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Scaling properties of the elastic stiffness moduli of a random rigid-nonrigid network
near the rigidity threshold: Theory and simulations
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The critical properties of the elastic stiffness moduli of random rigid-nonrigid networks near the
rigidity threshold p, are investigated by constructing a scaling theory in terms of two scaling param-
eters. The theory is tested by simulations of a series of two-dimensional long-strip, two-component
random networks at p„ in which both components have finite bond-stretching and angle-bending
force constants. The simulations also serve to determine the precise form of the scaling variables.
Some new physical properties have emerged that will need to be understood theoretically and tested
experimentally.

I. INTRODUCTION

The macroscopic elastic properties of random net-
works near a percolation threshold have received consid-
erable attention in recent years. ' ' Among the surprises
that were uncovered was the phenomenon of a negative
Poisson's ratio X. This was found to occur in mixtures of
rigid and nonrigid bonds when the fraction of rigid bonds

p is so close to the percolation threshold p, that the
correlation length g is much greater than the system
(linear) size L 'The n. egative value of X in that regime
was found to be independent of the elementary or micro-
scopic force constants of the bonds. These could there-
fore be chosen to mimic a material with a normal positive
value for X. Thus a mechanism was discovered for con-
structing isotropic elastic materials with negative or zero
X by mixing a normal elastic material with positive X and
a rigid elastic material with infinite stiffness moduli.
Since naturally occurring isotropic elastic materials al-
ways have a positive X, implementation of this mecha-
nism could lead to a new class of synthetic elastic materi-
als. Further work on such rigid-nonrigid mixed networks
showed that the Poisson's ratio is sensitive to the precise
value of g/L, ' changing from about —0.3 when
g/L = ~ to about + 0.08 when g/L =0. A zero
Poisson's ratio is obtained for g/L = 5.

In this paper we describe results of theoretical and nu-
merical work whose aim was to investigate the stiffness
moduli and especially Poisson's ratio X in such a mixture
when the rigid component has large but not infinite elas-
tic moduli.

The microscopic model we used for the elastic proper-
ties of a two-dimensional (2D) random material has
enough parameters in it (e.g., there are four different
force constants) so that a number of different regimes can
be accessed. In order to analyze the critical behavior

near the rigidity threshold in some detail, we have resort-
ed to a scaling description. Scaling assumptions were
made by drawing on results of previous calculations' '
and also on what we know from the thoroughly studied
critical behavior of random conducting networks near a
conductivity threshold. These assumptions were then
tested by comparing them with the results of a series of
simulations of 20 random elastic networks.

The rest of this paper is organized as follows: In Sec.
II we develop the scaling description of elastic properties
in our network model. In Sec. III we describe the tech-
niques used to simulate this model numerically. In Sec.
IV we present the results of the simulations, and in Sec. V
we discuss some implications of these results and the con-
clusions that may be drawn therefrom. In the Appendix
we provide details of the transfer-matrix method used to
perform the simulations.

II. ELASTIC NETWORK MODEL
AND SCALING THEORY

In order to discuss and simulate the critical behavior of
a random, macroscopically inhomogeneous elastic solid
near its rigidity threshold, we always consider a two-
component random network of bonds with two types of
microscopic force constants —a bond-stretching constant
k and an angle-bending constant m. The bond-stretching
constant takes one of two values k&, k2 according to the
type of bond. The value of the angle-bending constant
can in principle take more than two different values:
First of a11 it depends on the character of its pair of
adjacent bonds, of which there are three possible
configurations (i.e., we can have m», mzz, m, z). Second-
ly, more than one type of interbond angle is often possi-
ble, as in a triangular network. It is probably not crucial
exactly how we assign the angle-bending force constants,
as long as we keep m»/k, and mzz/k2 finite.

37 9460 1988 The American Physical Society



SCALING PROPERTIES OF THE ELASTIC STIFFNESS. . .

Cii =K+@ (2.2)

Another important parameter which characterizes the
elastic behavior of an isotropic material is Poisson's ratio
X. In a two-dimensional medium, X is related to ratios of
the elastic rnoduli in the following ways:

K —P
1

2P

K+P Cii
(2.3)

Since mechanical stability requirements dictate that K

and p must be positive, therefore X must lie between —1

and + 1 (in a two-dimensional medium). In our homo-
geneous network model, X is related to the microscopic
force constants k, m by

X= k —6m
k +18m

(2.4)

Since mechanical stability requires that k and m be posi-
tive, X in this model can take any value between ——,

' and

+ 1. Although our model cannot reproduce all the al-
lowed values for X, it is adequate for representing any
natural material since all naturally occurring materials
always have X &0.

In a random inhomogeneous network, the bulk moduli
mill depend on the four force constants k, , m i, k2, m2 and
also on the fraction p, of k, bonds. A sharp rigidity
threshold appears in a system of in6nite size when
ki/k2=mi/my=0 and p2

——p„where p, is the percola-
tion threshold. Near that threshold, the critical proper-
ties of the stiffness moduli are expected to exhibit scaling
behavior. In preparation for a discussion of our comput-
er simulations of 6nite networks at p„we proceed to
make scaling Ansitze for such networks.

%e first recall the scaling theory of the bulk effective
conductivity o, of an infinitely large network with corn-
ponent conductivities o, ~o2 and pz&p, (see, e.g. , Ref.
15). The scaling Ansarz is then

cT i /o'p
(2.5)

It is also probably not important for the critical prop-
erties precisely what type of network we use —this is the
principle of universality which governs all known critical
points. Therefore, in order to keep the microphysics as
simple as possible, we did all our calculations on a honey-
comb network in which each bond is chosen randomly
and independently to be either k, or k2. There is only
one type of interbond angle, and the angle-beading con-
stants are m2 if both adjacent bonds are k2, and m, oth-
erwise.

A homogeneous network of this type will have isotro-
pic elastic properties, and the macroscopic bulk stiffness
and shear rnoduli, K and p, are given in terms of the ele-
mentary force constants by

k 2v'3km
(2.1)

2v'3 '
k +6m

%'e also note here that the C» =—C„„„„modulus, which
appears in the longitudinal sound velocity, is related to K

and p in two-dimensional isotropic elastic materials by

~here the scaling function has different forms g+,g
above and below p, . This difference is preserved even in
the other limit where the size L is finite and p2

——p, . In
that case the correlation length (-

~ p2 —p, ~

" is re-
placed everywhere by L, and the scaling Ansatz becomes
(see Refs. 16—18 for a discussion of the finite-size scaling
idea)

o, =o iL'~ G(o ), (2.6)

where

CT i /0'
2

L —(t +s)/v (2.7)

%'e shall be concerned with systems where p2~p, , i.e,
from below, which is appropriate to the discussion of a
superconductor-normal conductor mixture or a rigid-
normal elastic mixture. In that case, when 0 «1, the
effective conductivity is independent of the conductivity
of the superconducting bonds o z, and G becomes a con-
stant of order one. Thus the effective conductivity scales
as

0'~ =0'iL (2.g)

In the other limit o »1, the effective conductivity must
be independent of L and therefore the function 6 must be
proportional to o ' "+', so that we get

t/(t +s) s/(t +s)
Oe —~i 0'2 (2.9)

By analogy with the above discussion, we expected that
the effective elastic moduli of the mixture C~i", and p,,
would be of the form

C', =C",, 'L, ""F(m,k, k, Im, ),

JM, =p, L, ""V(m,k, k, /m, ),
with

(2.10a)

(2.10b)

m, /m2

L —( T+S)/v (2.11a)

k, /k~k=
L —( T'+S)/v (2.11b)

The indices 1,2 refer to the normal and rigid components
respectively. Thus we will always have k, & k2, m i & m2,
C", i' & C'i, ', p, &p2. The moduli C",i', p; are the macro-
scopic stiffness moduli of a homogeneous network with
the microscopic force constants k, , m, . Here we allowed
F and 7 to be functions of k, Im i and of the scaling vari-
ables m and k. The values of the exponents T and T' will
be determined later from our simulations. Originally, we
had expected to 6nd that T= T', but we shall see that the
results do not confirm this. Instead we shall see that
T=3.96 and T'= l.3. In order to study the case ~here
either m or k is very small or very large, we mill study the
dependence of F and V either only on m or only on k, the
other scaling parameter, as well as k, /mi, being held
6xed. In particular we will study four extreme limiting
cases, namely,
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m «1 and k « 1,
m «1 and k »1,
m » 1 and k « 1,
m »1 and k »1 .

(2.12a)

(2.12b)

(2.12c)

(2.12d)

As in the conductivity problem, where when cr «1, 6
becomes independent of 0.2, we now expect that when
m «1 the functions F and 9' will be independent of m,
but may still depend on the other scaling variable k and
on the ratio k, /m, . This can be understood intuitively

by noting that when m «1, the effective stiffness moduli
should not depend on the rigid angle-bending force con-
stant m2 but could still be a function of the variable rigid
stretching force constant k2

k
—sx( + (Q(k, ~m, ),

V(m, k, k, /m, ) =&(k,k, /m, )

=k ' + '6(k, /m, ),
so that

(2.19a}

(2.19b)

lations to be explained in Sec. IV below.
If one of our scaling variables is very small while the

other is very large, the effective elastic moduli are expect-
ed to be independent of the small variable and of the size
as well. Thus, if m « 1 while k »1, the effective moduli
should depend on k and on the ratio k(/m (, but not on
m or L. We must therefore have

F(m, k, k(/m, ) =H(k, k(/m, )

F(m, k, k(/m()~H(k, k(/m(),

9(m, k, k(/m, )~%(k,k(/m( },
(2.13a)

(2.13b)

C"=C"'g(k /m )(k /k )

p, =(M, a(k, /m, )(k, /k2)
—sz(

(2.20a)

(2.20b)

so that

C", ,
' =C",('L 'H(k, k(/m, ), (2.14a)

Similarly, if k «1, while m &&1, the effective moduli
should depend on m and on the ratio k, /m „but not on
k or on L. We must then have

(M, =(((,(L ~'%(k, k, /m, ) . (2.14b)

Similarly, we expect that when k «1, the functions F
and 9 are independent of k but may still depend on the
other scaling variable m and on the ratio k ( /m (. Again
it can be understood intuitively by noting that when
k « 1, the effective stiffness moduli should not depend on
the rigid bond-stretching force constant k2 but can still

be a function of the variable rigid angle-bending force
constant m2

F(m, k, k, /m, )~X(m, k, /m, ),
&(m, k, k ( /m ( ) X(m, k, /m ( ),

so that

C(((' =C", , 'L 'X(m, k, /m, ),
p,, =(((,(L "X(m,k(/m() .

(2.15a)

(2.15b)

(2.16a)

(2.16b)

7(m, k, k, /m, ) =%(k, k, /m, )

=X(m, k ( /m ( ) =%'(k ( /m ( ), (2.17b)
so that

We now discuss the four extreme cases of Eqs. (2.12).
By analogy with the conductivity problem when o «1,
we expect that when both m «1 and k « 1, the effective
stiffness moduli are independent of m2 and kz and the
functions F and 7 depend only on the ratio k ( /m (,

F(m, k, k, /m, )=H(k, k, /m, )

=X(m, k ( /m ( ) = W(k ( /m ( ), (2.17a)

F(m, k, k /(m)(=X(m, k(/m()

=m ' + 'Y(k(/m(),

P(m, k, k(/m()=X(m, k(/m()

=m ' + 'Y(k /m )

so that

C"=CII'Y(k, /m()(m, /m2) ' + '

(M, =(((,, 5'(k, /m, )(m, /m2) ' + '

(2.2 la)

(2.21b)

(2.22a)

(2.22b)

From this we get
' —S/( T'+ &)

(e) (1) 1

ll 11
k2

Xf((k, /kz) + (mz/m, } +,k(/m, ), (2.24a)

When both m »1 and k &&1, the effective elastic moduli
should be independent of L. For this to happen, the
functions F and 7 must become homogeneous functions
of appropriate powers of the scaling variables in this re-
gime, i.e.,

F(m k k /m )~k ' + ~f(k + /m +,k /m )

(2.23a)

P(m k k /m )~k —sl(T'+s)gk T'+s/m T+s k /m )

(2.23b)

C';, ' =C",, 'L "W(k /m ()=p,L

p, =p, (L s ~ 'N( k ( /m, ) =p (L "B .

(2.18a)

(2.18b)

—S/( T'+ S)
1

Pe Pl
2

The last form on the right-hand side (rhs) of these equa-
tions, in which A, B are constants, does not follow from
any scaling assumption —it is a consequence of our simu-

XP(k(/k2) + (m2/m, ) +,k, /m, ) . (2.24b)

In Sec. IV below we shall present evidence to indicate
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that f,/are independent of their first argument and de-

pend only on k
~
/m i.

III. NUMERICAL SIMULATIONS —TECHNIQUE

As mentioned previously, the model for simulations is
a two-dimensional (2D) honeycomb network of elastic
bonds. Every bond has a bond-stretching force constant
A: and every pair of adjacent bonds have an angle-bending
force constant m. The elastic potential energy can thus
be written as

about the bonds in the last two columns.
In order to calculate the macroscopic stilt'ness moduli,

it is necessary to impose appropriate boundary conditions
at the edges of the network. At the two long edges we

simply make the system periodic, so that it becomes
e6'ectively infinite but periodic in the x direction. The
choice of 8;j=0 at the beginning of the strip is equivalent
to applying zero displacements there. At the other end of
the strip we add a whole column of rigid triplets. As a
result, all the displacements of sites at that end will be
identical, and any element of 8;~ will then give us the ra-

V =g ,'k;5b—;~+ g —,'m;, 5$,'j,
i (i j)=NN

(3.1)

where 5b, is the change in length of the bond i while 5$;,
is the change in the angle between the nearest-neighbor
(NN) bonds i and j.

Every bond is chosen independently and randomly to
be either a "normal bond" with a probability p, and a
stretching force constant k& or a "rigid bond" with a
probability p2 ——1 —p &

and a stretching force constant
kz ~ski. Furthermore, the angle-bending force constant
between a pair of adjacent rigid bonds is m2, while any
other pair of adjacent bonds has the bending constant
m

&
gg m2. This model has the property that the percola-

tion threshold of the rigid bonds pz ——p, is the same as the
rigidity threshold of the network. This threshold is
known exactly to be p, = 1 —2 sin(ir/18) =0.652 70.'

The method used to solve for the macroscopic elastic
properties of this network was the transfer-matrix
method. This method is most appropriate when the sys-
tem has the shape of a long strip with a 6xed width L, .
The response of the strip to external forces which are im-
posed at the sites at one end is determined by the elastic
compliance matrix 8; in the form

(0)

L

e b

cl c 0

e

L =3

3

shear
forc8

normal
Orce

(b)

'++0+~s

(3.2)

Here fj ranges over both components of the external
forces applied at all the sites of the two right-hand
columns of the strip, while u; ranges over both com-
ponents of the resulting displacements at the same sites
(see Fig. 1). Starting off'with 8, =0, bond"s are added to
the strip in triplets, and the matrix 8;,. is recalculated at
each step: As new bonds are added, new sites appear and
correspondingly new elements of this matrix also appear.
At the same time, an element 8; can be discarded as
soon as the site i or j becomes an internal site, i.e., as
soon as the total internal force exerted upon it can be cal-
culated entirely in terms of the displacements at existing
sites. Since the total internal force must vanish at equi-
librium, we can eliminate all elements of 8," connected to
that site. The basic procedure and equations for doing
that are described in more detail in the Appendix. Thus
the size of the compliance matrix 8 does not change
when new sites and bonds are added to the strip, and we
can gradually increase the length of the strip I. up to a
size that is only limited by the computing time that is
available. Moreover, this process can be interrupted at
any point and continued at a later time —all we must do
is retain the matrix elements 8;j and the information

FIG. 1. (a) Section of an I., &(L~ strip of a honeycomb net-
work. The network is extended periodically outside the two
dashed lines so that the bonds a ffrom the top -row of cells
reappear below the bottom row as shown. The compliance ma-
trix 8;, relates (x and y) displacements u; to the (x and y) forces

f; applied at each of the I-shaped sites at the two right-hand
columns. The sites at the left edge of the strip are permanently
tied to a rigid bar which is held fixed. The sites at the right edge
are also tied to a rigid bar every time it is desired to calculate
the macroscopic moduli. The dashed bonds and open circles o
represent bonds and sites that are in the process of being added
to the network. The numbered sites are the sites where addi-
tional forces appear as a consequence of the new force constants
that are added. The new sites 3,4 replace the sites 1,S as indices
of the compliance matrix. These site numbers refer to Eqs.
(A3)-{A12}and are unrelated to the site numbers in (b). (b) The
piece of the network that must be considered when calculating
all the internal forces that act at the central site (0). The site
numbers here refer to Eqs. (Al} and (A2) and are unrelated to
the site numbers in {a}.(c) Schematic picture of the periodically
extended network sandwiched between two rigid bars A and 8.
The bars are parallel and extend to infinity in both directions, as
does the network between them. They are inclined at an angle 0
with respect to the y axis, where 8 is given by Eq. (A15) and
tends to 60 as the period I.,~~.
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tio between a macroscopic displacement and a macro-
scopic force. Due to the expected isotropy of the macro-
scopic elastic properties, we can expect just two types of
nonzero elements of this matrix, leading to two indepen-
dent bulk stiffness moduli

20p-

I6.2-

C')')' ——C„'„'„'„=(fy/L„)/(u /L ),
p, =C„'y„'y (f„/——L„)/(u„/L ) .

(3.3a)

(3.3b}

l2.4-

8.6-
hei„Si.

II

IV. NUMERICAL SIMULATIONS—
RESULTS AND IMPLICATIONS

As a starting point in the analysis of our results it is
important to study Fig. 2, where we plot C'(,'/L
(throughout this section we use L to represent the strip
width L„} and p, /L ~" as functions of L for
m&/m2 ——10 and k&/k2=10 . We found that these
plots are most nearly constant if we choose

S=1.15, v=4 . (4.1)

These expressions assume that the strip has an overall
rectangular shape. In fact, due to the method of con-
struction and the method of implementing the macro-
scopic periodicity, the rigid columns at the end of the
strip are inclined at an angle 0 with respect to the y axis
that depends on L„and tends to 60' as L„~ao [see Fig.
1(c)j. Corresponding changes must be made in relating
the matrix elements B;J. at the end of the strip to the bulk
moduli. Those details are described in the Appendix.

Applying the macroscopic external forces and displace-
ments at the short edge of the strip is appropriate for
simulations of a rigid-normal mixture at p2(p„since
there will always be rigid clusters that percolate in the x
direction if L is large enough, but there will be no such
clusters that percolate in the y direction. Measurements
of the macroscopic elastic moduli in the way we have de-
scribed will thus be dominated by the force constants of
the normal component k&, m&. By contrast, measure-
ments made by applying the external forces and displace-
ments at the long edges would be dominated by the force
constants of the rigid component kz, mz. That would be
appropriate for determining the form of the scaling func-
tions above the threshold, i.e., for p2 &p, . However, this
is not the subject of the present paper. The periodic
boundary conditions applied in the x direction are in-
tended to ensure that as far as the macroscopic behavior
is concerned, the network is like an infinitely long strip
held between two parallel and infinitely long rigid bars.
The bars and the strip are oriented at an angle 8=60'
with the y axis, and the width of the strip is finite but
very large, i.e., proportional to L„. If instead we had left
the long edges free (i.e., with a zero-force boundary con-
dition}, we would only have been able to measure a single
macroscopic modulus, namely, Young's modulus. Some
of these considerations are analogous to those that were
made when the transfer matrix method was applied to the
simulation of random conductor networks in the form of
long strips. ' ' The case discussed here is obviously the
analogue of the superconductor —normal conductor mix-
ture.

4.8-
SI I/ Qe

0 a I a t a I I I a I a I ~ I ~ I a I k II.

0 lO 20 50 40 50

FIG. 2. Values of C'~] /L "(X)and p, /L "(+)plotted
vs L, with S=1.15 and v= —,, for kz ——10 k&, m2 ——10 m&, and

k
&
/m

&

——1S.82. Two lines were drawn through the points in or-
der to guide the eye.

Case Very small constant

m, /mz
k, ~k2

Variable

k, /k2
m)lm2
m&/mz ——k, /kz.

In the first case the bulk moduli should scale as Eqs.
(2.14}and in the limits when k «1 and k »1 the behav-
ior will be given by Eqs. (2.18) and (2.20), respectively. In
the second case the bulk moduli should scale as Eqs.
(2.16) and when m «1 and m »1 the behavior will be
given by Eqs. (2.18) and (2.22). In the third case the bulk
moduli should scale as Eqs. (2.10) in the particular case
where the microscopic elastic force constants satisfy
m, /m 2

——k, /k2, and in the limits m, k && 1 and
m, k »1 the behavior will be given by Eqs. (2.18) and
(2.24). Clearly the three cases reach a common limit
when both scaling variables are much smaller than one.
The behavior is then described by Eqs. (2.18).

For each of these cases the results of our simulations
are presented in three forms. First we exhibit the macro-
scopic moduli C&'&', p, and their ratio p, /C", ,

' versus the

This value of S is significantly lower than the value
S =1.30 found in Ref. 13 even when we take into ac-
count the statistical errors. Already in Ref. 13 it was
found that very long strips are needed before the asymp-
totic behavior is reached: L„=40000was far from being
long enough for L„=40. In our calculations the strip
lengths for comparable widths were even shorter, and
that is probably the reason for the poor quality of the
asymptotic behavior.

In the simulations we decided to study the behavior of
the elastic moduli as we varied one of ratios of the micro-
scopic elastic force constants k&, kz, m&, and m2 while

keeping the others fixed. This was done in three different
ways, each time allowing a different ratio to vary and
keeping another ratio constant and very small:
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appropriate variable parameter k, /k2 or m, /m2 over
the entire range of the calculations (see Figs. 3, 6, and 9).

Then, in order to study the scaling assumptions in the
limit that both scaling variables are very small, we exhibit
the elastic moduli divided by L ~" versus the relevant
scaling variable k or rn From (2.18} this is expected to
be approximately constant when both k, m &g 1, and also
independent of I, (see Figs. 4, 7, and 10—12}.

Finally, in the limit when at least one of the scaling
variables k or m is very large we exhibit the effective elas-
tic moduli divided by the appropriate power of the ratio
k t /k2 (or m

&
/m 2) that is expected to make the result in-

dependent of that ratio, as well as of l. (see Figs. 5, 8, and
13).

Case l. %'e study the case when m ~~1,m&/m2 is

fixed at 10, and k
&
/k2 varies in the range 10

& k& /kz & 1. In particular, we chose the force constants
as follows:

k
&

=6 2984 m I
=0.398 17 k

&
/m )

= 15~ 82

k2 ——variable, m2 ——10 m, .

The values of k &, m, were chosen so as to make the bulk
moduli of the normal component have the values [see
Eqs. (2.1) and (2.2)]

1.8182, pt ——1.0, C'& &' ——2. 8182

In Fig. 3 we present the erat'ective elastic moduli C&'&'

and p, as well as their ratio p, /CI", as functions of the

300— 200—

240— I60—

ISO— l20—

l20—

L X j
40

0
-9 -5

(og, (k, /ks)

0 I

7

loge( k) /k p)

0.8
(c)

I t t

-5

log (k, /ks )

FIG. 3. (a) Values of CI'I' plotted vs log, 0{k & /k2 ). The points are the numerical simulation results for L = 10( 4, ) and 40 ( + ), wIth
kl /m I =15.82. The lines were drawn through the points to guide the eye. (b) Values of p, plotted vs loglo(k l/k&). The points are
the numerical simulation results for L =10(k ) and 40(+ ), with kl /mI ——15.82. The lines were drawn though the points to guide
the eye. {c)Values of the ratio p, /C&'I' plotted vs logIO(k&/k2). The points are the numerical simulation results for I.=10{A) and
40( + ), with k

&
/m

&

——15.82. The lines were drawn through the points to guide the eye.
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ratio of the microscopic elastic force constants k, /k2, for
l. =10 and 40. From Figs. 3(a) and 3(b), we see that the
elastic moduli have a strong L dependence, and from Fig.
3(c), we see that this gets cancelled out when we calculate
the ratio p, , /CI, ". From Fig. 3(c) we also see that all the
values of JM /C

& ] lie above 0.5, and consequently
Poisson s ratio X, is negative [see Eq. (2.3)]. In the limit
of large k2, where the results for the macroscopic moduli
depend only on k& and m, (since mz is also very large),
this negative value of X, is known to be independent
event of k& and m, .' In fact, it is easy to see from Eq.
(2.4) that our choice of k „m &

corresponds to the positive
value X&

——0.29. In the other limit, where the results for

p, and C', depend on k2, the negative values of X,
changed to positive values when we repeated the simula-
tions using a smaller fixed value for m z, namely

m2 ——10 m, .4

The same results but with rescaled axes are plotted in
Fig. 4, where we present the elastic moduli divided by
L " as a function of the scaling variable k, for T'=1.30
and S= l.30 (see the solid lines in these figures). We ob-
serve that in the region of very small k, where both scal-
ing variables are very small, the rescaled moduli are ap-
proximately independent of L and k in agreement with
Eqs. (2.18). Also over the entire range of k that was stud-
ied the curves for L =10 and 40 lie close to each other
and follow a single function of k, in agreement with Eqs.
(2.14). In fact we chose the value of S=1.30 and fitted
the value of T' so as to get good agreement between the
results of the simulations and the scaling assumption.
The result was that T' is equal to the t exponent of the
conductivity problem (i.e., T'=1.3), but is very different
from the value of 3.96. This result may perhaps be un-
derstood as follows: The exponent T' only becomes im-
portant in the scaling behavior when the moduli change
with k and this occurs only when k&/k2)10 . Under
these conditions, the rigid component, while having a
very large value of m2-10, has a much smaller value of
k2 g 10 . It is thus conceivable that even though the rigid
angles remain unchanged, the rigid-bond lengths do get
changed and make a major contribution to the macro-
scopic behavior which is more impartant than that of the
nonpercolating normal bonds. This contribution, since it
involves only bond length deformatiops, can reasonably
be expected to behave near p, like the bulk conductivity.

In Fig. 5 we plot the same results but rescaled in a
different way: The elastic moduli are divided by
(k, /k2 )

' + ' in accordance wrth Eqs. (2.20), for
T'=1.30 and S =1.30 (see solid lines in these figures),
and are plotted versus k

&
/k2. We observe that in the re-

gion of very large k& /k2, where m &&1 while k &&1, the
rescaled moduli are approximately independent of L and
k&/kz, in agreement with Eqs. (2.20). This shows that
the scaling assumptions are valid also for large values of
k.

If we repeat the procedure leading to the solid lines of
Figs. 4 and 5 assuming a different value of S, namely,
S = 1.15 (as was found in Fig. 2) and fit T' to get the best
scaling behavior we get plots that are slightly different
from the solid lines of Figs. 4 and 5 and are emphasized

in Figs. 4 and 5 as dashed lines. From these new presen-

tations of the same results we see that the scaling assump-

tions seem to work even better, and that the optimum
value of T' is then T'= 1.1.

These observations indicate that precise values for the
various exponents cannot be obtained from these simula-
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FIG. 4. (a) Values of C'&'&'/L " plotted vs loglo(k), for
k, /m, = 15.82. The points are the numerical simulation results
for L =10(+) and 40(+). The lines were drawn through the
points to guide the eye and to differentiate between the results
with T'=1.3 and S=1.3 (solid lines) and with T'=1.10 and
S = 1.15 (dashed lines). (b) Values of p, /L plotted vs

log»(k), for k, /m& ——15~ 82. The points are the numerical
simulation results for L =10(A) and 40(+ ). The lines were
drawn through the points to guide the eye and to differentiate
between the results with T'=1.30 and S =1.30 (solid lines) and
with T'=1.10 and S=1.15 (dashed lines).
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tions. For that purpose a more careful study would have
to be undertaken that would include longer strips and
wider ranges of the scaling variables.

Case 2. We study the case when k « 1,k, /kz is fixed
at 10, and m i /m z varies in the range 10
&m, /m2&1. In particular, we chose the force con-

(0)

(f)
+

(f)
OP =

0
-9 7 -5

(k( /k2)

V)

l.6-(A

N

log, e(k, /ks )

FIG. 5. (a) Values of CI /[(k|/k, )
' + '] plotted vs

log, o(k, /k2), with k&/m] ——15.82 (C(&'l' ——2.8182). The points
are the numerical simulation results for L =10{A ) and 40(+ ).
The lines were drawn through the points to guide the eye and to
differentiate between the results with T'=1.30 and S=1.30
(solid lines) and with T'=1.10 and S =1.15 (dashed lines). (b)
Values of p, /[(k&/kz) ~' + '] plotted vs log, o(k, /kz), with

k, /m |——15.82 (pl ——1.0). The points are the numerical simula-
tion results for I.=10(+) and 40(+ ). The lines were drawn
through the points to guide the eye and to differentiate between
the results with T'=1.30 and S=1.30 (solid lines) and with
T'=1.10 and S=1.15 (dashed lines).

stants as follows:

k ] =6.2984 m
&
=0.398 17 k ) /m

~
= 15~ 82

k2 ——10 k&, m2 ——variable .

The bulk moduli of the normal component are as before.
In Fig. 6 we plot the bulk moduli C', and p, as well as

their ratio p, /C", &' versus the ratio m, /mz for L =10
and 40. From Figs. 6(a) and 6(b), we see that the elastic
moduli again have a strong L dependence which gets can-
celled when the ratio p, /CI", is calculated. In Fig. 6(c)
we observe that)M, /C~(&' &0.5 when m, /mz &10 while

p, /CI, "
& 0.5 when m, /m z & 10 . This is similar to

what happened in Case I, where when rn2 ——10 m, we
found p, , /C'1'&' & 0.5 over the entire range of k, /kz stud-
ied, but when mz ——ml 10 we found p, /C", ~'&0. 5 for
k

&
/k z & 0.5 and p, /C", ,

'
& 0.5 for k, /k z & 0.06.

The same results are replotted using rescaled axes in
Fig. 7, where we present the elastic moduli divided by
L ~" as a function of the scaling variable m, with
T=3.96 and S =1.30 (see solid lines). We observe that
in the region of very small m, where both scaling vari-
ables are very small, the rescaled moduli are approxi-
mately independent of I. and m, in agreement with Eqs.
(2.18). Also, over the entire range of m that was studied
the curves for I. =10 and 40 lie close to each other, and
follow a single function of m, in agreement with Eqs.
(2.16).

The same results are plotted a third time with yet a
diferent rescaling in Fig. 8, where the elastic moduli di-
vided by (m, /mz) ~' + ' are plotted versus m, /mz.
From Figs. 8(a) and 8(b) we see that for very large
m

& /m2, where k «1 while m ~~1, the ratio
CI'&'/(m

&
/mz )

~' + ' is approximately independent of
I. and of m, /mz in agreement with Eqs. (2.20), while the
ratio )M, /(m, /mz) ' + ' is not constant. This shows
that the scaling assumptions for the shear modulus p,
work rather poorly. It might be necessary to introduce
an additional exponent to explain the results when one of
the scaling parameters is large. Additional attention was
given to understand the results of Fig. 6 and we again
tried to improve the fit sho~n by a solid line in Fig. 7, by
choosing nonstandard values for S and T. Choosing
S=1.15 and T=2.9 improved the fit in the case of C',
but made it worse for p, . A better fit for p, was obtained
by choosing S =1.3 and T =2.9 (see dashed line and
dot-dashed line in Figs. 7 and 8). Again, a more careful
and more extended study is needed before precise values
for these exponents can be deduced from such simula-
tions.

Case 3. %e study the case when m, /m2 ——k& /k2 and
varies in the range 10 & m

& /m2 ——k& /k2 & 1. In partic-
ular we chose two sets of force constants

2. 1651, m, =1.4434, k, /m, =1.5,
m)

k2 =variable, m~ = k~,
k)

a i
——0.625, p i

——1, C'(')' ——1.625,
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k~ =6.2984 m
&
=0 398 17 k& /m

&
= 15.82

m&
k2 =variable, m 2

—— kq,
k)

(4.2b)

K) = 1 ~ 8182 p& = 1 C]] =2.8182

In Fig. 9 we plot the bulk moduli C', and p„as well
as their ratio p,, /C';, ' versus the ratio m, /m2 ——k, /k2,
for L =10 and 40, and for both parameter sets in Eqs.
(4.2a) and (4.2b). From Fig. 9 we see that the elastic
moduli have a strong L dependence that gets cancelled in
the ratio p, /CI'&'. In Fig. 9(c), we see again the tendency
of p, /CI", to go above 0.5 (i.e., X, becomes negative)
when m&/m2 becomes very small. The same results but

with rescaled axes appear in Figs. 10 and 11 where we ex-
hibit the two sets of elastic moduli divided by L as a
function k and m, with T'=1.3 and T=3.96, when
rn, /m2 ——k, /k2. Note that when both scaling variables
are very small, the rescaled moduli are approximately in-
dependent of L, nz and k, in agreement with Eqs. (2.18),
and for the entire range studied the curves for different L
lie rather close to each other, so that it is difficult to de-
cide which is the correct scaling variable.

For k g&1, k seems to be a better variable than m
while for k « 1 both k and m are equally irrelevant since
the scaled moduli tend to constant values. We further see
from these figures that for very low values of m (or k),
C",&'/L " does not depend on the value of C'&", . Since
both sets of parameters include the same value of p&,
namely 1, we conclude that in this regime C&'&' depends
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FIG. 6. (a) Values of C'&'&' plotted vs log&0(m&/m2). The points are the numerical simulation results for L =10(X ) and 40(+ ),
with k&/m& ——15.82. The lines were drawn through the points to guide the eye. (b) Values of p, plotted vs log&0(m&/m&) ~ The
points are the numerical simulation results for L = 10( X ) and 40(+ ), with k

&
/m l

——15.82. The lines were drawn through the points
to guide the eye. (c) Values of the ratio p, /C'&'&' plotted vs log&0(m&/m2). The points are the numerical simulation results for
L = 10( &( ) and 40( + ), with k, /m

&

——15.82. The lines were drawn through the points to guide the eye.
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only on p&. This was confirmed by additional simulations
where diferent valoes of p, were considered. This result
forms the basis for the last forms on the rhs of Eqs. (2.18).

In Fig. 12 we again exhibit the rescaled variables
C', &'/L and p, /L "but with a diferent choice for S,
namely S =1.15 (as we found from Fig. 2). Evidently,

C&", scales somewhat better for this choice but p, scales
less well. It also serves to show how sensitive our results
are to small changes in the values of the exponents.

The same results are plotted again but with a diferent
rescaling in Fig. 13, where we show the elastic moduli di-
vided by [A(k, /kz) ~' + ') (A =C",, ' or A=p, =l)
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FIG. 7. (a) Values of C'~'&'/L ' plotted vs log&o(m), with

k& /m
&

——15.82. The points are the numerical simulation results
for L =10(X) and 40(+ ). The lines were drawn through the
points to guide the eye and to difFerentiate between the results
with T=3.96 and S=1.30 (solid lines), with T=2.90 and
S=1.30 {dashed lines) and with T=2.90 and S=1.15 (dot-
dashed lines}. (1) Values of p, /L " plotted vs log&o(m ) with
k

&
/m

&
——15.82. The points are the numerical simulation results

for L =10(/) and 40(+ ). The lines were drawn through the
points to guide the eye and to difFerentiate between the results
with T=3.96 and S=1.30 (solid lines), with T=2.90 and
S=1.30 (dashed lines) and with T =2.90 and S =1.15 (dot-
dashed lines}.

FIG. 8. (a) Values of C'l'l' /( m, /m 2 )
' ' plotted vs

log, o(m, /m2), with k& /m l
——15.82. The points are the numeri-

cal simulation results for L =10( )& ) and 40(+ ). The lines were
drawn through the points to guide the eye and to difFerentiate
between the results with T=3.96 and 5 = 1.30 {solid lines), with
T=2.90 and S =1.30 (dashed lines) and with T=2.90 and
S=1.15 (dot-dashed lines). (b) Values of p, /(m, /m2) ' + '

plotted vs log&o(m&/mz), with kl/m, =15.82. The points are
the numerical simulation results for L =10(X) and 40(+ ).
The lines were drawn through the points to guide the eye and to
difFerentiate between the results with T=3.96 and S =1.30
(solid lines), with T =2.90 and S =1.30 (dashed lines) and with
T =2.90 and S = 1.15 (dot-dashed lines).
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versus k, /kz. In the region where both k& /k2 ——m
&
/m2

are very large, the rescaled moduli are approximately in-
dependent of L and k, /kz, in agreement with Eqs. (2.24)
when f,/depend only on k, /rn, . This indicates that the
scaling assumptions are valid also when k&/kz is very
large, and that the asymptotic scaling functions f,/are
particularly simple.

Finally, let us consider the Figs. 4, 7, 10, and 11. In
Fig. 4 we observe that the scaled moduli change from the

regime of very small k values to the regime of very large
k values when k changes by approximately four orders of
magnitude. In Fig. 7 we observe that the rescaled moduli
change from the regime of very small m to the regime of
very large m when m changes by approximately 6 orders
of magnitude. The different behavior in these two figures,
namely, the fact that the change with k is more rapid
than the change with m, is due to the different values of
the two exponents T and T' which enter into the
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FIG. 9. (a) Values of C", &' plotted vs log&0(m& /m2). The points are the numerical simulation results for L =10(+), 20( X ), and
40(A). The lines are drawn through the points to guide the eye and to differentiate between the results with k&/m& ——15.82
(C'»' ——2.8182) (solid lines) and with k, /ml =1.5 (C]& =1~ 625) (dashed lines). (b) Values of p, plotted vs log, o(m&/m2). The points
are the numerical simulation results for L =10(+), 20( &( ), and 40( A ). The lines are drawn through the points to guide the eye and
to differentiate between the results with k, /m& ——15.82 (C'&'&' ——2.8182) (solid lines) and with k&/m& ——1.5 (C'&'&' ——1 ~ 625) (dashed
lines). (c) Values of p, /C', plotted vs log, o(m, /m2). The points are the numerical simulation results for L =10(+), 20( X ), and
40(k ). The lines are drawn through the points to guide the eye and to differentiate between the results with kI/m& ——15.82
(C'&'&' ——2.8182) (solid lines) and with k
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FIG. 10. (a) Values of Cll /L plotted vs loglo(k) with
T'=1.30 and S=1.30. The points are the numerical simulation
results for L =10(+), 20{X ), and 40(k, }. The lines are drawn
through the points to guide the eye and to difFerentiate between
the results for k]/Nl l =15 82 (C]'l =2.8182) {solid lines) and
for k&/m& ——1.5 (C",,'=1.625) (dashed lines). (b) Values of
p, /L " plotted vs log&0(k), with T'=1.30 and S=1.30. The
points are the numerical simulation results for L=10(+),
20( & ), and 40(A). The lines are drawn through the points to
guide the eye and to difFerentiate between the results for
kl /m l ——15.82 (C'l'l' ——2.8182} (solid lines) and for k l /m l

——1.5
( C'l'l' ——1.625) (dashed lines).

FIG. 11. (a) Values of C'&'&'/L ' plotted vs log&0(rn }, with
T=3.96 and S=1.30. The points are the numerical simulation
results for L =10(+), 20( X ), and 40(k, ). The lines are drawn
through the points to guide the eye and to difFerentiate between
the results for kl/~l =15~ 82 {C,'l =2.8182) (solid lines) and
for k, /m, =1.5 {C'&'&' ——1.625) (dashed lines). {b) Values of
p, /L plotted vs log&0(m ), with T =3.96 and S =1.30. The
points are the numerical simulation results for L =10(+),
20{&(), and 40(+). The lines are drawn through the points to
guide the eye and to difFerentiate between the results for
k&/m& ——15.82 (C'll' ——2.8182) {solid lines) and for kl/m, =1.5
( C'&'&' ——1.625) (dashed lines).
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definitions of m and k, respectively. A similar difference
in behavior, due to the same reason, is also apparent
when we compare Figs. 10 and 11.

V. SUMMARY AND DISCUSSION

We investigated the scaling behavior of the bulk elastic
moduli of a mixed normal-rigid elastic network at the

percolation threshold of the rigid component p2
——p, .

The bulk moduli were found to depend on two scaling
variables, k and m, that depend in a different way on the
finite width of a long (infinite) strip network at p, . From
finite-size scaling it then follows that the scaling variables
for a network of infinite width away from p, will depend
in a different way on 5p =p2 —p„namely
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FIG. 12. (a) Values of C",&'/L plotted vs log&p(k), with
T'= l. l and S =1.15. The points are the numerical simulation
results for L = 10(+ ), 20( X ), and 40( A ). The lines are drawn

through the points to guide the eye and to differentiate between
the results for k, /m& ——15.82 (C~] =2.8182) (solid lines) and
for k&/m~=1 ~ 5 (C» =1.625) (dashed lines). (b) Values of
p, /L " plotted vs log]p(k), with T'= l. l and S=1.15. The
points are the numerical simulation results for L =10(+),
20()& ), and 40(A). The lines are drawn through the points to
guide the eye and to differentiate between the results for
k, /m, =15.82 (C",,'=2.8182, p'"=1.0) (solid lines) and for
k& /m

&

——1.5 (C'&'&' ——1.625, p"'=1.0) (dashed lines).
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k, /k2

m, /m2

(5.1a)

(5.1b)

where T=3.96 but T'= l.3, and S=1.3. We were able
to give a tentative explanation for the appearance of the
new exponent T'. %e also found empirically that the
bulk moduli seem ta depend only on p& —the shear
modulus of the normal component —and are independent
of the bulk modulus of that component ](] At present we
do not understand this phenomenon. It would also be
nice if it could be tested in an experiment on a real com-
posite material. Clearly, the elastic stiffness moduli of
random composites near a rigidity or percolation thresh-
old exhibit a rich variety of critical properties. Our in-
vestigation, which was based on numerical simulations of
2D random elastic networks, has demonstrated this quite
vividly. It has also demonstrated the need for more ex-
tensive simulations, as well as the need for a better under-
standing of the basic physics that lies at the root of some
of the empirical observations.
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APPENDIX

Here we describe some details of the transfer-matrix
method used to simulate long 2D elastic strip networks.
In Fig. 1(b) we show all ten sites whose displacements
must be known in order to calculate the total internal
force which acts upon the site at the center (marked 0).
Using an obvious notation for the various bond-
stretching and angle-bending force constants that appear
in this figure, and likewise for the components of the site
displacements, the two components of the force at the
central site are given by [Fig. 1(b) should be consulted for
an interpretation of the site indices in Eqs. (A 1) and (A2)]

k20
f(1 = —k ](](u 1

—u(1 ) — + rn 1(12 + —rn 2(13 (u2 ——u(] )—( —k3(1+—m 1(]3+—m 2(]3 )( u 3
—u(] )

v'3 v'3
+ (m ](13

—m 1(12 )(u ]y u(]y )+ (k2(1 m]02 ——2m2(13 )(u2y —u(]y )

3
( k 3Q rrl ]Q3 2m 2p3 )( u 3

—u py ) + 4 ( m 720 +m 620 )( u p»
—u 2» ) + rn 620 ( u 6„—u 2„)—3 3

v'3 3/3 v'3
+ m720(u7„u2 )+— (m720+m620)(uo —u2 ) — rn620(u6 u2 )+——,'m930(u9„—u3„)4

+ —,'(ms3Q+nl93Q)(up„— u3, ) — m]]30(u]] —u3 )+ m93Q(u9y u3y)

v3
( m ]]30 +m 93P )( u Qy

—u 3y ) ~ (Al)

3/3 v'3
fOy =

4
(k2O 3m]02)("2x —"Ox ) —

4 (k3O 3m iO3)("3x uQx ) 3™]02+m]03)(u ly upy)

v'3
4(k20+m]02 )(u2 up ) (k30+m 103 )(u3 up )+ m410(u4x u 1x )

v'3
m5](1(u5» —u]»)+(m4](1+m5](1)(u(1 u] )+Tm4](1(u4 —u] )+—m5](1(u5 —u] )

v3 v'3
+

&
(m620+m720)(uo —"2 )+

4 m62o("6 "2 )+2m720(u7y —u2y)

v'3
+ 4(m720 ™620upy u2y ) 4m620(u6y u2y 4 m930 u9x u3x )

3
(ms30+m930)(uQ» u3»)+ ms3Q(us u3 ) 4m93Q(ll9 u3 )+ (m]]30+m930)(uQ l(3 )

l 1 (A2)
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The procedure by which new bonds are added at the
end of the strip is illustrated in Fig. 1(a). At each stage a
triplet of new bonds is added —in Fig. 1(a), these are the
bonds 14, 24, and 34. This involves adding three new
stretching force constants k,4, k24 k34 and six new bend-
ing force constants m415 m411 m4z6 m F3 m]42 m 143

and two new sites at which external forces and displace-
ments may be applied, namely, 4 and 3. At the same time
the existing sites 5 and 1 may be dropped, since we are
now able to calculate all the internal forces acting at
those sites. We now demonstrate this first in the case of
sites 5 and 4: From Eqs. (Al) and (A2) we find that when
only the bending force constant m415 is added, the force
components acting at the new site 4 are [Fig. 1(a} should
be consulted for an interpretation of the site indices in
Eqs. (A3)-(A12)]

We solve the second equation of(A3} for u4y

F4y, ~3 &3
4y + 2 ]y+ 2 5x 2 5y 2 1x

m4]5
(A5)

and we now substitute for the u;"s on the rhs by their ex-
pressions in terms of the new external forces f,'. The new
external forces are the same as the old ones f; except for
those acting at sites 4, 1, and 5:

At some of the other sites, additional forces act, given by

v'3
F5x ——— F4y & F5y: 2F4y2

(A4)
v'3

F]x F4y & 1y 2 4y

F4„——0,

F4y m 415
3 (u5„—u, „)+(u4y —u,y)

(A3)

f4 P4

f]
——f]+F],

f5= f5+F5=0,

(A6)

+ i(u5y —uly)
where we have put f5=0 since we have now included all
the internal forces acting at 5. Therefore we can write,
e.g. ,

eely= g 'lyifi= g 'lyifi ~ly, lxFlx ~ly, lyFly ~ly, 5xF5x ~ly, 5y 5y
i (+4) i (&4,5)

(A7}

When this and similar expressions are substituted in (A5) we get, using (A4) and (A6) and collecting terins, and using
the fact that Bj'Bj;

Q4y=
i (~4, 5)

2~1yi z~5y, i+ 2
~(5xi ~lx, i} fi

+f4y + 4 5x, 5x+ 4 5y, 5y+ 4 ]x,]x+ 4B]y, ]ym 415

3
Sy, 5x

3&3, , v'3
]y, 5x 2 1x,5x 2 ly, 5y+ 2 ]x 5y ]y ]x

X&4y, ,f . — (A8)

Thus we have calculated the elements 84; of the new
compliance matrix The other elements may now be easi-
ly calculated too. In the new B matrix the site 5 has been
replaced by the site 4. A similar procedure is followed
when each one of the new force constants is added. We
note that no difficulty is encountered in using (A8) even
when m415 ——Oo. That is why this algorithm can be used
even when one component is infinitely stiff(m =k =").

Next we added the force constant m4, 7, and this pro-
duces the following additional forces at sites 7,4, 1:

F7„m417 4(1l7 M] )

1
F1 —— , F1,v3

2
F4 — , F1v3

F4 ——0,

F]x ———F1x, F1y
———&3F7x ~

v'3 v'3
(u4 —u, )+ (u7y —u,y)

(A9)
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In the first of these equations we expand each u; in terms
of the new forces f and the additional forces. Since the
additional forces are all proportional to I7„, we get an
equation that can be solved to give I'7„ in terms of the f,' where

gQ;f
v'3

(A10}

D 38 1 3 9 3 „g i 3 3v34»»+ 4 7y~7V+ 4y, 4y+ 4 lx„lx+ 4~1V, ly 2~ix, »+ 3'84y»+
417

3 3&3
4y 7y i iy 7y 38i,~y 38iy 4y+ 1 (A11)

1

7x, i 8ix, i )+84y,i +T87y, i T81y, i (A12)

As long as D&0, this can now be used to express all the
additional internal forces F~ in terms of the new external
forces f and thus to translate the 8 matrix into its new
form, namely

(A13)

When the force constants are all finite (and, of course,
positive), 8,.i is a symmetric positive definite matrix.
These properties follow from the principle of reciprocity
and from the fact that the elastic energy

—,
' gf;8i)f& (A14}

is a positive de6nite quadratic form. The quantity D
must also be positive. The fact that the linear combina-
tion of 8;~ elements appearing in D is positive can be
shown to arise from the positivity of the 8 matrix. How-
ever, when the force constants k2, rnid, of the rigid com-
ponent tend to infinity, some eigenvalues of the 8 matrix,
as well as some of the Q;, may tend to zero. This occurs
when difkrent sites of the 8 matrix belong to the same
finite rigid cluster: In that case it is possible to apply a
set of nonzero forces f; at those sites such that no forces
will be transmitted outside that cluster, so that both in-
side and outside the cluster ail the displacements vanish.
It may even happen that D itself tends to zero, but in that
case it follows from (A10) that all the Q, must tend to
zero. That is what saves (A13) from blowing up. Indeed,
in those simulations where ki ——mi ——~, a considerable
speeding up of the computations was achieved by skip-
ping over the computing step described by (A13}whenev-
er D =0. The situation and considerations described here
are entirely analogous to the situation and considerations
in conducting networks, as discussed by Refs. 20 and 21.
The equations and methods described in this Appendix
were already used in previous simulations of rigid-normal
networks' ' and before that, with appropriate altera-
tions, in simulations of normal-empty networks. *' In all
of these simulations the most time consuming steps are of
the form (A13},where all the elements of the compliance
matrix must be revised. This type of step is also ideally

e=cot-' 1 2
v'3 L„

+0(1/L„) .
X

(A15)

This is not only slightly smaller than 60', but depends on
the strip width L„and tends to 60' as L„~00. This is
due to the special way in which the periodicity in the x
direction was implemented [see Fig. 1(a)]. We could have
made 8=60' independent of L„by revising this im-

plementation. This would have required rewriting a rath-
er complicated computer program. However, we show
below that it is easy to take the exact value of 0 into ac-
count when calculating the bulk moduli for any L, and
therefore we considered such a revision to be unneces-
sary.

In order to calculate, e.g., the bulk modulus Cl", , we
must apply a normal stress to the right-hand bar and
Sgure out what is the normal uniaxial strain. This re-
quires us to apply nonzero force components along both
the x and y axes, in accordance with the value of the an-

suited for taking advantage of the special characteristics
of vector computers, and huge factors of speed up may be
achieved, as noted by Refs. 21 and 12. Adding the other
seven force constants to complete the new triplet of
bonds is done by a straightforward extension of what we
have described here —we omit the details because they
become rather tedious.

At the end of the strip, a column of infinitely rigid-
bond triplets is added, which is equivalent to the physical
attachment of a rigid bar. The periodic boundary condi-
tions at the long edges make the network eftectively
in6nite in the x direction but with a finite period L„,and
finite but very large (of length L p&L„) in the y direc-
tion. The finite size that will appear in scaling expres-
sions is the period L, . The choice of initial conditions
for the compliance matrix, namely 8;.=0 at the begin-
ning of the strip, is tantamount to attaching all the sites
at the left-hand side to another, fixed rigid bar. Both bars
make an angle 8 with the y axis that is given by [see Fig.
1(c)]
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gle 0. In order to calculate the bulk shear modulus p„
we must apply a force in parallel with the rigid bar and
figure out the resulting parallel displacement. Again the
value of 0 must be used to take the right proportion of x

and y components. All of these procedures were checked
out on a homogeneous version of the network, where all
the bonds and angles had the same finite force constants,
and where the results could be compared with Eqs. (2.1).
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