. Thus, the one parameter family in Eq.
(91) intersects the algebra of H, at two points, b =~, or
b = —lf~, where ~= —,'(5' —1) is the Fibonacci ratio.
%e choose b =v.

H, +H, —(I+2m )I =H+rHq,

Results for D, (E), the LDOS at the corner junction of the

Sierpinski lattice with Hamiltonian 0+ v.Hz, are present-
ed in Fig. 8.

Though the inclusion of second neighbors produces
substantial changes in the features of the LDOS, scaling
exponents such as c and p are not changed. They are
determined by what happens at large length scales and
thus are not aff'ected by local changes in H. It is a so
quite clear from the form of Eq. (11) that such
modifications cannot induce a continuum in the spec-
trum, since none of the contributing terms contains a
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FIG. 9. Sketch of product lattice. (a} Sierpinski Hamiltonian

H for generation n =2. (b) Corresponding graph for
H I +I H. Note facets consisting of square sublattices.

1.0.

0 ~ 0-.
5. 1 5 ' 2 5.3 5.4 5.5 5.6

FIG. 8. LDOS at corner junction site l for uniformly three-
fold Sierpinski Hamiltonians. Each graph represents 20 itera-
tions. (a) First neighbor interactions only. (b) First and second
neighbors H +7.H2. (c) Enlargement of case (b) at higher reso-
lution near Eo. A similar feature is found in case (a) near
Eo ——3.

continuum. We therefore proceed to examine extensions
to models on lattices of higher dimension.

The next extension to be considered is

(100)

where H is a threefold Sierpinski Hamiltonian with first-
neighbor matrix elements + 1.

H, represents a higher dimensional fractal. The sketch
in Fig. 9 shows the graphs representing H and H, when

the generation of H is n =2. The graph of H, is variously
known as the Cartesian product, or the sum' of two of
the graphs of H.

The lattice of H, has linear size I, -2" and the num-
ber of sites is N, =3 ". Thus the fractal dimension is
d, =2d. In general, the fractal dimensions add. Since
d, =21n3fln2=3. 1699. . . , the graph of H, becomes
difBcult to represent, even in 3D. Each site in the interior
or at a facet is sixfold coordinated, as in a cubic lattice.
Sites at an edge or corner are five or fourfold coordinat-
ed.

The graph of H, is hierarchical, or self similar, in that

the graph for generation n + 1 consists of 9 copies of the
graph for generation n, sewn together at the edges by
8(2") bonds. It is thus more connected than other
hierarchical lattices such as the Sierpinski lattice based
on tetrahedra. ' The latter are connected at only a con-
stant (small) number of sites when generation n + 1 is
formed from generation n.

Figure 10 presents the LDOS for a corner site of the
fractal lattice Hamiltonian H„as computed by auto con-
volution of the LDOS of Fig. 5(a). The spectrum extends
from —4 to + 6. The curves show again a rather clear
self similarity. We will show that the exponents corre-
sponding to c and p for the new Hamiltonian are 2c + 1

and 2p+ 1, and thus that the spectral dimension is
2d =4 ln3/ln5 =2.730. . . .

To see how scaling is assed through the extension
process, let us suppose D' '(E) and D' '(E) each admit a
transformation of the form

D (Eo —a bE) =a'D (Eo b,E)—(101)

Thus D'"(E) is also self similar near the upper bound
E, +E2 of the spectrum of H, with exponent
c =c&+c2 + 1. From c =—,'d —1 it follows that, for this
kind of extension, the spectral dimensions also add. We

d1+d2 and d =d& +d2 Figure 0 is con
sistent with p =p, +p2 + 1, which follows from the same

for small enough hE. The upper spectral bound E0 is E&
for H and E2 for EC and the exponents are c, and c2. The
a is assumed the same for each. In view of Eq. (63),

D"(E
& +E2 —a b,E)

= I D' '(E, —abE+y)D' '(Ez —y)dy
0

=f D' '[E, —a(b E —u)]D' '(Ez au }(adu }—
0

(102)
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2.0

1.0

for extensions of Sierpinski lattice Hamiltonians.
To conclude this section, it is noted that Rammal and

Toulouse have suggested, based on an examination of
scaling theory of electrical conductivity that there may
be a mobility edge in fractals with d greater than 2.

V. QUASIPKRIODIC LATTICES

0.25

0.20

0. l, 5

Q. 10

0.00
3

0.03

0.02

(b)

The lattice Hamiltonians of this section are based on
the 10 Fibonacci Hamiltonian treated by Kohmoto and
Banavar. ' As with the Sierpinski case, we consider not a
single Hamiltonian but a family of Hamiltonians corre-
sponding to a sequence of graphs de6ned as follows. The
first graph consists of a single point ( ~ ) and the second of
two points joined by a bond representing a matrix ele-
ment of strength b, (.b ). Each succeeding graph is
formed by concatenating the previous two and joining
them with a bond of strength a. Symbolically,
H„=(H„,)a(H„z). Thus, the graphs corresponding
to the Srst several Hamiltonians are

H( ——

0.01

0.00
5. 19

0.003
5.55 6.00

H~ ——b

8 =(b )a( )=ha.
8 =(ba )a(b )=baab.
8 =( b a a b)a( b .a )= b a a b a b a ~

5

(103)

0.001 '

0.000,
5.85

T T

6.00

FIG. 10. LDOS for corner site on Cartesian product of two,
20-iteration Sierpinski lattice Haaultonians. The lattice for the
two-iteration case is sketched in Fig. 9. (a) Complete spectrum
extending from —4 to + 6, (b) through (d) successive enlarge-
ments at higher resolution near Eo ——+ 6 sho~ing self-
similarity.

argument applied to the LDOS.
The additivity of both d and d, under extensions of the

type developed in Eqs. (63) and (64) and the paragraph
preceding, implies a sort of conservation of a scaling ex-
ponent governing random walks. A long random walk
on a fractal lattice can itself be considered a fractal.
The concept of spectral dimension d rests on the observa-
tion that the fractal dimension of the random walk d
is given by d =21/d, where d and d are the fractal and
spectral dimensions of the lattice. Thus, for extensions of
this kind, d is preserved. In some sense, the fact that
d =2 for nonfractal lattices in any number of Euclidean
dimensions is related to the fact that the linear chain,
the square lattice, the cubic lattice and so on are related
by such an extension. Likewise d =In5lln2 is preserved

b „=1 —x„&y„,
2

&n+ i =&n+&n IZn ~~n

2
~n+) +n —1++nZn —1 ~~n

z„+)
——z„)z„/6„.

(104)

(105)

(106)

(107)

If another bond of strength a were appended to the left of
each graph the a and b bonds would occur in a Fibonacci
sequence. The ratio of b to a bonds approaches the Fi-
bonacci ratio v. as the number of sites goes up.

The 10 Fibonacci lattices are interesting primarily ow-
ing to their relationship to the 2D Penrose lattice.
The Penrose lattice has three significant properties. It is
quasiperiodic, admits inflation-de6ation transformations,
and has a remarkable sort of fivefold rotation symmetry.

In the current section, after solution of the 1D Fi-
bonacci problem by the synthetic method is outlined, the
results are extended to a study of 2D and 3D Fibonacci
plaids which, like the Penrose lattice, are quasiperiodic
and admit infiation-deNation transformations, but, unlike
the Penrose case, do not have forbidden rotation symme-
try.

Consider the formal recursion H„=H„,aH„2, let
sites 1 and 2 be at the left and right of the lattice of H„
and let 3 and 4 be at the left- and right-hand sides of the
lattice of 8„ i. Denote by V in Eq. (81) the matrix ele-
ments connecting sites 2 and 3 to form 0„. One solves
for x„=aG»(z), y„=aG44(z), and z„=aG,4(z) in terms
of the corresponding x„ I

——ag, ) (z), y„)——ag224 z),
z„,——ag, z(z) and ~„,=ag»(z), y„,=ag„(z), and
z„2——agi4(z). The resulting recursion formulas are
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These are iterated starting from

xp =pp =zp =a /z

x, =y, =az (z +b) '(z b—)

z, =ah (z +b) '(z b)—

(108)

(109)

(110)

D, (E)= —1m[x„+&]/ma,

D4(E)= —Im[y„+, ]/n. a .

For the connection sites, one has

Dz(E) = —Im[y„/6„]/na, .

D3(E)= —1m[x„,/b, „]/na. .

(112)

(113)

(114)

Figure 11 illustrates various properties of the 1D Fi-
bonacci lattice, all of which have been investigated by

15, 16,31 —34

The LDOS on site 1, the end site of the 25th generation
lattice, is shown in Fig. 11(a). There are 1.2)& 10 sites in

Again, as in the Sierpinski case, one could instead choose
another seed Hamiltonian. With z =E+ig, LDOS for
the left and right end sites are obtained from

generation 25. The parameter values are a=0.9 and
b=1. If both a and b were 1, as in an ordered chain, a
smooth elliptical LDOS extending from E = —2 to E=2
would result. Figures 11(b) and 11(c) show the central
portion at successively higher resolution, demonstrating
self similarity of the LDOS near E=O. This has been
noted by several authors, and can be related to the
inflation-deflation symmetry. '

Inflation-deflation symmetry' ' of the sequence of
graphs introduced above operates as follows. If the two
end sites of each graph in the sequence are connected by
an a bond, thus forming the graphs into rings, then the
replacement a ~a.b and b ~a takes the nth graph into
the (n + 1)th, thus defining the inflation symmetry.
Deflation goes the other way.

Since on a very large graph, a bond subsequence of
length L always repeats itself within a length proportion-
al to L, the spectral features near the ground state
E =Ep corresponding to long wavelengths, become simi-
lar to those of a uniform lattice. Figure 11(d) shows the
E range near Ep for the LDOS at the interior site 2 for
the 25th generation lattice with a=0.99 and b=1. The
structure of the 1D Van Hove singularity is apparent in
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0.2-

4.0

3.0

2.0

1.0

0.0-,
3

1 ' 6.
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1 2 3
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0.0
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0. 12.
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6.0
4.0-

2.p
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I
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FIG. 11. LDOS for sites of 1D Fibonacci lattice Hamiltonian, 25 iterations. (a) Complete spectrum for end site 1, a=0.9, b= l.
(b) Enlargement at higher resolution near E=O. (c) Enlargement at higher resolution showing self-similarity. (d) E near Eo at inner
site 2 showing a Van Hove singularity. In this case, a=0.99, b= 1. (e) End site 1 for same lattice showing how the LDOS approaches
the singular behavior of an ordered lattice close to the ground state at Eo. (f) Surface state peaks, a=0.9, b= 1.
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the figure. Figure 11(e}shows the LDOS for the end site
1 for the same lattice Hamiltonian. The limiting curve at
E close to Eo is approaching the smooth ellipse of a uni-

form lattice, again with a perfect Van Hove singulari-
15,32

The isolated peaks in Fig. 11(f) correspond to bona joe
surface states with wave functions localized near the ends
of the chain. Reduction of q for a fixed energy range
causes these isolated peaks to grow relative to other spec-
tral features. Surfaces states are discussed by Liu and
Riklund for chains with diagonal Fibonacci disorder.

Results for the 1D Fibonacci lattice Hamiltonians are
extended to higher dimensions by the methods of Sec, III.
Figure 12 illustrates a 2D Fibonacci plaid formed from
two copies of the lattice of the generation 5 Fibonacci
Hamiltonian in 1D. In general, the Harniltonian of a 2D
Fibonacci plaid 8, is defI[ned by

where H is a 1D Fibonacci lattice Hamiltonian. Fibonac-
ci plaids in 3D are similarly defined.

The 2D and 3D Fibonacci plaids inherit infjation-
deAation properties from the 1D components. For exam-
ple, in Fig. 12 there are three kinds of square cells. Those
with no dark line inflate into a single square with all dark
lines. Those with two parallel dark lines inflate into a
rectangle consisting of a square with all dark sides and
one with two dark sides. The squares with all dark sides
go into a large square composed of one square with all
dark lines, two with two dark lines, and one with none.
The dark lines represent a bonds and the dashed ones b
bonds.

Figure 13 shows LDOS for interior sites on 2D and 3D
plaids. These are obtained via Eq. (63) by numerical con-
volutions involving the 1D results. Figure 13(a) is the
LDOS for a site interior to a 2D plaid found by autocon-
volution of Di(E) from Eq. (113). The linkage strengths
are a=0.9 and b= I. Increasing the resolution does not

o'(E) =—
Tr[G (E +i q)pG(E +i g)p] (116)

for conductivity ' is extended by the preceding tech-
niques from the 1D chain result to the plaid lattices. In
Eq. (116), N is the number of sites, p is a component of
the momentum operator, and for simplicity, the notation

uncover significantly more complex structure. Two-
dimensional dispersion has broadened the self-similar
features and isolated peaks into a relatively smooth con-
tinuum. The general shape is like that of the square-
lattice result shown in Fig. 1(a). Choy has presented
numerical results for the LDOS of a typical threefold
coordinated site on the Penrose lattice and speculated
that there is a well-de6ned Van Hove singularity at E=O
in the Penrose case. However, Kohmoto and Sutherland
showed that what had appeared to be a sharp Van Hove
singularity in the Penrose LDOS actually represents a
gap containing a localized state at E =0. In contrast,
the LDOS shown for the 2D plaid does have a rather
sharp Van Hove singularity resulting via convolution
form the well-formed bandedge singularities as shown in

Fig. 1 1(d).
Figures 13(b) through 13(d) show LDOS at interior

sites of a 3D Fibonacci plaid. In each case, b=1. The
parameter a is 0.99 in Fig. 13(b), 0.90 in Fig. 13(c), and
0.50 in Fig. 13(d). The similarity between Fig. 13(a) and
Fig. 2(a) is evident. The smooth, bell-shaped curve of
Fig. 13(c) shows no trace of the structure present in 1D
for the same parameter values. In the limit of a ~0, the
LDOS reduces to a few isolated peaks as the lattice
decomposes into disconnected molecules,

Since eigenvectors of the plaid Hamiltonians consist of
direct products of eigenvectors of the 1D Fibonacci case,
as in Eq. (43), the eigenstates are localized or delocalized
to the same degree. The extent of localization in a 1D Fi-
bonacci model is discussed by several authors. ' ' '

A measure of eigenstate localization in the one-electron
problem is the electrical conductivity. The expression

G(E +i q) = ——Im[G (E +i q }]

J
'~ I

is used. A convenient technique for computing Eq. (116)
for chains has recently been reported by Thouless and
Kirkpatrick. To obtain an extension formula, consider
the Hamiltonian 0,=HI+IE. Suppose the momen-
tum component p is taken perpendicular to the sublattice
of E, so that

[H)g,
~(kI)( mn) Pkm ~In

FIG. 12. Graph corresponding to 20 Fibonacci plaid. Solid
lines represent a bonds and dashed lines b bonds. The Harnil-
tonian is 8,=0I +1H, w'here 8 is the Ave-iteration 10¹i
bonacci Hamiltonian.

then on substituting Eq. (64) for G(E +ig) into Eq. (116),
one finds

cr, (E)= J I T' '(x,y)Q' '(E x,E y)dx dy— —

(119}
where

T' '(x,y)= g [G ,'I, '(x+ig)p& 'G ' z'(y+ig)pz, . '],
i, k, m, p
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24.0

16.0
(a)

with o' '(E) the conductivity corresponding to H, and
D' '(E) the DOS per site for K. Thus the relationship
between the conductivities of the plaid lattices and the
conductivity of the 1D chain is trivial.

8.0 VI. CONCLUSION

0.0
-8 0

1" 0

8.0

4.0

0.0,—.. ..

16.0

12 0. (c)
8.0

4.0

0.0 .. '
~

-6

36.0

24.0

12.0

0.0.

and

Q' '(E x,E —y)—
= g G JI '(E —x +i ri}G I '(E —y +i ri) .

I,j
(121)

But, in view of Eq. (50), Q' '(E x,E —y} reduces to—

Q (E x,E —y)=5(x y)—D' '(E —x) . —(122)

Whence the conductivity is simply

cr, (E)=f cr' '(x)D' '(E x)dx—(123)

FIG. 13. LDOS for interior sites of 2D and 3D Fibonacci
plaids. (a) 2D plaid with a=0.9, b= l. (b) through (d) 3D plaids
with b= 1, and with a=0.99, 0.9, and 0.5, respectively.

The major intent of the preceding sections is to estab-
lish a formalism for using Green functions corresponding
to Hamiltonian H to obtain Green functions for a related
Hamiltonian H, =f (H), where f is a rational function.
The essential result is Eq. (16) which expresses the Green
functions G "(z) for H, in terms of those G(z) for H. A
convenient formula is given in Eq. (11) extending the
DOS and LDOS of H to those of H, without reference to
the Green functions. Thus DOS or LDOS obtained by
any means, including the digitizing of published curves,
can be extended to results for other Harniltonians. The
constraint that H, must be of the form f (H) in order to
make use of the extension procedure for an H with
known solutions is quite severe. Nevertheless, as the ex-
amples of Sec. II show, the extension formulas give re-
sults that are useful both formally and numerically for
physically interesting models.

The formalism is further developed in Sec. III to per-
rnit extending the Green functions of two lattice Harnil-
t ians H and E defined on the same or different lattices,
to any Hamiltonian H, in the algebra generated by t e
direct product matrices HI and IK, as defined in Eq.
(3). The major result is Eq. (52) expressin~ G "(z) in
terms of G' '(z) corresponding to H, and G '(z) corre-
sponding to K. The linear homogeneous case, being of
particular interest, is given in simplified form in Eq. (64).
Separate formulas for the DOS and LDOS are presented
in Eqs. (46) and Eq. (63). The formal efficiency of these
equations is illustrated in Sec. III, where expressions for
Green functions and LDOS for several models are
developed; in Sec. III, where scaling exponents are exam-
ined, and in Sec. V, where electrical conductivity 0 (E) is
extended from 1D to 2D and 3D models. The numerica
usefulness of the extension formulas is illustrated
throughout Secs. IV and V by their application to the ex-

p oraloration of several fractal lattices and quasiperiodic lat-
tices.

The fact that these extension techniques give an
efficient way of computing lattice Green functions for
regular lattice models is of practical interest. It is ap-
propriate to ask, however, whether the new models made
accessible by these methods, such as the fractal and
quasiperiodic models described above, are genuinely in-
teresting. For example, do they contain any nontrivial
physics not already contained in the base Harniltonians H
and I(? This question is suggested particularly by the re-
marks at the end of Sec. V concerning localization and
conductivity in the one-electron problem.

It is generally expected that o (E) for a disordered lat-
tice of dimension 2 or less should tend to zero for each E
as the size of the lattice increases, for any degree of disor-
der. For higher dimensions, some states may be localized
and others not, so that cr(E} may not tend to zero for a
certain set of E values. The situation seems more com-
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plicated for quasiperiodic order. ' ' ' ' Anderson
originally associated the localization of eigenstates with a
noncontinuum structure of the spectrum. Where the
spectrum is not a continuum, states are localized. But,
when the spectrum does contain a continuum, to what
extent must the eigenstates be delocalized'?

As mentioned in Sec. V, eigenstates of the model
H, =HI+IH are localized to the same degree as
those of H. ' lt is interesting to note, ho~ever, that even
though there may be no continuum in the spectrum of H,
or K, the eigenvaiues may condense under convolution so
that the spectrum of H, can contain a continuum. %'e
offer the following argument.

Let H represent the fourfold Sierpinski Hamiltonian,
the spectrum of which contains no continuum. That is,
there is no continuous range of eigenvalues without a
gap. A subset of eigenvalues of H resembles the Cantor
set in that it consists of the set that remains when an
infinite sequence of nested gaps is created in a closed in-
terval. ' ' This situation is typical of the spectra of
hierarchical lattices and also appears to occur for the 1D
Fibonacci case. '

The Cantor set is a nowhere dense, perfect subset of
the closed interval [0,1]. It is the subset remaining after
an infinite deletion process in which, at each stage, the
open middle —, is removed from each remaining subinter-
val. Its elements consists of all numbers E with the ter-
nary representation

E= ga„3
n=1

(124)

with each a„an element of the two-element set {0,2) .
The spectrum of H, consists of the set of sums of all

pairs of elements of the spectrum of H, i.e., it is the auto
convolution of the spectrum of H. Since the spectrum of
H contains a Cantor-like subset, we form the auto convo-
lution of the Cantor set. This must contain all numbers
E' of the form

contains of all numbers with k-ary representation

(126)

with each a„ in the set I l, k —1). The k —2 fold convo-
lution will contain the interval [O,k —1], but no fewer
convolutions will produce condensation.

The foregoing analysis suggests the existence of a con-
densation transition from noncontinuum to continuum
spectral character as a function of a gap ratio r charac-
teristic of the base Hamiltonian H. ' A criterion for con-
densation after k —2 convolutions would b(k —2)/k ~ r
For the fourfold coordinated Sierpinski Hamiltonian,
Domany et al. ' report r =0.424643. . . or r =(P—1)/P
in their notation. Thus, for condensation,
k —2=1.47615. . . or two convolutions would be re-
quired.

Gap ratios for the 1D Fibonacci spectrum vary as a
function of the coupling constants. 2 Starting with an H
of this sort in 1D, one can make 2D and 3D plaid models
to look for a spectral condensation as a function of r.
Since gap ratios may difFer in difFerent parts of the spec-
trum of H, there may be cases in which the spectrum of
H, contains a continuum for some range of energy but is
noncontinuous elsewhere. This is somewhat analogous to
the existence of a mobihty edge which would separate a
range of eigenvalues corresponding to localized states
from a range corresponding to extended states. ' It is
unclear to what extent the transition from continuum to
noncontinuum spectral properties relates to a transition
from extended to localized eigenstates on disordered lat-
tices.

We therefore conclude that the extension formalism re-
ported here enables the treatment of a variety of lattice
Hamiltonians which, besides being of practical use in ex-
ploring dynamical phenomena on regular lattices and su-
perlattices, may be theoretically interesting in their own
right.

E'= g b„3
n=1

(125)
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