
PHYSICAL REVIEW B VOLUME 37, NUMBER 16 1 JUNE 1988

Fractal dimension and scaling behavior of cracks in a random medium:
"Frequency-rank" distribution described by generalized random walks
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A dynamical model of cracks in a random medium, specified by the fractal dimension and confor-
mation of the cracks, is proposed. The random medium is composed of many different types of seg-
ments. Each segment is sectioned into subsegments in which many microcracks, not directly ob-
servable, are randomly arranged. Under an applied stress, the directions of the microcracks partly
line up along an easy axis of the stress, and a set of the microcracks forms connected microcracks in
the subsegment, and finally the subsegment causes a fracture over the segment. The fractures are
counted as cracks in the frequency-rank (FR) distribution. The FR distribution of cracks is charac-
terized by two parameters, corresponding to the fractal dimension D and the "reciprocal tempera-
ture" P, respectively.

I. INTRODUCTION

The size distributions in random cuttings of polymers, '

or the size distribution of cracks in a random medium
are interesting problems which give us a new viewpoint in
the study of the dynamics of random media. Specifically,
size distributions having inverse-power form have been
extensively studied in terms of the fractal dimension. '

Recently, from a fractal-dimensional point of view, a
model of the cumulative number of cracks has been pro-
posed by Matsushita and a model of fractures has been
considered by Takayasu to study the total number of
broken sticks. The fractal dimension is a geometrical fac-
tor specifying random irregularities and fragmentations.
The analysis can be applied to the morphogenesis of a
biological complex, or as an interpretation for the reduc-
tion law of metabolism, in which geometrical properties
are essential.

In simple treatments of the FR distribution of cracks,
the behavior on the log-log plot is described by linear
curves specified by the fractal dimension. The actual be-
havior, however, does not always fit the linear curves; it
deviates from the linear curves as seen in the Gutenberg-
Richter law, or in acoustic cumulative energy counts ob-
served in concrete. ' Similar deviations are observed in
the so-called Zipf law and the Bradford law studied in in-
formation science. " Specifically, in the behavior of the
Zipf law and the Bradford law, one uses an additional pa-
rameter to the index, corresponding to the fractal dimen-
sion which is introduced, so that one can reproduce the
curves of the frequency-rank distribution in information
space" consisting of elements. ' Recently, Takagi' re-
ported that in fluid dynamics, configurations of two-
dimensional vortices are expressed by two parameters:
the fractal dimension and the temperature. Suzuki' has
considered transient factors and Takayasu has proposed
a concept of differential fractals.

In this paper, we propose a dynamical model, diff'erent

from the above models, ' and consider the behavior of
cracks. Our system is composed of many different types
of segments. In the segments, a scaling property of
growth for microcracks is assumed. Configurations of
cracks having a length specified by the segment are deter-
mined by a probability proportional to a total number of
the events. The behavior of the FR distribution is de-
scribed by two parameters; the "fractal dimension" for
microcracks and an additional parameter specifying con-
formations of possible paths for crack propagation. The
possible paths are expressed by a recurrence relation of
generalized random walks, ' where jumping probabilities
are specified by the fractal dimension representing an oc-
currence probability of the connected microcracks.

II. MODEL PROCESSES OF FRACTURES

We consider the dynamics of cracks in a random medi-
um. The random medium is composed of many different
types of segments. The segments are classified by their
sizes and properties for an applied stress o. The segment
E is sect;ioned into subsegments; these are cubes having a
length L (E), see Figs. 1(a) and 1(b). Here we assume that
a space of subsegments, that is a "material space, " is
spanned by many kinds of fundamental elements Ek hav-
ing lengths lt, (k =1,2, 3, . . . ),

(2.1)

Under an applied stress o (t&0), some of the funda-
mental elements become microcracks, still not directly
observable ones, and the microcracks grow into "con-
nected microcracks" along a path, composed of the fun-
damental elements. When tips of the connected micro-
cracks arrive at both ends of the boundary of the subseg-
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ment having length L(E) ( -to), the subsegment will be
fractured. We regard the fracturing of the subsegment as
an annihilation of the subsegment. This means that the
number of subsegments decreases in the segment under
the applied stress o.. Therefore, to compensate the de-
crease of the number of subsegments in the segment E,
the length of the subsegment L (E) increases and depends
on "effectively" time t. For the sake of clarity, we write
L(E, t) instead of L(E). The fracture expressed by the
connected microcracks percolates further, until their tips
arrive at both ends of the boundary of a segment (-t, ).
The connected microcracks in the segment have various
directions. In the following analysis, we regard the con-
nected microcracks over the segment as "cracks" having
minimal lengths with a direction, see Figs. 1(c) and 1(d).

The processes we consider are divided into three
stages: I, erst stage, Og t g to; II, intermediate stage,
to gr ~t„' and III, final stage, t ~t, . Let M be the total
number of segments in the medium composed of difFerent
types of segments, A, B, . . . ,

(2.2)
E=W, B,C,

where Mz is the number of segments E. fIere we assume
that total volume of all segments is fixed under the stress
a, and the number of subsegments in the segment E,
G(L(E, t)), is expressed by a characteristic length

L (E,t). The total number of subsegments in the medium
is then expressed by

MEG(L(E, t)) . (2.3)

G(L(E,&))= g G(L;(E,&)) .
i=I

(2.4)

In the subsegment, an occurrence of connected micro-
cracks having the direction i means an onset of fractures,
still not directly observable ones, and this situation is ex-
pressed by decreasing G(L;(E,t) ) in the course of time t.

We suppose that the number of subsegments for all
segments is equal to Go [=G(L (E,O))] before applying
the stress o (t=O). The stress changes some of the mi-
crocracks into connected microcracks having the respec-
tive directions. To represent the cube containing con-
nected microcracks having a direction i, we use a new
subscript i (= 1,2,3, . . . , k), and rewrite the symbol of the
length as L;(E,t), and let G(L;(E,r)) be the number of
these subsegments in the segment E. The number of the
subsegments in the segment E, independent of i, is then
given by

Segment

Sub segment Connected
microcf Qck

Crack

FIG. 1. Random medium and fracture processes. (a) Medium composed of many difterent types of segments. Background itself
may be regarded as huge segment. (b) and (c) The segment is sectioned into subsegments speci6ed by respective lengths L (E, I, ). Tips
of the connected microcracks arrive at both ends of the boundary of subsegments. {d) The segment contains many connected micro-
cracks having various directions.
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A. Initial stage (0& t & t0 ) and intermediate stage ( t 0 & t & t, )

dL, (E,t)
=iim;(o, t) (0 &t &to),

L, E, t dt

G(L;(E,O))=GO, L;(E,O)=LO(E),

(2.5)

(2.5')

where ri is a positive constant and Lo(E} represents the
length of the cube which does not contain any connected
microcrack having direction i. The symbol to character-
izes when tips of the connected microcrack arrive at both
ends of the subsegment. Here the t dependence of the
L;(E,t) is assumed to be given by

L;(E,t)= A;(E)' "[R(E)]' " (2.6)

where A, (E), v, and R, (E') are constants (see the Appen-
dix}. Note that the t dependence of L, (E,t) determines
processes in which the connected microcracks specified
by G(L;(E, t)) in (2.5) grow at a constant rate when
m;(o, t) is independent of t

In the intermediate stage ( to & t & t, ), we consider
another characteristic time t, . It characterizes when tips
of the connected microcracks arrive at both ends of the
boundary of the segment E in the processes. To this end,
we introduce a new scale defined by

The applied stress cr changes microcracks into con-
nected microcracks having a direction i. In the initial
stage, the microcracks grow into connected microcracks
in the subsegment, and tips of the connected microcracks
arrive at both ends of the subsegment, that is, of a cube
having the length L;(E,t)(-to). We assume that a de-
creasing rate of G{L(E,t)) is proportional to an oc-
currence probability of the connected microcracks having
direction i, m; (o, t), and increasing rate of the length

L, (E,t);

d G{L,(E,t))
G{L,(E,t)) dr

=pm;(o, t)
1 dp 1

p dt '
L, (E., r)

dL, (E. , t)

dt

(io ««, ), (2.9)

p(L;{E,to))=po, L;(E,to)=A, ;(E)LO(E) . (2.9')

Considering that q(L;(E, t)) increases with decreasing
number of subsegments, we assume a relation between a
"scaled number of subsegments, " G{L,(E, t)), and the
number of cracks q(L, (E,t)) as follows:

q(L, (E,t))G(L, (E,t)) =f (E), (2.10)

where f (E) is an unknown positive function and
G(L, (E, t)) is a scaled function so that it has the same
form as that specified in (2.5}, except for the argument
L, (E, t). A total free volume for cracks in the medium is
then expressed by

V(t)= y y p(L;(E, t)) = y V;(t) .
i E

(2.11)

With the aid of V(t) and V;(t), we can define an oc-
currence probability of the cracks having the direction i,
expressed by

V, (t}
P(L;(r))= (ro&r &t, )Vt (2.12}

We consider the case where m;(o, t) is independent of
time t and direction i, writing for it mo(o). After in-

tegrating the Eq. (2.5} over (O, t), where to & t, we have a
solution expressed by

G(L;(E,t)) =Ko(E,D)(L, (E, t))

[Ko(E,D) =GOLD(E), D =limo(o)], '(2. 13)

where D is a quantity, corresponding to the fractal di-
mension. For a specialized case, by integrating (2.9}over
(to, t},where t & t„with (2.8) and (2.10), we have

L,.(E, t)=A, , (E)L, ( Et ro) (to&t &—t, ), (2.7) G(L, (E,t))=K,(E,D)[L,(E, t)] D, (2.14)

where A,;(E) has a large value ( »1) valid only for t & to,
and vanishes for t & to [see (2.5}]. The connected micro-
crack over the segment is a minimal "observable" crack
having a direction i, and having a length L, (E, t). To
specify the processes in the intermediate stage
( rp & t & r ), we consider a quantity representing a "free
volume" for a single crack having the direction i,
p(L, (E, t}),defined by

G(L, (E,t))=KO(E, D)[R(E) ' ]

x(A, , A ") (2.15)

where we have put G(L;(E,O))=KO(E, D)[L;(E,O)]
The result (2.14) is obtained easily by replacement of L;
in (2.13) by L;. Specifically, when A,;(E) and A, (E) are
E-independent quantities, we can rewrite G (L;(E, t ) )
from (2.6) and (2.7) as follows:

p(L, (E, t)) =Q(E)/q(. L, (E, t)) (to & t &.r, ), (2.8) [cf. (2.13)]. Under these conditions, the expression (2.12)
becomes a t-independent quantity given by

where Q(E) is the volume of the segment E and
q(L, (E,t)) is the number o.f cracks having the direction i
in the segment E. Here the free volume represents a re-
gion in which the connected microcracks grow. At
r = ro q(L; (E, t) ) is assumed to be equal to qo
[=q(L;(E,O})].

Assumipg that the dynamics has a scaling property, we
put a temporal evolution for p as follows:

L D—
'I

L, (D) L;,:—A,;A ~", L,(D)= g L, ,
i=1

(2.16)

after using {2.8), (2.10), (2.11), and (2.15). An index "s"
denotes that the quantity is t independent over all seg-
ments.
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L; (E.t)

G(L)(s,t))

L;(E,t)

p.L!(E,t ))

Lc

(Lc=Zn, L;)

I

!

Subsegment

I
I

to

Segment of cracks

FIG. 2, A scenario for temporal evolution for microcracks in subsegments, and for connected microcracks, cracks in segments,
and for chains of cracks in a medium. As to vo see {A2) in the Appendix.

8. Final stage {t,gt)

Following the two preceding states, we consider a final
stage in which the cracks grow into chains as shown in
Fig. 2. For the 6nal stage, we assume that a temporal
evolution of states for the cracks is described by a set of
the numbers of cracks and the occurrence probability
given by (2.16). The growth patterns of the cracks are
controlled by the easiest direction of the stress. To clari-
fy this situation, we introduce the easiest axis denoted by
a new index 1, and express less easy directions by the se-
quence, 2,3, . . . , according to their easiness. Then we
can specify a distribution of cracks in the chain patterns
by the index i. For simplicity, we use the same notations
representing the new index as the subscript of directions.
The notation L;, [ a:L;(E,t)], therefore, denotes a
characteristic length with an arrowhead having the index
i in a given chain for the set of the cracks (see Fig. 3).
Let n; be the number of cracks, having the index i, and
let W(n), n2, . . . , nk, N) be the probability of conforma-
tions composed of the number of cracks having new in-
dices n), ni, . . . , n), The chain .of the cracks is denoted
by a set of the arrow lines heading the respective direc-

I

+P(Lq, ) W(2, 0, 2;4)

+P(Lq, ) W(2, 1, 1;4),
with the initial condition

W(0, 0,0;0)= 1,

(2.17)

(2.18)

where P(L;, ), (i=1,2,3), are defined by (2.16), except for
the meaning of the index i. They are the transition prob-
abilities between the states expressed by W(2, 1,2;5),
W(1, 1,2;4), W(2, 0,2;4), and W(2, 1, 1;4), respectively.

For more general crack propagations, the temporal
evolution is described by a similar recurrence relation to
(2.17) of generalized random walks,

tions 1,2,3, . . . , k at the elapsed time t =¹„where t, is
the unit time introduced in (2.7).

Before describing a general temporal evolution of
states for 8', we show a simple crack propagation of the
chain type pattern (n, =2, nz —1, ni =2), after
N =(t/t, )=5 steps. The process is expressed by a recur-
sion relation of generalized random walks, '

W(2, 1,2;5)=P(L), ) W(1, 1,2;4)

k

W(n„n2, . . . , nk, &)= g g PN )(n, , In'I! n, —a, Inj'I)W(n„ni, . . . , n, —a, . . . , n&, N)
i =1 a=+1

(!n, !=nl n2 ni 1nl+) —' nk),
with the initial condition

W(0, 0, . . . , 0;0)=1
and the jumping probabilities are defined by

0, (a= —1) .

(2.19)

(2.20)

The initial condition (2.20) is a state representing an embryo for the crack propagations in the final stage. From (2.19)
with (2.20), we get an expression for W:

lt
1

1,s
'

2, s

n) tnt). . n„t L, (D. ) L, (D)

D tl I
k, s

L, (D)

(L;, )=(A,;A;)' ", L, (D}=g(L;,), (2.22)
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index 3 The number n; represents the frequency of cracks with

the index i .The symbol P is the parameter determined by
(3.3};it corresponds to the reciprocal temperature of the
Maxwell-Boltzmann distribution for particle systems.

By taking the logarithm of (3.4), and by introducing y
for inn;, we have

y ( =inn; ) =ln[N/Z(P, D).L,(D)] Dx——Pe"

0
Segment

0: Applied stress

= index l

FIG. 3. A multidimensional space (v= 3) spanned by the pos-
sible crack propagations specified by directions. The index 1 is
the easiest axis for o. The indices 2 and 3 denote the following
easier directions for 0..

Z(PD)=QQe ", x =lnL, , (36)

The FR distribution expressed by (3.6) is shown in Fig. 4.
This curve shows that the inclusion of the term —Pe"
yields a rapid decay of y. Note that D is proportional to
the occurrence probability of connected microcracks, see
(2.13), while P specifies conformations of a chain by the
sets of n „n2, . . . , nl, in the crack propagation [see (3.3}].
Here note that consecutive series of x, (i =1,2, . . . , ) in

the rank

The patterns due to the cracks propagations described by
the probability W(n, ,n2, . . . , nl„N) are illustrated by
chain type diagrams in a k-dimensional space. The k
component of the chain-type diagram represents the in-
dex of the cracks (see Fig. 3).

X1 (X2 (X3 ( 0 ~ ~

are transformed by the relation x; =lnL;, into

Li s (L2,s (L3 s (' ' '

(3.7)

(3.8)

III. "FREQUENCY-RANK" DISTRIBUTION

S =ko lnS', (3.1)

The probability 8'is proportional to a total number of
events, namely onsets of the cracks having the length
L; „and it gives us the possible patterns of crack propa-
gations. Here we suppose that in the frequency-rank
(FR) distribution only the processes maximizing W are
observed as the cracks having the index i. The index i
represents the rank measured from the easiest axis of the
applied stress 0. To maximize the probability 8', we
consider the entropy defined by

Therefore, in a sense, the length L, , may be regarded as a
variable representing energy monitored by acoustic emis-
sion. In Fig. 5 we show a curve of Gutenberg-Richter ex-
pression. We can find a profile similar to that given by
(3.7}.

Before closing the section, let us remark on an applica-
tion of the present model to Horton's law with which we
can study a relationship between the streams and their
drainages. To this end we reinterpret the letter of index
as an order of the streams of the drainage network; let k
be the order of the streams, and let Lz+ (=L„,) be the
length of the streams. If we put

in place of 8; where ko is a proportionality constant.
The maximum of S is studied by varying n, under the
subsidary conditions

lnLI+ =Ck (C: constant}, (3.9)

n;=N, (3.2)

k

g n;L;, =L, ,
i=1

(3.3}

where L, represents the total length of all chains in the

crack propagations. With the aid of (2.22), the Lagrange
multipliers y for (3.2} and —P for (3.3), we have the num-

ber n; giving the maximum of S results in

n, =ei'Q;e . " [Q;—:(L, , ) /L, (D)], (3.4)

where we have used inn f=n 1nn —n. The parameter y is
determined by (3.2);

L(D)= g (L+) Qi, (Lg+) /L(D)——
k

—131.+Z= QQae
k

(3.10)

we obtain the number of drainages, nk, expressed by

1nni ——A —Bk —R (k)

[ A =In[N/Z. L(D)], 8 =DC, R(k)=gee"j . (3.11)

we can state that the streams having greater order are
longer ones. Expressed differently, when the drainage
network is regarded as "great cracks, " and if we intro-
duce notations

e (3.5) Thus we have a "Harton's law" of the drainage network
described by patterns of the great cracks in the random
medium.
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C-0
=—Co

P =O.I, 0 = I )

FIG. 4. The frequency-rank (FR) distribution given by (3.6). Here, for simplicity, we put In[%/Z(P, D} L,(D}]=co,D=1, and
P=0.1, respectively.

IV. CONCLUSION

IO-

lO
l i I I I )

)00{inta )

A simple dynamical model of cracks in a random medi-
um was proposed. The dynamical stages (0&t & to,
to &t &t„and t, &t) are specified by (2.5), (2.9), and
(2.19), respectively. The present model yields a
frequency-rank (FR) distribution for cracks expressed by
their lengths. The behaviors of the FR cracks are
speci6ed by two parameters: the fractal dimension D and
the additional parameter P, corresponding to the recipro-
cal temperature for the particle systems. The fractal di-
mension D is related to the occurrence probability of con-
nected microcracks. The parameter P is one of the
Lagrange multipliers for the subsidary conditions (3.2)
and (3.3), and it specifies the conformation of chains in a
crack propagation, expressed by the sets of the cracks
having the respective indices (3.3). The index denotes the
easier directions for the applied stress.

In the present model it was found that the linear curve
on the log-log plot, determined by the fractal dimension,
were modified by the contributions due to the additional
parameter P. To set up a more elaborate model process
for crack propagations, me can use the continuum limit
of (2.19), which yields a higher dimensional Fokker-
Planck equation,

BW(n„nz, . . . , n„:t)

FIG. 5. A curve for Gutenberg-Richter expression observed
by Mogi {Ref. 9) in pine resin. Here o is the maxi&num ampIi-
tude of elastic shocks and n [=n (a}]a their number. (4.1)
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and we can express the solution by the path integral rep-
resentation, where

K(') =L, ,P (L, , )It, ,

KP' =L,',P(L;, )I2t, ,

(4.2)

(4.3)

see Ref. 16.
It is also interesting to note that the present result (3.7)

has a form similar to the size distribution of droplet ob-
tained recently by Monte Carlo simulation. '

In the present model, the probability P(L;, ) is in-

dependent of t [see (2.21) with (2.16)], we may regard it as
a probability of a bond being occupied on the lattice sys-
tem. Specifically, in the two-dimensional cases, we can
interpret the result nk as the average number of k clusters
per lattice site, nk expressed by

itk ——g Gk, P "(1 P}', — (4.4)
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APPENDIX: DERIVATION OF EQ. (2.6)

To get the t dependence of L, (E, t), we consider a total
number of possible paths for various "virtual connected
microcracks. " The connected microcracks are composed
of fundamental elements Ek', having the length lk'
(k = 1,2, . . .k) [see (2.1)];

(i) (i) (i)E~,Ez ~. . .Ev
1(i) l(i) l(i) (Al)

1 ~ 2 ~''' v

where e is the so-called perimeter and it denotes the num-
ber of empty neighbors of a cluster. The symbol Gk,
represents the number of cluster configurations with size
k and perimeter e. '

Finally let us remark that there is an interesting appli-
cation of the present model to microspike movements on
the neutral growth cone. ' ' This will be given in a
separate paper.

where ~0 is a unit of time per length of element. A formal
solution of (A2) is expressed by

N'"(E, r)= A, (E)[R,(E)]',
where R; [ =R;(E)] is a constant determined by

—I r —I r —I ~
1=R; ' +R; ' +. +R

(A3)

(A4)

and A, (E) is an arbitrary constant. Note here that
N"(E, t) is proportional to a "degree of spreads of paths"
for the virtual connected microcracks between the origin
and a point t in the v-dimensional space. This fact leads
us to introduce a characteristic length L; (E, t) represent-
ing the spreads of the paths in the v-dimensional space;

N"(E, t) —[L;(E,t)] (r«t &t, ) .

Therefore, from (A3) and (AS), we have

L; (E, t }-A ~"[R;(E)]'~" (0 & t & t, )

(AS)

(A6)

for ra~0. We use the characteristic length introduced
above as a measure of scale for the subsegment E which
contains connected microcracks having direction &' for
0 & t & to in (2.6), and also a measure of scale for the pos-
sible connected microcracks having the direction (or the
index) i for to&t &t, in (2.7).

where we used the symbol i to represent the direction.
But in the following argument we omit the symbol i on
Ek and lk, as the need for them does not arise. The
lengths lk's are very short compared with L, (E,.t}. After
a given time interval t possible combinations of the con-
nected microcracks, composed of fundamental elements
IEk I, are calculated for the virtual connected micro-
cracks between points 0 and t.

Let N"(E, t) be the total number of paths for the vari-
ous virtual connected microcracks between points 0 and
t. The number N"(E, t) is calculated by solving a re-
currence relation:

N"(E, t)=N'"(E, t —l, r, )+N"(E, t —l, r, )

+N"(E, t l.r,—) (r, &r &t, ),
(A2)
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