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We consider the influence of intense coherent laser fields on the electronic and optical properties
of semiconductors. Using nonequilibrium Green s-function techniques and exploiting the analo-

gies to superconducting and Bose-condensed systems, we discuss the nature of the renormaliza-
tions and the collective excitations in the collisionless regime. Experimentally, this situation can
be realized (i) under nonresonant excitation of virtual electron-hole pairs and (ii) under resonant
excitation with ultrashort pulses. We explain the recently observed optical Stark effect as well as
spectral hole burning and derive from 6rst principles the longitudinal and transverse dielectric
functions including exciton correlations.

I. IXTROnUCTIOX

%ith the recent advances in ultrashort pulse spectros-
copy, it is now possible to observe in semiconductors
electronic renormalizations induced by intense coherent
laser beams. Such phenomena have been extensively
studied in atomic systems. In atomic physics„ the anal-

ogy to efFects previously considered has been often em-
phasized by using the same terminology. For example,
in order to emphasize the analogy to the renormaliza-
tions in the photon vacuum, known as "Lamb shift, " the
high-field renormalizations are sometimes referred to as
"lamp shift. " Similarly, the analogy to dc field induced
efFects is reAected by such terms as "optical, " "dynami-

cal,"or "ac Stark efFect."
Clearly, pulses shorter than the relevant relaxation

times allow to resolve similar coherent high-field phe-
nomena in semiconductors as well, and this without
damaging the samples. Recent experiments on quantum
wells and bulk semiconductors under nonresonant below

gap pulse excitation have revealed light-induced shifts of
excitonic resonances and corresponding changes in the
exciton oscillator strengths. In these experiments the
coherent electron-hole (e-h ) pairs responsible for the ex-
citonic optical Stark efFect are generated only virtually
and thus persist only as long as the pump beam is
present. On the other hand, above gap excitation by ul-

trashort laser pulses has been used to generate high-
density nonthermal e-h populations, and spectral hole
burning in the interband optical absorption of semicon-
ductors has been reported frequently. Except for a few
cases, these investigations, performed in the context of
hot-electron relaxation studies, have not paid much at-

tention to the (initial) coherent time regime. This re-
gime, depending on the excitation density and excess en-

ergy above the gap, can vary from a few hundred fern-
toseconds to a few femtoseconds. '

As already mentioned, these observations are similar
to phenomena seen in atomic physics. However, the
mutual interactions of the extended electronic excita-
tions in semiconductors as well as their high mobility
make the nature and description of these efFects consid-
erably difFerent from the corresponding ones in atomic
systems. Both the initially coherent interband absorp-
tion saturation and the excitonic optical Stark efFect are
manifestations of light-induced renormalizations which
closely resemble those in superconductors and Bose-
condensed systems, and can be described in the frame-
work of one and the same theory. Their microscopic un-
derstanding is of great importance to fundamental solid-
state theory as well as device applications in ultrafast op-
toelectronics. The purpose of the present paper is to
give a comprehensive theory of these efFects.

The formalism best suited to describe dense systems
such as semiconductors is very difFerent from that used
in atomic physics, where the efFects we consider have
been observed first. Therefore, in order to establish a
useful connection between the two descriptions, we will
try to draw analogies when possible. Furthermore, in an
effort to make the paper understandable to experimental-
ists, we will try to give intuitive interpretations of the
concepts and the formalism we shall use, even if these
are well known to the theorists. %"e shall also try to
give plausible justification of our rigorous results in or-
der to help the impatient reader keeping track of the un-
derlying physics.
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The mobile and interacting electronic excitations in
laser-excited semiconductors can be treated best by
Green's-function techniques. Frequently, the treatment
can be simplified by using quasiequilibrium approxima-
tions. The microscopic description of coherent high-
field phenomena, however, requires nonequilibrium
Green's-function techniques, as introduced by Keldysh
and Kadanoff' and Baym. Using this formalism, we
derive in Sec. II the renormalized quasiparticle (e and h)
spectra together with the coupled equations for the in-
version and coherent polarization due to a strong mono-
chromatic pump beam in the collisionless regime. We
solve these equations analytically in Sec. III for the case
of noninteracting e and h, where the problem reduces to
that of a set of independent two-level systems. This sec-
tion thus illustrates the application of the Green's-

function technique to a, mell-known example. It shows
that this very general formalism includes as a special
case the treatment of light-matter interaction commonly
employed in quantum electronics. We then include the
inhuence of the Coulomb interactions within the
Hartree-Pock approximation. We give analytical results
for the nonlinear polarization induced by the pump field,
both for the case of nonresonantly excited excitons and
resonant interband excitation. In Sec. IV, we calculate
the linear response of the renormalized system to weak
perturbations, such as test beams or test charges. We
give analytical results for the collec~~ve excitation spec-
trum as well as the longitudinal and transverse dielectric
functions. The resulting absorption spectra are com-
pared with available experimental data. Our theory is
gauge invariant and fulfills the Ward identities exactly.
Some of our results have already been reported in a re-
cent paper.

Il. THE NONEQUII IBRIUM THEORY
OF LASER-EXCITED SEMICONDUCTORS

Laser-excited semiconductors are examples of systems
whose properties are strongly modified by external fields.
The treatment of the optically created dense system of e
and h requires the use of many-body nonequilibrium
techniques. Contrary to the situation in equilibrium
systems, it is not sufFicient to use only one type of
Green's functions, e.g., the retarded one; this is because
one has not only to calculate the renormalized quasipar-
ticle spectra but also the corresponding nonequilibrium
distribution functions. Keldysh and Kadanoff and
Baym have shown how the relevant equations can be
derived and how the various self-energies can be evalu-
ated by a systematic diagram technique. Applications of
this method to laser-excited semiconductors have been
given, e.g., by Ivanov and Keldysh, " by Haug, ' and by
Schaefer and Treusch. ' For an illustrative and detailed
introduction into the technique, we refer to these papers
as well as to two recent excellent review papers on quan-
tum transport in metals. ' '

We consider homogeneously excited homogeneous
semiconductors [either two dimensional (2D) or three di-
mensional (3D)]„which we describe in a simple two-band
model, with spin degeneracy only. The physics of
coherently driven interband transitions in semiconduc-

tors is then very similar to that of superconductors
or Bose-condensed systems. In the Green's-
function formalism, the coherent polarization induced by
a coherent laser field is determined by the o8'-diagonal
interband Green's-function matrix element and corre-
sponds to the anomalous Green's function (pair wave
function) in a superconductor or the condensate wave
function in a Bose condensate. However, the (e-h)
"pairing" or "condensation" occurs in the particle-hole
channel and it is not spontaneous, but externally en-
forced by the "symmetry breaking" pump field. With
increasing pump intensity, i.e., e™Apair density, we re-
cover the transition from real-space pairing (tightly
bound excitons) to momentum-space pairing (weakly
correlated, overlapping e-h Cooper pairs), discussed ear-
lier in the context of spontaneous exciton condensa-
tion and superconductivity. Vice versa, we enrich
the discussion of the latter phenomena by a consistent
calculation of the collective excitation spectrum for arbi-
trary coupling, which interpolates smoothly between the
Bogolubov-Beliaev theory of a weakly nonideal Bose
gas' "and the Anderson-Bo~olubov theory of collective
modes in superconductors. * Put another way, we ex-
tend the kinetic theory of weak coupling superconduc-
tors' to the strong coupling local regime, in which Fer-
mi liquid theory breaks down. (In the theory of magne-
tism, this mould correspond to the interpolation between
itinerant and local moment behavior. )

Let 1(;(r,, t, )—=g, (1) be the field operators of electrons
in the conduction (i =1) or valence (i =2) band. The
2 X 2 retarded Green's function is

The diagonal elements of C' describe the propagation
within the same band of an electron from point 2 to
point 1. The off-diagona1 elements describe the same
propagation but with a transition from band j to band i.
C" determines the renormalized quasiparticle spectra
and obeys a Dyson equation of the form

6 '= G 0+6 02 "6 '

=0 o+ 0 '2 "6 0,

where integration over internal variables is implied.
Spin indices are sup ressed. Go is the unperturbed
Green's function and ' the retarded self-energy matrix.
It describes the interactions with the total field felt by
the particles which comprises the external field and the
internal ("molecular" ) 6eld. Inclusion of this latter,
which accounts for the Coulomb coupling of the elec-
tronic excitations, is essential in semiconductors.

The interaction with the coherent monochromatic
pump field, E~ exp(

ice~�i�

)+E*—exp(ico~t ), will be treat-
ed in the rotating wave approximation, keeping resonant
terms only. The rapid oscillations with frequency ~
can be eliminated by working in the rotating frame. Por
simplicity, we do not treat explicitly the slower ampli-
tude variations of the pulse; they can be included in a
natural extension of the theory.
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It is often advantageous to introduce relative
(r=r, —r, , t=t, —t, ) and center [8 =(r, +ri)/2,
T=(t, +tz )/2] coordinates in space and time, as the mi-

croscopic and macroscopic scales, respectively. If the
variations on both scales are suf5ciently well separated,
i.e., for slow variations on the macroscopic scale, one
can Fourier transform Eq. {2)with respect to the relative
coordinates r and t. In a spatially homogeneous situa-
tion, i.e., G independent of R, one finds the adiabatic
result (i('t= 1)

(2co+i 0 —e;k —s»k)G»(k, co, T)

=25»+X,"((k,co, T)G("(k,co, T)

the e-e and h-h Coulomb repulsion, respectively. These
two types of self-energies will be discussed in more detail
later on.

In a nonequilibrium situation, in addition to the re-
tarded Green's function, we have to evaluate the 2X2
distribution function

G,» (1,2)=i{,'li( (2)1i,(1)) . (6)

G describes the correlation of electrons at points 1 and
2 and in bands I' and j, and generalizes to quantum
mechanical and interacting many-particle systems the
usual concept of distribution function used in classical
statistic mechanics. For t, =tz, 6 equals the reduced
density matrix. The equation of motion for G « is

where

+G;",(k, co, T)X&,(k, co, T), (3)
i —e, , + s, 2 G,«(1,2)

s, k
——(Es —co&)/2+k /(2m, )

G»(k, co, T)=X,",(k, co, T)/D{k, co, T),
where

(4b)

Ezk —— (Eg —co—
z ) /2 —k /(2m' )

are, respectively, the unperturbed conduction- and
valence-band energies in the rotating frame. The solu-
tion of Eq. (3) is (i &j )

6,", (k, co, T)= [co+iO e»k
—X»»(—k, co, T )]/D(k, co, T)

(4a)

=X,"((1,3)G(»«(3, 2) —G;('(1, 3)X(» (3,2)

—G,", (1,3)X,;(3,2)+X«((1,3)G(»(3,2), (7)

where the superscript c( denotes advanced functions and
Equation (7) is the general transport

equation of the system and formally exact. Under cer-
tain conditions it reduces to the mell-known Boltzmann
equation. Together with Eq. (2), it completely deter-
mines the electronic and optical properties of a laser-
excited semiconductor.

In a spatially homogeneous situation and in the col-
lisionless regime, f « =0 and 2 "=2'=f., Eq. (7) can be
reduced to an equation for the reduced density matrix

r

i —e;k+ sok n(kT),

D(k, co, T)=[co+(0—e(k —Xii(k, co, T)]

X [co+i0—e02k —X22(k, co, T)]
—Xt2(k, co, T)X2,(k, co, T) . (4c) where

=X;((k,T)n(, (k, T) n, ((k, T)X(»(—k, T),
(8)

In the present paper we consider two cases. The 6rst
is that of nonresonant coherent excitation well below the
absorption edge. In this case no energy is deposited in
the sample, the nonresonant 6eld drives coherent valence
charge fluctuations that can be viewed as "virtual e-h
pairs. " The coherence implies that these pairs experi-
ence no real collisions. In other words, the virtual tran-
sitions occur in a time shorter than 1/(E —co ), which
in turn must be shorter than any relaxation time in the
medium. The other case is that of the initial transient
that occurs for real transitions before the erst collision.
In the absence of both real c(nd virtual (see below) col-
lisions, the self-energy is instantaneous, i.e., independent
of co. We will denote it by 2, with matrix elements

X(k, T)=

The interband self-energy 5& describes the e-h pairing
due to the coherent pump 6eld and the attractive e-h in-
teraction, while the intraband self-energies X&& and Xz&

describe the renormalization of the paired e and h due to

it(k, T)= i f —0 (k, co, T) .

The matrix elements of 6' are

n ik |ik
h(k, T)= (10)

nzk

The interband matrix element i(»k describes the polariza-
tion induced by the coherent pump 6eld, while the intra-
band matrix elements n]~ and n2j, describe the none-
quilibrium e and h distribution functions, respectively.
Let us remark that Eq. (8) is nothing but the Heisenberg
equation describing the evolution of the density matrix.
It is necessary to derive Eq. (8) from Eq. (7) rather than
introducing it directly because, as will be shown in Sec.
IV, Eq. {8)cannot be used to describe the response of the
system to external perturbations such as a test beam (a
situation that we wish to treat). This is due to the long-
range nature of the Coulomb interaction.

Equations (4), (5), (8), and (10) determine the coherent
homogeneous "ground state" of a semiconductor, i.e.,
the condensate, driven by a strong monochromatic pump
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beam, but without relaxation. %eak external perturba-
tions, such as test beams or test charges, will excite the
system out of its ground state, which is described by
similar equations linearized in the perturbation. We will
solve the equations in two steps, without and with
Coulomb interactions. For noninteracting e and h the
problem can be solved analytically, while in the presence
of interactions only a few quantitative results can be ob-
tained by hand.

hk ——pE, where p is the interband dipole matrix element
(assumed to be constant), and

R,(k, r)= —P Ep

Substituting Eq. (11) into Eq. (4), we find for the re-
normalized quasiparticle spectrum in the rotating frame

(poles of the retarded Green's function)
III. THE COHERENT GROUND STATE

A. Noninteracting e-h pairs

For noninteracting e and h, the only self-energy in the
problem is the radiative self-energy. It measures the
strength of the interaction with the light field, i.e.,

0'i, 2«= 2 t &i«+&a«+l(&i« —&2«)'+4! ~«
~

']'"
j .

The renormalized e spectrum is

(12)

!ei«+e2«+~, +[(&1«s2«) +4
l
~« I ] !

[e1«+e2«+~, —I(&l«e2«)'+4
I ~« I

']'"l* Ei«&&i«
(13a)

while the renormalized h spectrum is

-, [&i«+&2« —~p —[(&i«—&2«) +41~« I ] ] &i«&e2«
o

i [si«+s2«0'i +[(ei«—ez«) +41~«
I ] l» ei«+s2«

(13b)

Figures l(a) and 1(b) show E, 2« for nonresonant (u
&Es) and resonant (co~ &Es) excitation, respectively.
In the case of nonresonant excitation, the states are blue
shifted, the Stark shift decreasing with increasing detun-
ing from the pump frequency. In the case of resonant
excitation, gaps open at u . For e&k ——e,2k, the state with
X photons and the electron in the valence band is degen-
erate with the state with X—1 photons and the electron
in the conduction band. The degeneracy is removed by
the dipole interaction, which leads to the Stark splitting
of the bands at ~ . The magnitude of the light-induced
gaps is given by 25&, i.e., the Rabi frequency. Further-
more, the states with energy larger than co +6& are blue
shifted, while those with energy smaller than co —Ak are
red shifted.

Substituting Eqs. (10) and (11) into Eq. (8), we find for
the interband matrix element of the distribution function

The second forms of Eqs. (14) and (15) can be derived
from Eq. (15a). The e (h) population n« is shown in

Figs. 2(a) and 2(b) for nonresonant and resonant excita-
tion, respectively. In the case of nonresonant excitation
of virtual e and h, n & is maximum at the gap and de-
creases smoothly with increasing detuning from the

l

(b)

u)p

sgii( s i «
—ei«)0 0

[( 0
) +4)go) ] I

and for the intraband matrix element n &
——n, &

——1 —n zi,

n0«=-,'[1—(1—4~ q0«
~

')'"]
1 (

I sic ez« I

[(&0 0 )2+4
~

g0
~

2]i/2

FIG. 1. Sketch of the renormalized conduction- (Ei& } and
valence- (F. zk } band energies as a function of rnomenturn k for

m, =mq and (a) nonresonant excitation of virtual e and h,

u~ g Eg, (b) resonant excitation, u ~ Eg. The dashed lines

show the unperturbed energies.
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where P is the inverse temperature. At zero temperature
one 6nds

O.O-
Ji

0
1

1 o o )2+4
~

~o
~

2]1/2
(20)

0.2

FIG. 2. Sketch of the fermion distribution function nk as a
function of momentum k for {a}nonresonant excitation of vir-

tua1 e and h Np & Eg (b} resonant excitation, mp p Eg.

pump frequency. In the case of resonant excitation, nk
peaks at ~z and again decreases smoothly with increas-
ing detuning. In the absence of relaxation, this is as ex-
pected. nk ———,

' at ~ corresponds to a complete bleach-
ing of the pump beam absorption.

The polarization induced by the pump beam is

P~ =2)M' g t(k .
k

(16)

Substituting Eq. (14) into Eq. (16), we obtain for the real
nonlinear optical susceptibility, P~ /E~,

1 —2nk
&i=2IS

I g o o
k 1k ~2k

sgn(e, „—ezra)
0 0

=2 I p I
2Y

[( ' —' )'+41~'
I

'1'"

o o
~ (&i~ —&2i)

i.e., it shows resonance enhancement for m ~E .
The collisionless kinetic equation (8) has yet another

solution. This is the quasiequilibrium solution that
arises because the collision term vanishes in local equi-
librium. This solution can also be obtained from the re-
tarded Green's function 6' "

For small pump fields,
~ E~ ~

~0, this reduces to the
usual linear response result, while for large pump Aelds,

~ E~ ~

~ ao, X~ saturates like the susceptibility of an in-
hofnogeneously broadened two-level system. In the ab-
sence of Coulomb interactions, the saturation mecha-
nism is phase-space filling (PSF) or "blocking, " i.e., the
states which are already occupied are no longer accessi-
ble in optical transitions, due to the Pauli exclusion prin-
ciple. The third-order nonlinear optical susceptibility
+(3);s

which differs from Eq. (15) only by the fact that the
so„so—E oi +k~/(2m) (m is the re-

duced e g mass, m
—'=m, '+mz ') can change sign for

resonant excitation, co~ &Eg. In this case„nk has the
shape of a step function with a broadened edge. It cor-
responds to a radiation-broadened Fermi distribution at
zero temperature and describes a completely relaxed de-
generate e-h system with a gap at the quasichemical po-
tential, the latter being identical to the pump frequency.
This is the saturated state of a semiconductor. Starting
with Galitskii et ah. , it has been studied by many au-
thors, assuming that carrier-carrier and carrier-phonon
collisions quickly drive the e and h towards thermal
equilibrium. ' ' ' Such a solution can, of course, neUer

reduce to the linear response result. For nonresonant
excitation, co gEg, there is no di6'erence to the non-
equilibrium solution.

B. Interacting e-h pairs

So far, we have solved for the coherent ground state of
noninteracting e and h, the results being equivalent to
those obtained for an ensemble of independent two-level
atoms. ' This is as expected because optical transitions
with different k decouple. Building on this simple case,
we include now the coupling due to the Coulomb in-
teractions, which we treat in the Hartree-Fock (HF) ap-
proximation. ' Since we work in the electron picture,
we have to subtract from c, &k and czk the interaction with
the completely filled valence band (which is assumed to
be already included in the parameters Eg, m„and mi, ),
so that in the following:

E,i,
——(E~ —oi~)/2+0 /(2m, ) —2V~

k'

ski, —— (Es —co~)/2 —k—/(2m', ) —2V =op+ g Vk k
k' k'

where Vi, i, ——V i, i,. is the Coulomb potential and gz'
runs over all valence-band states.

Note again, that "no relaxation" does not imply "no
correlation, " i.e., limitation to HP; we could allow for
virtual collisions which would renormalize the Coulomb
interaction„ towards a Landau e8'ective interaction in the
weak coupling limit' and a T matrix in the strong cou-
pling limit (see below).

Within the HF approximation, the contribution of the
Coulomb interactions to the self-energy matrix is given
by

n(k, T)= —I 2 ImG "(k,co, T),d~ 1

2m'
X»(k, T) =2V, ,g trR(k', T ) —g V„,, e(k, T)



corresponding to renormalized conduction- and valence-
band energies (i,j= 1,2)

s, i,
——e,q+2V o g n~~ —g Vq i, n;g,0

j,k' k'

and a renormalized Rabi frequency

(22)

(23)

(24a)

These expressions show already what the CHects of the
Coulomb interactions are. They couple transitions with
difFerent k, so that an e-fi pair with given k does not
only experience the external 6eld alone; in addition, it
also feels a significant internal field, the molecular field
associated with e-h pairs created at k'. At each k, exter-
nal and Coulomb fields combine to give an effective
selfconsistent "local field. " For small pump intensities,
the local fmids or "local-field corrections" dominate and
transform the free e-ii pairs into excitons (in the case of
Frenkel excitons, we recover atomic behavior). This di-
lute hmit corresponds to the usual description of exci-
tonic effects, it demonstrates that the Coulomb coupling
drastically changes the behavior of the interacting sys-
tern as compared to the noninteracting case. For large
pump intensities, the external field dominates. In this
case, the governing processes are the individual band-
to-band transitions. The Coulomb interaction only in-
troduces a weak coupling compared to the external field
which can be treated as a correction to the dominant
processes. Thus we recover the transition from (atomic)
real-space to collective momentum-space pairing.

In terms of the renormalized quantities a&I„a2&, and
hk, expressions (12)-(15) for the quasiparticle spectrum
and distribution function remain unchanged. From Eq.
(23), we obtain for the light-induced pair amplitude |tz
the self-consistent equation

This equation deserves some comments. First, since
T

0 kI~i = Eg+
2

(26)

is the unperturbed e-h relative motion Hamiltonian, the
left-hand side of Eq. (25) is simply the usual Wannier
equation in momentum space written in the rotating
frame. The first term on the right-hand side describes
the coupling with the driving external field including the
PSF reduction of the coupling constant expressed by the
factor (1—2

~
|ti,

~
). This PSF effect can be suitably

reinterpreted as a correction due to the proper normali-
zation of the exciton wave function in the presence of
other e-h pairs. The second term on the right-hand side

5H g i,
——2n q V~ g

—2 g Vg g n i,-5q k
0

1
tl

its solution for nonresonant excitation of virtual e and h,
g E —E&, where E0 is the exciton binding energy„at

moderate pump intensities. In this limit the excitons are
still well dc6ned and the nonlinear correction terms can
be treated in perturbation theory. Together with the
free-particle {i.e., external field dominated) results given
above, this provides already a rather complete physical
picture of a coherently driven semiconductor, covering
both real and momentum space pairing.

For small pump intensities and co~ ~E~ —E0, i.e., in
the linear-response regime, gi, ccE, we find from Eq.
(24b) n„~

~ Pi, ~

~
~

E
~

2. The fermion distribution
function is thus determined by the probability of 6nding
the virtually excited e and fi in bosonic exciton states.
Substituting this result into Eq. (24a), we obtain the per-
turbed inhomogeneous %'angrier equation'

0

QP

(1—2
~ g„~')pE —+ 5H fi, fg . (25)

nii, ——1 —ni~ ——ni, ———,'[1—(1—4
~

tj{ti,
~

)' ] . (24b)

Without the nonlinear corrections, Eq. (24a) corresponds
to an inhomogeneous %annier equation in momentum
space, driven by the pump f1eld E . In this limit, it de-
scribes unperturbed excitons. The self-consistent non-
linear corrections describe the C8'ects on the excitons of
PSF and fermion exchange (E), through the factor
n2k n, k and—the exchange (F) self-energies contained in
E,i, and equi, [third term in Eq. (22)]. Note that in the
homogeneous ground state the fermion Hartree (H)
self-energies [second term in Eq. (22)] vanish, reflecting
charge neutrality, i.e., the number of e equals the num-
ber of h.

In general, the nonlinear integral equation {24a) can
only be solved numerically, e,g., by iteration or by iI1-
tegration for a pulsed pump 5cld, and corresponding re-
sults will be given elsewhere. Here, we will only discuss

k"

is the (boson Hartree) perturbation due to excitonic PSF
[first term in Eq. (27)] and E [second term in Eq. (27)].
The non-Hermeticity of 5H can, in principle, be re-
moved by a simple transformation, which accounts for
the PSF rnodi6cation of the orthonormality relations.

Equations (25)—(27) are of the form of the Gross-
Pitaevskii equation for the order parameter of a weakly
non1dcal Bose condcnsatc ' 1ncludlng a driv1ng tc1 ID
and specialized to a spatially uniform situation. The or-
der parameter is Pz and virtual exciton condensation
occurs in aII exciton states simultaneously, duc to the
nonresonant excitation (as discussed above, the pump
frequency can be thought of as the quasichcmical poten-
tial).

In order to clarify this point, wc wiB now project Eq.
(25) onto unperturbed exciton states. We will find that
the self-energy and vertex corrections Eq. (27) combine
simply to an cff'ective exciton-exciton interaction. This
transformation thus enables us to interpret the results
rigorously derived so far in a morc intuitive picture
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where excitons are described as interacting "atomiclike
particles. " %e can then make the connection with a
number of more familiar concepts such as "hard-core
repulsion" and "van der %aals attraction, " the physics
of which is more easy to feel.

Expanding gk in terms of unperturbed exciton wave
functions P„i,

(28)

E~ QPp

pE (36)
p

is substituted into Eqs. (34) and (35), so that the non-
linear corrections are of order

~ Ez ~, i.e., linear in the
density of virtually excited excitons

where

X&i,i &.i =&'4.)
k' (37)

we find that f„,the projection of Pi, on P„i„satisfiesthe
equation

(30)

~here X„ is the Hartree exciton self-energy

&. = XW:iP~P, i 4 i ~

k, k'
(31)

Using standard notation, X„canbe expressed as

(32)

where

H ~

E~ —Q)p

(33}

FH EO+yH (34)

are the renormalized transition energies and

&."=
I iu I

' X 0"i(1—21@i, I
'}0:i,

k, k'

P„„X„Pi, +(n~m )
(35)

are the renormalized oscillator strengths. Here, it is un-
derstood that the linear response result

where I„is the exciton exchange interaction, i.e.,
( V, —V, ) /2, where V, and V, are the exciton-exciton in-
teractions in the triplet and singlet channels, respective-
ly. The contribution of the direct exciton interaction I&„
i.e., (V, + V, }/2, to Eq. (30) vanishes, because of charge
neutrality (this is, of course, only correct within the HF
or Heitler-London approximation employed here). We
will postpone to the end of this section the detailed
physical interpretation of Eq. (30).

The nonlinear optical susceptibility is obtained from
Eq. (16). Using Eqs. (29) and (30), we find in leading or-
der"

For
~ F~ ~, N~O, Eqs. (33)-(35) reduce to the exact

linear response result, i.e., E11iott's formula. For
~ E~ ~, N finite, the dispersive optical nonlinearity is due

to (i) a shift of the exciton energies as a result of
exciton-exciton interactions, (ii} a corresponding exciton
wave function renormalization [second term in Eq. (35)],
and (iii) a PSF correction to the oscillator strength [first
term in Eq. (35)]. Both (ii) and (iii) give rise to a nega-
tive 7' ', i.e., a reduction of the exciton oscillator
strength, because they both reduce the probability

of finding the e and h in the same unit cell.
Equations (25)-(37) can as well be derived from an

effective exciton Hamiltonian, with two basic in-
gredients, (i) an anharmonic exciton-photon interaction
and (ii) an anharmonic exciton-exciton interaction.
The former is obtained from the linear exciton-photon
interaction by projecting out the states which are al-
ready occupied, i.e., by preventing "double occupancy;"
in the ground state, it gives rise to the PSF correction to
the oscillator strengths. The latter is the analogue of
"superexchange" in the theory of magnetism and, in the
ground state, gives rise to the exciton self-energy X„
which, in general, would be rigorously determined by the
exciton T matrix, rather than by the bare interaction I,
as in our approach. Besides the short-range hard-core
repulsion of excitons already contained in Eq. (32)
(which, as evident from our discussion„results from the
underlying Fermi statistics), the full T matrix would also
describe their van der %aals attraction, i.e., mutual exci-
ton polarization formally determined by "intermediate-
state interactions. " The problem with these as well as
"6nal-state interactions" is that the T matrix in the sing-
let channel diverges, signaling the instability of the sys-
tem towards biexciton formation. The divergence can be
removed, however, by allowing for coexistence of virtual
particle (excitons) and molecule (biexcitons) condensates,
following our own and others earlier work on attractive
Bose systems. ' ' This wouM then also allo~ for a
rigorous description of coherent two-photon generation
of biexcitons, which so far has been treated rather naive-
1.

To conclude this section, let us note again that the
above discussion is limited to low intensities, where exci-
tons are well de5ned and the problem is that of a weakly
nonideal virtual exciton gas. %'ith increasing intensity,
the e-h pairs spread out and overlap, and saturation sets
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in. The latter is nothing but the quantum saturation of
the exciton states. At high intensities, the system is best
thought of in terms of decoupled interband transitions
with only quantitative rnodi6cations due to the Coulomb
interactions.

IV. COLLECTIVE EXCITATIONS
AND THE LINEAR RESPONSE
TO VVEAK PKRTURSATIONS

The changes of the system properties due to the action
of the coherent pump field can, e.g., be determined by
measuring the linear response to weak perturbations,
such as test beams or test charges, as characterized by
respective dielectric functions. Theoretically, the latter
can either be obtained from the Kubo formula for the
corresponding correlation functions or directly from the
transport equation. Both methods are equivalent and
yield exactly the same answer. Here, we will choose the
second method, i.e., the solution of Eq. (7) hnearized in
the perturbation. Note that because of the long-range
nature of the Coulorib interactions, it is not possible to
linearize directly Eq. (8), even if the perturbation con-
serves momentum.

Any weak external perturbation of the system can be
expressed as a small change 5C',„,of the ground-state en-

ergy matrix
0

+~,(k, T)+i„„(k,T), (38)
0 P21,

which enters the Heisenberg equation (8)

i n(k, T)=[E(k,T), h(k, T)]
5

In addition to the direct change 5e,„,of the ground-state
energy matrix, there will be further changes through the
"reaction" of the system, as discussed previously. Thus
in order to avoid unphysical results, the total change of
the ground-state energy matrix has to be evaluated self-
consistently. First, if 5f,„,does not conserve momen-
tum, i.e., 5e,„,=5&,„,(k, q, T), it induces through Eq. (7)
small fluctuations

M(k, q, T)=5s,„,(k, q, T)+52HF(k, q, T) .

Finally, the linearization of Eq. (7) yields

(42)

5R(k, q, T)= i —I d'8 I e-'q "5Q «(k, R,~, T)

(40)
about the homogeneous ground-state distribution S. In
turn, through Eq. (21), these Auctuations give rise to
local-Seld corrections

5f,„F(k,q, T)=2V g tr5h(k', q, T)
k'

—g Vk i, M(k, 'q, T), (41)
Qt

so that the total local field to which the system responds
ls

i 58(k, q, T)=f k—,T M(k, q, T)—M(k, q, T)f k+, T

+5f(k, q, T)& k+, T —k k—,T 58k, q, T) . (43)

This set of coupled equations for the induced charge
density and pair fluctuations is equivalent to the summa-
tion of bubble [first (H) term in Eq. (41)] and ladder
[second (F) term in Eq. (41)] diagrams in Nambu space.
As evident from Eqs. (38) and (41)-(43), self-energy and
vertex corrections are treated on equal footing, so that
the %ard identities are ful5lled exactly and our theory is
fully gauge invariant.

The Hartree contribution to the local-field, Eq. (42),
describes the screening of the external perturbation by
induced charge density fluctuations. Its importance in a
similar context was first pointed out by Anderson who
showed that in supcrconductors it pushes the order pa-
rameter phase mode, the Anderson-Bogolubov mode, up
to the plasma frequency. Here, w'e are dealing with a
neutral system so that low-lying collective excitations do
indeed exist.

The induced charge density fluctuations can be in-
tegrated out exactly. From Eq. (8) or (39) one finds the
corlscrvatlon lMvs

i I4n, 2(k„T)n2,(k, T)+[n „(k,T)—n2i(k, T)]') =o,

i [n»(k, T)+nz2(k, T)]=0,

5n „(k,T)= —5n22(k, T)

pk5n, 2(k, T)+pi,5ni, (k, T)
1 —2n1,

(45)

The extension to finite q of this relation is'

the solution of which is still formally given by Eq. (15)
with, however, renormalized parameters, i.e., Eq. (24b).
Therefore, us1rlg tl k = Pl ig = 1 —ll 21, %'c flrld
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0k q~25niz«q*T)+4k+qn5nii«q T)
5n„(k,q, T)=

~ k —q/2 n k+q/2

&k+qr25ni2«q T)+0k qn5n2i«q T)
5ni&(k, q, T)=-

n k —q/2 n k+ q/2

(46a)

(46b)

which automatically takes care of two of the four equations (43). The remaining two are just the complex conjugate
of each other.

In the rotating frame, a weak test beam, E, exp( ice,—t )+E, exp(iso, t ), gives rise to a perturbation

O e
—] AA)T

(47)

where h~=~, —~z. In the following, we will calculate the polarization induced by such a perturbation in the pres-
ence of the pump field E . Again, we shall treat both cases of interacting and noninteracting e and h.

Substituting Eqs. (46) and (47) into Eq. (43), we are left with an equation for the induced pair fluctuations, which in
the long wavelength limit q~O reads [5/k ——lim 05nzi(k, q, T)= iimq 05niz(k, q, T)]

54k=(eik —&2k)50k —(nik —nik) V~te + g Vk, k 51(kdT k'

4k 50k+ Pk50k A'5&k +0k 54k
+2~k

~2k ~ }k ll 2Q' Pl }k~

r

a@„—lim q 2V gq~0 Bk Pl 2k~
—Pl }k~

(48)

Like Eq. (24a), this equation is of the form of an inhomogeneous Wannier equation, linearly driven by the test field E,
but nonlinear in the pump field E . The physical meaning of the various nonlinear terms becomes obvious if we elimi-
nate the time dependence of 5/k. Using the Ansatz

5y+ —i sr@ T+ (5y
—)» I he@ T

we find the coupled %annier equations

g [(ha)+iO+co )5k k
—Hk k ]5/k+ = —(1—2nk)pE, + g[(5Hk k +5Hk k )5/k++(5Hk k )5/k ],

(49)

(50a)

2 [(~~+iO ~ )5k k'+Hk k']54k' X [(5Hk k'+5Hk k') 50k'+(5Hk k') 51k'] (50b)

where the unperturbed e-h relative motion Hamiltonian H and the nonlinear boson Hartree correction 5H are
defined in Eqs. (26) and (27). The two other terms 5H and 5H are nonlinear boson Pock and Bogolubov corrections
which read, respectively,

and

F 05Hkk. —— 2b,kfk5k k+2/k g Vkk-fk 5k k
—2$kVk k fk+ lim q. 2V q.

kt I , 0 ak q ak

r r

al(„
5Hk k —— 2hkgk5k k. +2/k g Vk k-gk-5k k

—2/k Vk i, fk —hm q. 2Vq q
k" q-0 Bk ~ Bk'

(1—2nk. ),

(1—2nk. ) .

(51)

Equations (50) show that the structure of Eq. (48) is
indeed very simple. Besides the PSF modi6cation of the
driving term linear in the test Seld, there are two ele-
mentary nonlinear processes, which determine the linear
response to a weak test beam; namely, (i) e-Ii-pair renor-
malization described by the H and I' terms, and (ii) eIi-
pair-pair creation and annihilation described by the 8
term. The H and I' terms do not couple 5/k+ and 5/k
whereas 8 does. The former process (H and R, renor-

malization of e-h pairs excited out of the coherent
ground state (condensate), should not be confused with
the renormalization of the condensate e-A pairs them-
selves which was treated in Sec. III. It is both due to
the anharmonic interaction with pump photons [first
term in Eq. (51)] and with other e-li pairs in the conden-
sate [Eq. (27) and remaining terms in Eq. (51)]. In the
latter process, creation and annihilation of pairs of excit-
ed e-h pairs, two pump photons, and thus two e-h pairs
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out of the condensate are destroyed and two renormal-
ized excited e-II pairs are created, one of which eventual-
ly transforms into a test photon, and vice versa. Again,
as evident from Eq. (52), both anharmonic interactions
contribute to this nonlinear process, the "depletion of
the condensate" stimulated by the presence of test pho-
tons, which necessarily leads to optical gain, even
though there is no population inversion.

The polarization induced by the test beam is

I I l I
[

I I I I I I I I
t

I I I I
t

I I I

P, =2IM* + 5/i+
k

A. Nonintel acting e-h pairs

(53)
I

/

Gap
I
I

I

For noninteracting e and h, V =0, the only anhar-
monic interaction in the problem is that with the pump
photons, and Eq. (50) can be solved analytically. Substi-
tuting the resulting expression for 5/i+ into Eq. (53), we
obtain for the optical susceptibility experienced by the
test beam, P„/E„

I I I I I I I I I I I I I

FIG. 3. Sketch of the test beam absorption as a function of
frequency co, for (a) nonresonant excitation of virtual e and h,
~~ gEg, (b) resonant excitation, co~gEg. The dashed lines
show the unperturbed absorption.

(n0 )2

0 02' —E ]k +EPk
—N f

—10

where the ground-state distribution function, n k, and the
renormaHzed conduction- and valence-band energies,
Eo„andE02&, are defined in Eqs. (15}and (13), respective-
ly. This result is identical to that derived for the case of
two-level atoms. ' Again„ it demonstrates that the simple
case of noninteracting "atomic" systems is included in
our general formalism.

The integrand in Eq. (54) exhibits poles at bId = kali,

0 0 0
N) =N]) —N2k

coq are the frequencies of collective excitations above the
condensate, i.e., the eigenmodes of Eq. (50). In the case
of nonresonant excitation of virtual e and h, Ioz &Es, the
excitation spectrum has a gap,

0 0mm Nk
——Nk

k

(56)

in leading order in the pump intensity, which is just the
minimum energy required to create real Stark shifted e-II
pairs. As evident from Fig. 1(a) and shown in Fig. 3(a},
optical absorption of test photons occurs at
Nf =N&+Nk=E]k —E2g, 1e., for Nf QN +Nk 0+ Eg,

0 0 0 0

and corresponds to the creation of renormalized excited
e-II pairs and destruction of a test photon [first term in
Eq. (54)]. Optical gain occurs at a photon energy sym-
metric about N, at N =N —Nk, I.e., for
Nf &N —Nk 0+2N —E, and corresponds to the siHlul-
taneous emission of a test photon and a collective excita-

tioii, or, wltll ai& —aii, =2aI& —(aI& +coi, ) = 2I'o& —E ik
0

+Ezi„to the depletion of the condensate; two pump
photons are destroyed while a test photon and renormal-
ized excited e-h pair are created [second term in Eq.
(54)]. Between the regions of absorption and gain, there
ts a spectral region of w&dth 2 mcnk Nk

——2NI, 0
& 2(Es —co~ ), in which the crystal is transparent.

In the case of resonant excitation, io~ & Eg, the excita-
tion spectrum has a gap

min aP~ ——2
I pE& I

(57)

which yields a spectral hole of width 4
I pE~ I

about co~,
in which the crystal is transparent. As evident from Fig.
l(b) and shown in Fig. 3(b), optical absorption into re-
normalized excited e-h pair states occurs both below,
cd& —

cubi, II&coI (co& —2
I /lE& I, aiid above, aII )ai&

+2 I HEI, I, this region, with spectral weight
(1 ni) ~ —,'.-Optical gain occurs for aI~+2

I pE~ I
&aI,

& Idp+aPk a and co, &aI —2
I pE I, with spectral

weight (n t ), i.e., regions of absorption and gain overlap
for aI —cook II(a), &aip —2

I
IJE I

and ai„+2
I pE

;+-:='-her by - th'1-" "th"b-:p-
tion always dominates.

For small pump fields, IE I
~0, Eq. (54) reduces to

the exact linear response result. The Stark shift occurs
in 6rst order in the pump intensity, while the optical
gain is at least quadratic in the pump intensity, because
two pump photons are required. The results for reso-
nant excitation should be contrasted with those for the
saturated state of a semiconductor mentioned in Sec. III.
In the latter case, real e-h pairs exist everywhere below
Ioz, so that (i) additional absorption and emission pro-
cesses are possible and (ii) the spectral weights are
changed. This results in optical gain below,
aI, & ~p —2

I IJE~ I, and optical absorption above,
aI, &Iop+2 I pE I, the spectral hole. i
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(58b)

we And that the projections satisfy the relations'

( b,co+i 0+co~ E„)5$n+—

~—,g (1—21 /k 1
)P„'~E,+ g [(X„+X„)5$+

( Ikco+ i 0 rii~ +—E„)5$„

+(X'„)5P],
(59a)

8. Interacting e-III pairs

For interacting e and ii, Eq. (50) can only be solved
numerically. Therefore, we limit ourselves again to non-
resonant excitation of virtual e and h, cop &Eg —Eo, and
small pump intensities, where we can expand the pair
wave function about unperturbed exciton states. As in
Sec. III, this amounts to replacing n kby 1 t(k 1

in Eqs.
(27) and (50a) and, moreover, neglecting n„ in the
denominator of expressions (51) and (52). The resulting
perturbations 5H, 5H, and 5H are then quadratic in
the condensate wave function fk, i.e., the pump field E,
and we recover exactly the q =0 Bogolubov-Beliaev
equations for the excitation spectrum of a weakly
nonideal Bose gas, ' ' including a driving term.

Expanding 5/k+(5/k ) in terms of unperturbed exciton
wave functions p„k(p„'k),Eq. (29),

(58a)

Xnrn g Pnk5Hk, k'4rnk'
k, k'

11„'+2&ny 1I, 1@m }+&ny 1I„1@.} (60)

In Eqs. (60) and (61), in order to make clear the physical
origin of the various interaction terms, we have explicit-
ly separated the contributions due to the anharmonic
exciton-exciton interaction from the anharmonic
exciton-photon interaction, H„and H„

11. =&CE, &0."k4k0 k

and

11.' =2VE, g 0:krak((') ~

k

The direct exciton-exciton interaction Id in Eqs. (60) and
(61) appears as a result of screening.

In leading order in the pump intensity, exciton pair
creation, and annihilation, as described by the Bogolu-
bov self-energies, can be neglected, so that the only non-
linear processes left are PSF and renormalization of ex-
cited e repairs. -The optical susceptibility experienced by
the test beam is'

(64)

X' = Xd.*k5Hk, kk*k
k, k'

II„+2&nml Id 1@/}+&nm 1I„1@/}. (61)

(59b)

In these equations, X„ is the Hartree exciton self-

energy defined in Eqs. (31) and (32). X„andXs are
Fock and Bogolubov exciton felf-energies which read,
respectively,

where

EHF EO+yH +yF

are the renormalized transition energies and

(65)

nk(Xn~+Xn~) ~k+(n~m)
k, k' m n

(66)

the renormalized oscillator strengths. Here, it is again
understood that the linear response result Eq. (36) is sub-
stituted into Eqs. (65) and (66), so that the nonlinear
corrections are of order 1E~ 1, i.e., linear in the density
N of virtually excited excitons, Eq. (37).

The comparison of g, with the optical susceptibility
X~ experienced by the pump beam, Eqs. (33)—(35), re-
veals the dil'erent renormalizations of excited e-h pairs
and virtual e-h pairs in the condensate. Most impor-
tantly, the anharmonic exciton-photon interaction yields
now an additional Stark contribution 0 to both the
shift and bleaching of the exciton resonances. This addi-
tional renormalization results from the composite nature
of excitons, in much the sayne way as the exciton-exciton
interaction.

If the pump detuning from the lowest n =1s transition
is not too large, most of the virtual e-h pairs will occupy
this state, leading to a Stark shift of the 1s exciton, as
measured by the test beam (only), '

2
I vE, 1

'
~isis — 0 X I 4 isk I 4 is, k( is, r=o '

Ets ~p

Under the same condition,

Introducing a ls exciton saturation density Nz " due to
PSF only,
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where

I

sF IP l

1s
—

Mp k k'

2
I t I

'14 i,.=o I

'
F I~

—
QPp

0

there will also be optical gain, just like in the case of
noninteracting e and h discussed above. This gain is
again at least quadratic in the pump intensity and suit-
ably interpreted in terms of the depletion of the conden-
sate or simultaneous emission of a test photon and a col-
lective excitation. From the diagonal part of Eq. (59) we
obtain for the spectrum of collective excitations

[(EHF )
~

y8
~

2] 2

&s" '= X 14)i,,kl'di. ,k/4i. ..=o
k

(69b)

Eq. (67) can be rewritten in the more intuitive form '
2li E, I' I@i..-of'

j51s —~0 ~psF
ts ~p S

This result should be contrasted with the Stark shift of
the band gap in the case of noninteracting e and h, Eq.
(56), or that of two-level atoms. The first factor in Eq.
(70) expresses the Stark shift of the atomic s and p states
that form the conduction and valence bands. The
second factor describes the renormalization of this atom-
ic shift due to excitonic efkcts. Its numerator reflects
the fact that an exciton is built up from a linear com-
bination of Bloch states that originate themselves from
the atomic states. It expresses the enhancement of the
oscillator strength due to the correlation in the excitonic
state. The same factor appears in Elliott's formula for
excitonic linear absorption. The denominator contains
the saturation density Xs ", above which the concept of
excitons becomes invalid. Note that the magnitude of
this second factor is rather independent of dimension;

/Ns "———,'and —", in three and two dimen-

sions, respectively. If we identify Eqs. (69a) and (70)
with the susceptibility and Stark shift of two-level atoms,
we find that one exciton behaves like Ns " independent
two-level systems (if exciton-exciton interactions are
neglected), i.e., Ns " states are required to form an exci-
ton. In the case of Prenkel excitons, we recover atomic
behavior.

The exciton-exciton interaction can produce an addi-
tional blue shift, in much the same way as in the case of
real excitons. %hile this shift is negligible in bulk semi-
conductors, ' it becomes signi6cant in narrow quantum
wells which are close to ideal 2D behavior. ' The
physical origin of this behavior has been discussed else-
where.

Equation (70) explains already the recent experimental
results obtamed on 100 A GaAs/Al„Gai „Asquantum
wells quantitatively, without any adjustable parameters.
For a pump intensity I =8 M%cm and a pump de-
tuning E

&

—~ -30 meV, the magnitude of the experi-
mental shift is 0.2 meV for the heavy-hole (hh) exciton
peak and 0.05 for the light-hole (lh) exciton peak. The
theoretical hh exciton shift is 0.15 meV and the ratio of
the hh exciton and lh exciton shifts 4, in excellent agree-
rnent with the experimental data,

Besides the Stark shift„ there is of course a corre-
sponding bleaching and, for higher pump intensities,

Using
~
Il„„~=Ili„,and substituting Eq. (70), we find

PSF [(g0 )2+4
(

E
(

2
( y )

2/~PSF ]1/2

(73)

which is exactly the expression for the Rabi frequency of
a two-level system oF resonance [see also Eq. (55)j, ' with
suitable exciton modifications. For small pump in'. ensi-
ties, this yields the linear Stark shift Eq. (70), while for
large pump intensities saturation sets in. In this context,
it should be noted, however, that for very high intensi-
ties it does no longer make sense to expand about unper-
turbed exciton states, so that Eq. (73) cannot be expected
to describe the saturation of the Stark shift correctly.

Using the same formalism, one can also calculate the
longitudinal dielectric function of virtually excited exci-
tons, which describes the screening of external charges
or fields. A test charge, V,„,(q, t), gives rise to a pertur-
bation

5s,„,(q, T)= V,„,(q, T), (74)

which combines with the local fie1d due to induced
charge density Aucuations to give an effective potential

V,dq T)= V,.«q T)+ V;..(q T» (75)

V;„d(q,T)=2V gtrM(k, q„T).
k

For small pump intensities and in the long-wavelength
limit q ~0, we obtain from Eq. (46), neglecting ni, in the
denominator,

which is identical to the Bogolubov-Beliaev expression
for the excitation spectrum of weakly nonideal Bose gas
(but it has a gap). ' ' Again, ai can be thought of as
the quasichemical potential. Optical absorption into re-
normalized exciton states occurs for cu, =~~+a„and
optical gain fol co& ——cop —67„=2cil&—(co& +co„),i.e., at a
frequency symmetric about ~ .

For not too large pump detunings from the lowest ex-
citon transition, and if we neglect the contribution to
Eq. (71) of exciton-exciton interactions, i.e., if we keep
only the self-energies H ' due to anharmonic exciton-
photon interactions, Eq. (71) reduces to

PSF [(~0 + IIF )2
~

ils
~

)1/
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Bl/lg Clog
lim V;„d(q,T) +2—V» g q lim 5nz, (k, q, T) —q lim 5n ~z(k, q, T)
q —+p Bk q-0 Bk q~0

and from Eq. (43}

+co 5„„—H„„lim 5n, z(k', q, T)~ — q hm V,s(q, T),
BT ' '

q 0 Bk q 0
(78a)

8 0
I —N 5I s +Hi i llnl 5nzi(k, q, T)~ — q' llII1 V tr(q, T) .

dT " ' »~0 Bk q~0
(78b)

Expanding 5niz(5nzi ) in terms of unperturbed exciton wave functions P„i,((()„*z),Eq. (29), and Fourier transforming
Eqs. (75)-(78), we finally obtain for the longitudinal dielectric function

e(q, co} . Vext(q 0')
lim ' = lim
q-0 eO q-0 V,s(q, co)

~1—2Vq
n, k, k'

tnt q gks ( nt'

N + l 0—E„+co&

'akim"" 'ak 4

6) + I 0+E„—co&

1
&n

I q r
I @& I

'«.' —~, )=1—4V g (co+i 0) (E„co—~ )— (79)

XVqq=1-
Pt CO

(80)

which yields the exact plasma frequency both in 20 and
3D [Vzn=(2»rez)/(eoq), V,

' =(4»re')/(e0ri )]
For almost resonant excitation of ls excitons,

co~ =E„,Eq. (79) reduces to

e(q, co) I
(n

I

q'r
I

1~) I
lim ' =1 2%V» g—

0 eo ' „(Oi+&0)z—(E„'—E'„)'

where ep is the background dielectric constant. Equa-
tion (79) shows once more that the long-wavelength exci-
tation spectrum in the low-intensity limit is simply
co„=E„—co~, i.e., the energy required to create real exci-
tons.

The consistency of our approximations is easily prov-
en by noting that the dielectric function Eq. (79) fulfills
the f-sum rule exactly. For large frequencies Oz, and us-

ing Eqs. (36) and (37), we find

e(q ~) 4V»

&p N

I

in condensed exciton systems ' are not correct, be-
cause local-field corrections are neglected, so that the
Ward identities are violated. Much the same can be said
for a recent discussion of the saturated state of a semi-
conductor.

If we replace co by the quasichernical potential, i.e.,
E&, in the low-density limit, and nk by the quasiequili-
brium distribution function Eq. (20) (with renormalized
parameters), and let the symmetry breaking pump field

go to zero, our formalism describes of course real Bose
condensed excitons as well. The excitation spectrum is
now gapless and, if one allows for a finite center momen-
tum q in Eq. (48), one readily finds that lim ocoq=cq,
with a density-dependent sound velocity, which interpo-
lates smoothly between the Anderson-Bogoliubov
mode' ' at high densities and the Bogoliubov mode at
low densities. Both the ground state of Bose condensed
excitons and their collective properties can thus be de-
scribed in the framework of one and the same model,
which reduces to the Bogoliubov-Beliaev theory of a
weakly nonideal Bose gas in one limit and ordinary weak
coupling BCS theory in the other. Much the same can
be said for superconductors. What is still missing is a
calculation of the critical temperature for arbitrary cou-
pling, which will be reported elsewhere.

which is nothing but the dynamical polarizability of hy-
drogen atoms. Together with our other results, Eq. (81)
clearly demonstrates that aII collective properties of con-
densed excitons can easily be derived from the gauge in-
variant formulation of BCS-type pairing theory for the
underlying ferrnions. Previous approaches to screening

V. CGNCLUSIGNS

We have presented a nonequilibrium theory of the
coherent nonlinear optical response of semiconductors
strongly driven by an intense monochromatic laser field
and in the collisionless regime. This theory correctly ac-
counts, for the first time, for the strong mutual interac-
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tions of the extended electronic excitations in semicon-
ductors. The interband interaction, i.e., the e-h attrac-
tion, is found to renormalize the Rabi frequency, while
the intraband interaction, i.e., the e-e and h-h Coulomb
repulsion, produces the usual renormalization of the e
and h energy bands. The theory extrapolates well from
real-space pairing (excitons) in the case of moderate
pump intensities to momentum-space pairing (e-h Coop-
er pairs} in the case of very large pump intensities. Vir-
tual excitons behave like a driven condensate of interact-
ing w eakly nonideal bosons. The excitons have an
anharmonic interaction among themselves that can be
interpreted as arising from mutual polarization and
hard-core repulsion. The interaction of excitons with
photons is anharmonic as well. This anharmonicity is
directly determined by the filling of the phase space and
has its roots in the underlying Fermi statistics obeyed by
the components of composite bosons.

%e have also determined the linear response of the re-
normalized system to weak perturbations produced by a
test photon field or a test charge. In the dilute limit, we
obtain analytical expressions which have simple and
meaningful physical interpretations and which compare
very well with the available experimental results.

Throughout the paper, we have stressed the funda-
mental similarities between the correct description of
photoexcited semiconductors and the theories developed
to describe coherent phenomena in other extended and
interacting electronic systems, such as superfiuids and
superconductors. The present work demonstrates once
more the close relationship between quantum optics and
low-temperature physics. The fundamental concepts
developed in condensed matter physics explain of course
the behavior of localized and noninteracting atomic sys-
tems as well, as a limiting case. On the other hand,
many interesting eFects which have been observed and
investigated first in atomic physics are just starting to be
studied in the condensed state. Photoexcited semicon-
ductors represent a key system in which the two fields
merge completely. However, some of the ideas are now
being applied to quantum Auids as well, as demonstrated
by the recent discussion of self-induced transparency of
sound waves 1n He.
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