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Antiferromagnetic correlations of the resonating-valence-bond state
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%e consider a trial wave function for the two-dimensional spin-& antiferromagnetic Heisen-

berg model (resonating-valence-bond state), which is a sum of all dimerizations. It is shown that
the antiferromagnetic correlation length is bounded by that of a classical gas of interacting loops
with n 4 components. %e argue that the range of the antiferromagnetic correlations is 6nite
and triplet excitation has an energy gap.

One of the unsolved problems in condensed-matter
physics is the ground-state properties of the spin- —,

' anti-
ferromagnetic Heisenberg model in two dimensions whose
Hamiltonian is

H gJ cr" cr." (l)
EJ

where JiJ & 0 is the coupling constant which is usually as-
signed a nonzero constant value J for nearest neighbors
and is zero otherwise. For the one-dimensional case, the
exact solution is available'2 and the ground state does not
have long-range order. On the other hand, the system
with three-dimensional lattices and spins greater than —,

'

is known experimentally and theoretically to have a
ground state which is close to the Neel antiferromagnetic
state.

There is a recent resurgence of interest in the two-
dimensional model due to the discovery of the high-T, ox-
ide superconductors. The importance of the two-
dimensionality of the materials is emphasized for the nov-
el behavior. A simple model for the strongly correlated
electrons is the Hubbard model. For the half-filled case
(one electron per site), the Hubbard model can be
mapped to the antiferromagnetic Heisenberg model in the
limit of strong electron-electron repulsion (large-U limit).

Anderson and co-workers have proposed the resonat-
ing valence bond (RVB) state as a candidate for explain-
ing the new mechanism of the unusual high-T, supercon-
ductors. The RVB state is based on singlet pairings of
spins and does not seem to have long-range order. Also,
the term RVB is rather loosely defined and the meaning
varies a lot from one work to another.

Many of the researchers, on the other hand, seem to
support the existence of antiferromagnetic long-range or-
der, hence the Neel-type state based on the numerical
data for the Heisenberg model or the Hubbard model.
One of the difftculties in deducing the physical results
from numerical data is that the numerical methods (exact
diagonalization, quantum Monte Carlo, and variational)
allow investigation of systems of rather modest sizes.

Recent neutron scattering measurements7 and magnet-
ic susceptibility measurements on a single crystal of un-
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FIG. l. (a) and (b) Examples of dimer covering; (c) the
overlap of dimer coverings (a) and (b).

doped La2Cu04 seem to show the existence of unusual
spin state (quantum spin fluid) which might play a crucial
role in the mechanism of superconductivity.

It is important to understand the nature of the correla-
tion in the RVB state, especially since one may be able to
assess the validity of the RVB picture for the high-T, su-

perconductor by a direct comparison with experiments.
We consider a square lattice and the nearest-neighbor
coupling of Eq. (I). The version of the RVB state dis-
cussed in this paper has singlet couplings on only nearest-
neighbor sites and we call this the nearest-neighbor
resonating valence bond (NNRVB) state. First consider
a state (which certainly is not an eigenstate) correspond-
ing to a dimer covering of a square lattice (see Fig. 1).
Here a dimer represents a singlet coupling of spins in

neighboring sites, i.e.,

~ ~ (2)

with an obvious notation for the spin states of i and j sites.
There are many dimer coverings whose entropy is exactly
known and each covering gives a state which is a product
of singlet bonds of type (2). The trial energy for this wave
function is the singlet energy a, ( —3J/4) per dimer and
thus gives —3J/8 per site. This is rather poor value for a
trial energy since the Neel state without quantum correc-
tion has an energy —J/2 per site. It is possible, however,
to improve the trial energy by a superposition of states
with different dimer configurations. Let us write lit, and

ys for states with different dimer configurations (see Fig.
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(5)

1). These states are not orthogonal, i.e., &y, ~ y~)~0 and
the overlap is graphically considered as a covering of the
square lattice with double dimers and self-avoiding closed
loops. ' This can be seen by noticing that a lattice site is
always connected to two dimers which belong to state a
and state P. Therefore a loop cannot have end points, and
we have only closed loops or double dimers. Since every
site must belong to a closed loop or a double dimer the lat-
tice is covered with these objects. Sutherland ' obtained a
rule for estimating &y~ ~

H
~ y, ). This can be written as a

sum of contributions from each closed loop. A contribu-
tion from a closed loop in unit of the singlet energy
(e, —3J/4) is the length of the loop plus the number of
nearest-neighbor bonds which are not on the loo s, but still
connect two sites on the loop. The quantity &yr~ H

~ i(((,) is
lower than &y, ~

H
~ y, ) &y~ ) H ( y~) since the diagonal

overlap has the singlets at only half of the bonds. One can
improve the variational energy by having the maximum
number of cross terms. Thus our trial wave function is

g,y, where the summation is over all the dimer
configurations. Note that we choose the coefficients of the
superposition to be simply unity for all a' s. We call this
the NNRVB state. In fact, the trial energy is compared
to the exact numerical estimate of the ground-state energy
of a 4&4 lattice of Oitmaa and Betts4 and the difference is
only about 4.7%."'2 Although the simple linear com-
bination (all coefficients are the same) seems reasonable,
it is, however, far from obvious how this is close to op-
timal. Note that we also must take into account the nor-
malization &e

~
e) for the energy estimate.

The staggered correlation function is

4( —I)'&e
~ o, (0)~, (r) ~

e)

where (—1)" is 1 or —1 depending on whether 0 and r
are in the same sublattice of the bipartite square lattice.
The integral &0 ~%') is a sum of terms involving &y~ ~ i(v, )
for various a and P. This overlap integral is graphically
represented by a covering of the square lattice by loops
and (double) dimers [see Fig. 1(c)]. Each loop or dimer
carries a weight of two from the two ways of assigning
spins antiferromagnetically on the sites on a loop or a di-
mer. However, a loop carries an extra weight of two (four
in total). There is an extra multiplicative factor of 2 due
to two ways to have a loop with an assigned spin orienta-
tion. In a loop, color every other bond red, and all the oth-
ers black. One way to have the loop is that the red bonds
come from a bra state and the black bonds from a ket
state. Another way is obviously obtained by exchanging
the red and the black bonds. Note that a dimer does not
have this extra factor of 2. Thus we have

&e ( e) =gx"y&, (4)
r

where x 2, y =4, pq is the number of dimers and p is the
number of loops in a covering I . This expression can be
thought as a partition function of a statistical mechanical
model, and related statistical models for different values
of x and y are discussed by Sutherland. '

The correlation function (3) is written as

G(r ) =zz(r)x "y'/zx"y',
r r

where

1 for 0 and r are on the same loop,Xr
0 otherwise.

First it is obvious that we have a constant contribution
(1) when the two points are on the same loop since the
spins are antiferromagnetically ordered in a loop. There is
no contribution to the correlation function if the two spins
belong to different loops. Each loop actually represents
two spin orientations and the orientation is not correlated
for different loops. Thus, they cancel out.

Denote the total length of all the loops as L, then

2p2+L N,
where N is the number of sites, and (5) can be written as

G(r) gg(r)x y d(p2)/gx y d(p2),
loop loop

where the summations are only for loop configurations
and d(p2) is the number of dimer configurations for a
given loop configuration.

Let us explore first the situation in which d(p2) is in-
dependent of the loop configurations. In that case G(r)
will simply be the probability for the two sites to belong to
the same loop (proportional to energy-energy correla-
tions) in a classical gas of loops' (loop gas) with the par-
tition function

Zi(y, x) gy x
loop

Such models in two dimension were extensively studied by
Nienhuis, ' who convincingly argues them to be in the
universality class of O(n) models with n y. In two di-
mensions a critical point is present only for ~y ~

~ 2. For
y &2, the correlations are short-range for any finite x
(with the exception of x goes to 0). Note that for y 2
the loop gas is just a restriction solid-on solid model'5'6
which is in the same universality class as the XY model
and the Kosterlitz-Thouless transition'7 could take place.
So the loop multiplicity turns out to be a determinant fac-
tor: In the case y 4 (and x 2), all correlations will be
of a finite extent g. From the renormalization-group
equation for the temperature 8T/81 (n —2)T2 (Ref.
18) of the O(n) model, we may obtain a rough estimate
for g. Using the relation x= T2 and the above renor-
malization- roup equation we deduce: g(x) ao
xexp( —,

' x' ). A rough order-of-magnitude estimate for
g is therefore aoexp( —,

' l2) =1.4ao (ao is the lattice spac-
ing).

It may be convincingly argued that g of this loop gas is
an upper bound for the NNRVB antiferromagnetic corre-
lations. Indeed, the extra factor d(p2) in (8) will increase
the relative weight of the configurations with smaller loops
for two reasons: (a) From (7), smaller L means larger p2
and, on the average, d(p2) is monotonically increasing
with pq. (b) The smaller the L is, the weaker are the con-
straints the loops impose in the allowed dimer
configurations.
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(10)

with

1 & a & exp(2G/x) 1.79. . . .

Assuming this behavior, the antiferromagnetic correlation
length will again be that of the same loop gas with the
partition function given in (9) but with a larger coupling
x xa2 and hence a smaller g-aoexp(v 2/2a).

We now consider an excitation spectrum of NNRVB.
A candidate of an excitation is to change a singlet to a
triplet. Other possible excitation is to have two unpaired
spina at some distance. We do not know whether the
two-spin interaction is repulsive or attractive. The ener-
getics of the two spins will be considered elsewhere and
this type of excitation is not considered here. The opera-
tor to create triplets involving site r in the RVB state is
a, (r) and a candidate excited state is

~ k& -Ok
~
e) -+exp(iit r)o, (r) ~

e& . (i2)

The excitation energy mk (k ) H ( k)/(k ( k) -Eo (where
Eo is the ground-state energy) is written as

COk
Sk

where fk (% ~ [0—k, R,Ok]j I +)/2 and sk (% ~O-kOq
&

~
e). This formula is essentially equivalent to the Bijl-

Feynman formula for the excitation spectrum of liquid
He (Ref. 19). This type of approach in the spin system

was recently attempted b[ Arovas, Auerbach, and Hal-
dane20 and Sutherland. o For NNRVB state, the
numerator fk is exactly calculated as fk —Eo(2—cos(k„ao) —cos(k„ao)]/3, and behaves as k2 when k
goes to zero. The denominator sk is the Fourier transform

To make a more quantitative estimate, we recall that in
the regular square lattice the number of dimer coverings is
given by exp(2iVG/x) (1.79. . .)~ where 6 is the Ca-
talan constant. However, in the present problem, the
space left by the loops is highly irregular and therefore
d(p2) decreases beyond the naive reduction due to the
smaller space available to the dimers. As a plausible pos-
sibility we conjecture the following "typical" behavior:

of the correlation function. Since (~~+,tr, (r) ~a) 0
(i.e., singlet ground state) and the correlation is of short
range, it can be shown that sk-k as k 0. Therefore
we have a finite gap as k 0 for the triplet excitation. In
order to obtain the value of the energy gap and the excita-
tion spectrum in this single-mode approximation we need
a detailed form of the correlation function which perhaps
requires numerical evaluations.

In conclusion we have considered a trial state which in-
volves nearest-neighbor singlet pairings (NNRVB). This
quantum-mechanical problem of the antiferromagnetic
Heisenberg model in two dimensions is related to the loop
gas and to the classical spin model with O(4) symmetry
which is disordered for all temperatures. Therefore, the
antiferromagnetic correlation in NNRVB is of short
range. This is a rather nontrivial result since the dimer
covering problem, which is the basis of NNRVB, is known
to be equivalent to the six-vertex model at the free fer-
mion point. 2' The six-vertex model is critical, i.e., the
correlation length is infinite.

The excitation which changes a singlet to a triplet was
also considered. Using the Bijl-Feynman-type analysis, it
was shown that this type of excitation has an energy gap.

For the superconductivity problem, it is essential to con-
sider the excitation involving holes. The motion of holes
must be treated quantum mechanically. In the effective
Hamiltonian for the Hubbard model with large U and
near half-filling, the antiferromagnetic spin coupling is
second order in t/U, on the other hand the kinetic term for
holes appears in first order. Therefore we expect that a
hole perturbs the RVB vacuum. If the effect of the kinetic
energy is to cause the hole to smear into a local distortion
of the RVB state, statistical mechanics may still be a use-
ful tool to study these excitations. Since the experiments
suggest antiferromagnetic ordering in undoped samples, it
may be the case that the excitations involving holes sta-
blize the RVB state if it exists at all and is relevant to su-

perconductivity.
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