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Real-space renormalixation-group investigation of the randomly dilute q-state Potts model
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The randomly bond-diluted two-dimensional nearest-neighbor q-state Potts ferromagnet and anti-
ferromagnet on the square lattice is studied by renormalization-group methods based on the
Migdal-Kadanoff' approximate recursion relations. In the bond-diluted ferromagnet Potts model,
differential recursion relations yield a phase diagram which is in quantitative agreement with all
known results for q &4. In the bond-diluted antiferromagnet Potts model, the phase diagram ob-
tained shows that the threshold p at which the critical temperature goes to zero depends upon q.

I. INTRODUCTION

During the last few years, considerable theoretical
e6'ort has been dedicated to random magnetism, especial-
ly in the Ising, Heisenberg, and Potts models (for an ex-
cellent review of the latter see Ref. 1). Because of its
richness, the Potts model has recently received special at-
tention, in particular the quenched bond-diluted q-state
Potts ferromagnet which has been studied within
eAective-field, ' duality-based, and real-space
renormalization-group (RG) (Refs. 9—11) approaches.
The quenched bond-diluted q-state Potts antiferromagnet
model has not been studied as extensively as the fer-
romagnet model. However the annea1ed model, which is
more tractable to analyze, has been studied exactly by
Wu' on the decorated square lattice; the critical proba-
bility he obtained depends on q.

The purpose of this paper is to study the quenched
bond-diluted q-state Potts ferromagnet and antiferromag-
net models on a square lattice by using renormalization-
group methods based on the Migdal-Kadanoff' ' (MK)
approximation. In the ferromagnetic (FM) Potts model,
the phase diagram obtained is in quantitative agreement
with all known results for q &4. In the antiferromagnet
(AFM) model the phase diagram is similar to that of the
annealed model. The present work is organized as fol-
lows: In Sec. II we introduce the model and the recur-
sion relations, and in Sec. III we present our main results.

II. MODKI, AND RECURSION RELATIONS

Consider a nearest-neighbor q-state Potts model on a
d-dimensional cubic square lattice and subject to random-
ly inhomogeneous pair coupling. The appropriate Hamil-
tonian (in reduced units) is

PH =+ g Kj(q5—o, o. —1) (o, =1,2, . . . , qVi. ),
&i;g)

where + ( —) corresponds to FM (AFM). The sum runs
over all pairs of first-neighboring sites on a square lattice,
and K,J ls a random variable ~hose probability law is
given by

P(KJ )= (1 p)5(K;, )—+p5(K;, —K) with K )0, (2)

A. Recursion relations for pure systems

%'hen the system is homogeneous, the recursion rela-
tion for the coupling along the direction of initial con-
traction {x)is

f(5d —lf —i( r b) )

while the coupling along the direction of final contraction
(y) transforms as

i.e., each bond either has value K (with probability p) or
is absent (with probability 1 —p).

Before constructing the renorma1ization-group recur-
sive relations, let us associate, with every bond character-
ized by an arbitrary coupling constant E, , a convenient
variable defined as follows:

1 —exp(+qK; )

1+(q —1)exp(+qK, , )

where —(+ ) corresponds to FM (AFM).
The Migdal-KadanoF approximate consists in succes-

sive contractions by a scale factor b along each of the d
Cartesian directions, resulting in a volume contraction by
an overall factor b". Each contraction involves a bond
shifting perpendicular to the contraction and a decima-
tion along the contraction. Schematically,

Ki= QKi, f(K~1)= g f(K~~),

or, in terms of the convenient variable r =f(K), which is
finite at both K~O (t=O) and K~ ~ [r= 1 for FM and
t = —1/(q —1) for AFM];

f '(t )= gf '(t ), t~~
——gti .
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TABLE I. Critical points K, and thermal exponents yz- of the ferromagnet Potts model on the
square (d=2) lattice for some values of q. The exact values are from Ref. 1. The xy and yx Migdal-
Kadanoft' results are calculated for 6=2.

K,
MK (xy) MK (yx) IMK Exact MK (xy)

Vr
MK (yx) IMK Exact

0.481
0.609
0.693
0.756

0.241
0.305
0.347
0.378

0.347
0.441
0.503
0.549

0.347
0.441
0.503
0.549

0.612
0.747
0.830
0.890

0.612
0.747
0.830
0.890

0.614
0.754
0.839
0.901

0.75
1.00
1.20
1.50

dt (d —1)
dl q

(1—t)[1+(q —1 }t]ln 1+(q —1)t
1 —E

+t ln(+t), (8)

where + ( —) corresponds to FM (AFM).
It is interesting to note that for d=2 and in the fer-

romagnetic case the fixed point of (8) is
exp(2K, ) = 1+&q, which is the exact transition tempera-
ture of the Potts model. This indicates that Migdal's ap-
proximation obeys the dual symmetry in the limit

15

This remarkable agreement does not, unfortunately,
extend to exponents which are given by

1
yr ——2 1 — —ln(1+&q )

Vq

The thermal exponents given by the infinitesimal
Migdal-Kadanoff (IMK) are compared with exact values'
in Table I.

It is well known that a critical value of q exists, q, (d),
depending on the space dimension d, where the phase
transition changes order, becoming a first-order one. Ex-
act results' give q, (2)=4. The simple MK transforma-
tion described above is unsuitable for treating the q-state
Potts ferromagnet for q & q, since it continues to predict
a second-order transition.

In the antiferromagnetic case, Eq. (8) exhibits a cutoff
value qo(d) below which a long-range order will arise at
low temperature. The IMK approximation yields the
values' qo(2)=2.296 and qo(3)=3.3. This problem was
solved exactly by Wu' on the decorated square lattice
and he obtained qo(2) =2.618.

As a consequence, the antiferrornagnetic model has a
phase transition only for q=2. This result is consistent
with the fact that, for q )3, the ground state of the model

[f{b ct —1f—1( t) }]b

We shall refer to these as xy and yx recursion relations,
respectively. They have quite different fixed point cou-
plings for integer b& 1. However, it is easy to interpret b
as a continuous variable and to take the limit b =1+dl,
dl ~0+ (dl is an infinitesimal). In this b ~1 limit, the xy
and yx recursion relations become identical and yield, for
dt =—t' —t,

has a nonzero entropy. We also note that, for q=2, the
critical temperature coincides with that of the ferromag-
netic model.

B. Recursion relations for dilute systems

t, with probability p
0, with probability 1 —p

(10)

When b" ' of these intermediate couplings are added to-
gether in the succeeding y contraction, the coupling
K'

& f '(t '
tt ) is an in——tegral multiple off '( t ),

K'& ——mf '(t ), 0&m &b

with corresponding probability

P (b)= gd —1

b}m( 1 b}b" —m

m (12)

To render the computations tractable we make an addi-
tional approximation at each iteration by forcing the full
distribution (11)back to a two-peak form. Namely,

P,'„,.„(t'~)=p'5(t't3 t'}+(1 p')5(t'tt) —. —(13)

Equating the weights of t'=0 of P'(t'tt) and P,'&z„,„(t'&)
gives the following recursion relation for p':

p'=1 —(1—p )
b b"

(14)

where p' depends on p but not on t.
Equating the average values of t' for P'(t'&) and

P,',0„(t'&) gives the remaining recursion relation, which
can be written

For the bond-diluted q-state Potts model the analogs of
Eqs. (6) and (7) determine each new local coupling t'tt in

terms of a set of original couplings I t; I. If each t; is in-

dependently distributed according to a probability distri-
bution P (t,, ) given in (2), then the probability distribu-
tion P'(t'&) for the renormalized coupling is given by's

P'(t'tt)= f P dt; P(t; )5(t'tt t'tt(It; ]—)) . (9)
(l, j&

Although, initially, the couplings are either present or
absent (t; =O, t) corresponding to the two-peaked distri-
bution (2), they do not remain so under iteration: The in-
itial contraction along the x direction gives an interrnedi-
ate x coupling
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FIG. 1. Phase diagram for ferromagnetic interactions de-
rived from IMK approximation in the space (q,p, K ') for

q &4.
FIG, 2. Phase diagram for antiferromagnetic interactions de-

rived from IMK approximation in the space (q,p, E ').

gd —1

p't'= g P (b)f(mf '(t )) . (15)
percolation concentration, p„corresponding to linkages
of that range.

The b ~1 limit yields, for dp =—p' —p, the recursion re-
lation

dp
di

=p ln(p) —(d —1)(1—p)ln(1 —p) . (16)

This equation exhibits for d=2 the exact bond percola-
tion 6xed point p, =0.5. The associated eigenvalue ex-
ponent y =2[1—ln(2)] corresponds to a correlation
length exponent for percolation v~=1.629 [series (Ref.
19) v~ =1.34+0.02] for any value of q. This concentra-
tion is a geometrical percolation threshold which does
not depend upon the model and the strength of interac-
tions. Ho~ever, for quenched dilute systems in general,
we have from GriSths and Lebowitz the exact state-
ment that for finite-range interactions the transition tern-
perature vanishes at a concentration, p *, greater than the

Then

f(mf '(t ))= 1 —X
1+(q —1)X

=(1—X ) g ( —1)'(q —I)"X™.
r=0

The sum over m is a binomial expansion, so

III. RESULTS AND CONCLUSION

A. Phase diagram for ferromagnetic interactions

To obtain the IMK recursion relations, the dilculty
with (15) is that b is also a summation limit. We wish,
therefore, to cast (11) into a form which allows the sum
to be performed. Let

p't'= g ( —1)"(q —1)"[(1—p +p X") -(1—p +p X"+') ] .
r=0

(18)

The phase diagram in the space (q,p, IC ), given by the recursion relations (14) and (18) for the ferromagnetic model, is
represented in Fig. 1. It is seen that the phase space is divided into two regions: a low-temperature region containing
the q axis in which the system is in an ordered phase, and a high-temperature region in which the system is disordered.
Note that the concentration p, at which transition temperature vanishes, coincides with the percolation concentration,
p„ for all q &4. The phase diagram is limited to q &4 since the IMK approximation continues to predict a second-
order transition for q ~ 4. This phase diagram is similar to that of the quenched diluted Potts model obtained under the
eft'ective interaction approximation and under real-space renormalization. " The q=2 ease recovers the results ob-
tained by Jayaprakach et a/. ' for the Ising model.

B. Phase diagram for antiferromagnetic interactions

In the antiferromagnetic case Eqs. (17) and (18) can be rewritten as follows:

f—1(tb)) (X—m 1) y ( 1)r( I)—(r+1)X—rm

r=0

( 1 )r(q 1)—(r + 1)[(1 pb+pbX —(r+ 11)b ( 1 pb+pbX —r)b]
r=0

(19)
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The phase diagram given by the recursion relations (14)
and (20) is represented in Fig. 2. The phase space is di-

vided into a low-temperature (ordered) region containing
the origin, and a high-temperature (disordered) region.
We also find the cutoff value qo(2}=2.296 to compare
with the value obtained by Wu' on the decorated square
lattice qo(2)=2.618. This difference is due to the fact
that the exact cutoff' [qo(2)=2.618] is given by the
point of coordinates (E '=O,p'=I) while the cutoff
given by IMK corresponds to the value qo(2}=2.296 at
which the transition disappears [Eq. (20) has no solution]

and this arrives at E '=1.11 for p=1, and p*=0.915
for E '=0. Note that p' depends upon q; for q=2,
p*=p, =0.5, and for q=2.296, p'=0.915.

To summarize, we have obtained the phase diagram for
the diluted Potts model on a square lattice using IMK ap-
proximation. In the ferromagnetic case our phase dia-
gram is in quantitative agreement with all known results
for q(4. In the antiferromagnetic case the phase dia-
gram we obtain is similar to that of the annealed dilution
given by Wu.
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