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Quantum theory of nucleation in ferromagnets
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%'e consider a ferromagnet whose magnetization is opposite to an applied magnetic field. The
rate of quantum nucleation is calculated for a film and is estimated for a bulk solid. The tempera-
ture corresponding to the crossover from thermal to quantum nucleation is estimated. The effect

may be large enough to be observed in materials with high anisotropy constants.

The general approach to the problem of quantum nu-
cleation of a stable phase from a metastable one consists
in the consideration of the instanton solutions of the clas-
sical equations of motion for the order parameter. ' In
this manner, or by use of the equivalent %entzel-
Kramers-Brillouin (WKB) method, it has been carried
out for diferent systems, from solids ' to the inAationary
universe, but not for a ferromagnet, where the problem
is complicated by a special form of the equation of
motion for the magnetization. The formulation of the
problem is the following: Consider a bulk ferromagnet
uniformly magnetized along the easy axis. Magnetic an-
isotropy is assumed to be strong enough to neglect the
probability of spontaneous domain formation in the ab-
sence of the magnetic field. Suppose now that a magnetic
field 8 is applied in a direction opposite to the direction
of the magnetization M. There exists a critical field H,
below which there is an energy barrier U between meta-
stable (M is antiparallel to H) and stable (M is parallel to
H) states. To convert the ferromagnet into a stable state
one must overcome the barrier for a suSciently large nu-
cleus whose surface energy is less than the gain in the
volume energy. Then the nucleus does not collapse, but
unrestrictedly grows in volume. Of course, there may be
also nucleation processes due to thermal fluctuations,
with a rate P ccexp( —U/kit T), so that quantum effects
can be observed only at low temperatures. Assuming for
the quantum nucleation rate P&xexp( —8), one can in-
troduce a "crossover temperature, " T, = U/k&8, below
which quantum nucleation dominates. To our
knowledge, the only attempt to estimate the quantum nu-
cleation rate belongs to Privorotskii, who, based upon
dimensional grounds, suggested 8 =(M/A'y)5o f, where
5o is the domain walI width, y=ge/2mc (g is the
gyromagnetic ratio), and f is an unknown dimensionless
function of the magnetic field and anisotropy constants.
In this paper we present what we believe is a rigorous
theory of quantum nucleation in a ferromagnet, and point
out the conditions under which the effect can be observed
experimentally.

%bile the theory is applicable in a wide variety of situ-
ations, including diferent forms of magnetic anisotropy,
nucleation around defects and surfaces, etc. , in this paper
we focus our attention solely on nucleation within a
homogeneous region of a sample described by the sim-
plest form of the magnetic anisotropy energy density

E, = —k~(M, +kqM„—M.H .

Up to a constant, Eq. (I), in a spherical coordinate sys-
tem, is equivalent to

E, =(Kl+E~sin p)sin 8—MH(1 —cos8),

H being applied in the —z direction. For H ~H,
=2K~~/M, there are two local energy minima: 8=0 and
8=tr; the maximum at /=0 (see Fig. I) corresponds to
cos8, =H/H„and defines the barrier between the mini-
ma. Notice that transverse anisotropy E~ is responsible
for quantum transitions between the minima. If E~ =0,
M„as a quantum operator, commutes with E, and,
therefore, is a conserved quantum number.

Our theory of quantum nucleation is based upon an ex-
tension of the theory we have recently developed, using
the instanton technique, for quantum tunneling of mag-
netization in small single-domain ferromagnetic particles
(see also, Refs. 8 and 9). For that problem the classical
equation for M, '

5M 5E.
"t)t 5M

is equivalent to two differential equations for 8 and P fol-
lowing from the action" for a sample volume V:

I = Vfdt Pcos8 E, (8,$)—
y

E,(e,o)

FIG. 1. The energy E,(8,/=0).
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P ~exp
1/2

SE 8MV
3&r

3/2

Using Eqs. (3) and (4), we found the exact instanton solu-
tion for the uniform subbarrier rotation of M between the
energy minima, and calculated the extremal imaginary-
time action SE. The case of practical interest corre-
sponds to the small barrier U =KII Vc. for small
c= 1 —H /H, . In this case we found

I =fdt fdx Pcos8 —E(8,&)
y

(8)

which is a simple reAection of the fact that x =((},
p =(M/y)cos8=iriS, (S, is the z projection of the spin
density) are canonical variables, so that L =px E—is the
Lagrangian density of the system. " The amplitude of the
quantum transition between two different configurations
of M(x, t) is proportional to the path integral

U=exp
8 c

(5) D x, t D x, t exp — t xL (9)

where the crossover temperature is given by

3fiy QX l
Ej

(6)

Here we obtain the solution of the nucleation problem,
together with the above result, using a slightly different,
but straightforward method. For M =M(x, t), the energy
density includes the exchange term

'2

E, = —,'a =—,'aM [(V8) +sin 8(VQ) ]

(a is the exchange stiffness). The equation of motion is
given now by Eq. (3) with E =E,+E, instead of E, .
Correspondingly,

—K( 8 ——,'8)—E8 (10)

[We have represented p cos8 as (d /dr )((() cos8)
P(d jdt)c—os8 and neglected the total time derivative. ]

It is convenient to use dimensionless variables
x'=xv e/50, t'=rcmove/e, 8=8/8z, where 50=(aM /
2E1}'~~,coo=(2y/M)(E)E3 )' . Then

over all trajectories which connect the initial and final
states. The case of practical interest again corresponds to
the small barrier for small e. In this case the shape of the
barrier is characterized by 8, =~2e, 83——23/e (see Fig.
1), so one can attempt to treat the quantum domain of
the problem within a small 8 approximation,

L= $88 ,'aM——(V8) ,'aM——8(VP)

fdr' fdx'8Ei 5O

COp

K~

KIIc

1/2

$8, ——,
' 8 sin P ——,'(V'8)3 ——,'8i(V'P)3 ——,'(8~ —84)

II

fDI8(x', r'))exp S
(12)

where we have introduced the variable ~'=x4 ——it' and
the Euclidean action

2

S=f

deaf

dx —,'J +—'aM~(V8)i

+&i(e8' ——,'8 )

8KII5p dx' —,
' VO +—,'0 —8

COp
(13)

Here J=—M /2y K~ can be interpreted as an effective
moment of inertia associated with the subbarrier rotation
of M, the last term is F., (8,/=0) for small 8, and
7;=8/Bx (i =1,2, 3,4). Trajectories which are in the

It is clear now that for K~~~e/Ei &&1, only small values of
P contribute to the path integral (9}, so that one can re-
place sin P in Eq. (11} by P and neglect the term
—,'8 (V'P) which is of order e. Then the Gaussian in-
tegration over P reduces Eq. (9) to

vicinity of the extrernal trajectory determined by the
equation

V 8=8—28 (14}

give the main contribution to the integral (12).
For the subbarrier rotation of M in a small particle of

volume V«50, M is uniform within the particle and
Eqs. (13) and (14) reduce to

' 1/2 '2
4M 3e/2f d ~ 1 + l(82 84)''d

2

=8—28
d7..2

(15)

(16)

Equation (16) has the instanton solution 8= 1/cosh'' cor-
responding to the variation of 8 from 0=0 at ~= —ao to
8=8& at r=0, and then back to 8=0 at r= ao (see Fig.
1). Substituting this solution into Eq. (15) we immediate-
ly obtain Eq. (5).

Turning to the nonuniform problem, consider first the
nucleation process in a thin film of thickness h (smaller
than the size 50/&E of the critical nucleus), whose plane
is perpendicular to the easy z axis. If KII &&2aM, then
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we can still use E=E,+E, for the energy density,
neglecting the demagnetization energy. For 8(x, r) being
independent of z, the 0(3) symmetry of the problem in
two spatial plus one imaginary time dimensions leads one
to guess' that the solution minimizing the action is given
by 8=8(u), where u =(p'~+r' )'~2, and p' is the nor-
malized distance from the z axis. Then Eqs. (13) and (14)
reduce to

'
1 j2 '2

S=16m h50&e I du u
Ky 0 dg

dg 2dg+
dg2 0 dQ

The instanton solution of Eq. (18) was found numerically
and is illustrated in Fig. 2. It corresponds to the inhomo-
geneous subbarrier rotation of the magnetization in the
plane / =0 within a spatial region of size p-5p/+E. The
maximal rotation of M from the easy axis direction,
8~»=3.076I2 at ~=0, p=0, is small in the limit of small
e. Numerical integration in Eq. (17), using this solution,
gives us the %'KB exponent for the subbarrier bubble nu-
cleation in a ferromagnetic film

+ ,'(8 '-—8')
P& ~exp h 50&e

' 1/2

=exp —37.8
Ay K~

(19)

) ~ 0 % W 0 ~ 0 0 1
g

P ~ f 0 1 w I s w 8 % 5 ~ I w %
g

~ 5 8 ~

FIG. 2. The instanton, corresponding to subbarrier bubble formation in a 61m, for various imaginary times ~'. All variables are in
reduced units: 8=8l82, p'=p~e/50, r'=rr00&e
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00
P& 2g g 2g3

I
(20)

In real time the nucleation process corresponds to the
quantum jump of the classical field 0=0, at t =0, to the
inhomogeneous state 8(x, t =0)=8(x,r=O), 8(x, t =0)
=0. Afterwards, it evolves according to the classical
equation

x
2
+M ~g ++~~

For a cylindrical bubble it reduces to
'2

U,~=16mK~~h5oe f dp'p' —,+—(8' —8 }
o 2 dp' 2

(21)

which is the analytic continuation of the Euclidean equa-
tion (14).' Correspondingly, 8=8[v =(p' r' }—' ],
determined by Eq. (20), is the analytic continuation of the
instanton solution given by Eq. (18). The function

8(p, r=O) defines, therefore, the shape of the bubble at
the moment of its materialization.

In a thermodynamic theory of nucleation P
~exp( —W;„IksT), where W;„ is the minimal work

necessary to produce a nucleus capable of growing. To
obtain 8';„,consider the effective potential of the system

d8 1 d8

dp p dp
(23)

The solution of Eq. (23} obtained by numerical integra-
tion is shown in Fig. 3. Further integration of this solu-
tion in Eq. (22) gives 8';„=23.3K~~h5oe. Representing

(22)

wherein the shape of the critical nucleus corresponds to a
saddle point of this functional
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FIG. 3. The shape of the critical bubble in a thermodynamic theory of nucleation.
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the exponent in Eq. (19) as —W;„/kz T„we obtain the
crossover temperature [cf. Eq. (6)]

fiy QK1K~
T, =0.62 &c, .

It may seem that consideration of quantum nucleation
in a bulk ferromagnet reduces to the above analysis in
three spatial dimensions, i.e., one should consider Eqs.
(15) and (16) with (9=8(u) and tt =(r' +r' )'r, where r'
is the normalized radius of a spherical nucleus. Unfor-
tunately, numerical analysis of the instanton solution in
three (spatial) plus one (imaginary time) dimensions indi-
cates a breakdown of the small 8 approximation. Based
upon a qualitative analysis, we believe that the %'KB ex-
ponent and T, in the bulk, to within an order of magni-
tude, are given by Eqs. (5) and (6) with V-5oe
Rigorous analysis of the problem involves consideration
of the exact potential (1). This is much more laborious
and will be done elsewhere.

To observe the eff'ect one needs a large crossover tem-
perature and not too small a nucleation rate. Our formu-
las show that materials with very large anisotropy, small

t +ll to Eg, and small saturated magnetization are
preferable for such study. Recently, a quantum mecha-
nism has been suggested for a staircase behavior in the
magnetization reversal of the chemically disordered fer-
romagnet SmCO3 5Cuf 5

' This material is character-
ized by having an extremely large uniaxial anisotropy

El —1.8X10 erg/cm and M-300 emu/cm . The effect
appears in magnetic 6elds H ~ 20 kOe below 2 K. If one
assumes that this is due to quantum nucleation within
defective regions with Ell -K~ —10 erg/cm, which cor-
responds to H &H„s- 1, then Eq. (6) gives a crossover
temperature on the order of 1 K. The corresponding nu-
cleation rate can be large enough with respect to the time
of the experiment for 5O g 10 A,
which is consistent with the experimental data. Al-
though our continuous spin-Seld approximation cannot
be applied to such a thin wall, we believe that it can still
be valid as an order of magnitude.

In conclusion, notice that the clearcut observation of
quantum nucleation in ferromagnets would be extremely
interesting as the next example, after Josephson junc-
tions, of macroscopic quantum tunneling. ' Based upon
our results, we consider thin ferromagnetic Alms with
high anisotropy constants as the best candidates for that
study. It should also be noted, that besides being of fun-
damental interest, processes of quantum nucleation and
collapse of magnetic bubbles impose quantum limitations
on the density and long-term reliability of the data
storage in magnetic memory devices.
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