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%e describe a numerical simulation of the isotropic spin--, Heisenberg antiferromagnet on

square lattices of size 4X4, 6X6, and sxs. A Hamiltonian Monte Carlo method is used to mea-

sure the energies of the lowest-lying singlet and triplet states, and we extrapolate these results to
give estimates of the properties of large antiferromagnets. Our result for the ground-state energy

per spin is ED/N2 -0.672+'0.001 for an infinite system. Within our statistical accuracy, the

singlet-triplet gap behaves as E~ —Eo= 2.1/N, which implies that the infinite system is gapless.

I. Hv rRODUc=nON

It is widely believed that high-temperature supercon-
ductivity in the new ceramic materials' arises from the
properties of holes in twoMimensional spin lattices, for ex-
ample, in planes of hybridized Cuz+ ions in La2Cu04. ~

Various proposals have appeared in the literature for the
detailed mechanism underlying the superconductivity.
These include the existence of a resonating-valence-bond
(RVB) ground state and Bose condensates advocated by
Anderson and co-workers 2 3 and Kivelson and co-
workers, 4 a related RVB spin-liquid droplet model due to
Lee, Zhang, and Chang, s a spin-bag charge carrier con-
sisting of bound-hole pairs suggested by Schrieffer,
electron-electron binding due to holewlectron interactions
suggested by Chi and Nagi, ~ and others which have been
reviewed in the literature. s These proposals are usually
substantiated by approximate solutions of the two-
dimensional Hubbard model or the closely related Heisen-
berg model with a hopping term, as these are believed to
provide a good description of the physics of electrons and
holes in the superconductors. Each of these mechanisms
is plausible u priori as one need only incorporate antifer-
romagnetic orderings and the essential presence of holes'0
to insure qualitative agreement with experimental results
reported for La2Cu04.

In principle one can test these proposals in the context
of the Hubbard and Heisenberg models by carrying out
numerical simulations. Unfortunately, this approach is
limited by the difficulty of accurately simulating large
spin systems. High-accuracy studies using direct diago-
nalization methods (the Lanczos algorithm in particular)
have at present attained limits of 24 spins for the one-
dimensional spin- —,

'
Heisenberg antiferromagnet" and 27

spins' for the two-dimensional system on a triangular lat-
tice. As the superconductivity ap ars with a fractional
hole doping of only a few percent, ' '3 it is probably neces-
sary to study systems having -100 spins in order to
resolve the relevant effects as a function of doping. This is
a much larger system than can be studied at present using
direct diagonalization of the Hamiltonian, which has
storage requirements that increase exponentially with the
number of degrees of freedom.

For the numerical study of large spin systems one must

presumably employ a stochastic "Monte Carlo" algo-
rithm; Hamiltonian methods of this type have previously
been applied to one-dimensional HeisenberII antiferro-
magnetic chains of up to 48 spins for spin- 2 (Ref. 14)
and 32 spins for spin-l. '5 With a sufficiently well chosen
importance sampling algorithm, numerical simulations of
two-dimensional spin systems of comparable size can be
carried out without difficulty. As a preliminary exercise
we have applied the "guided random walk" method of
Barnes, Daniell, and Story'4's to the isotropic spin- —,

'

Heisenberg antiferromagnet; as this model has been stud-
ied in the literature in a number of approximations it
serves as a convenient trial application.

For the sake of completeness we note that there also ex-
ist Monte Carlo methods for studying the properties of
two-dimensional spin systems at finite temperature.
These methods have previously been applied to spin sys-
tems on large lattices, for example, to the two-dimensional
Hubbard model on an 8x8 lattice'7 and the Heisenberg
model on a 32&32 one. 's These techniques are comple-
mentary to our approach in that they typically find in-
creasing errors as the temperature is decreased; for exam-
ple, the method used by Lee ei al. is a numerical simula-
tion of an expansion of the partition function in powers of
I/ks T. For this reason it may prove difficult to obtain ac-
curate results for some properties of the ground state of a
quantum-spin system using these methods. These tech-
niques are also inappropriate for studies of long-range or-
der in the isotropic case, as the Mermin-Wagner
theorem'9 implies that this can only exist at zero tempera-
ture in two dimensions.

At present little is known about the ground state and
excited states of the two-dimensional antiferromagnet.
Lich, Schultz, and Mattism have shown that chains hav-
ing half-integer spin are gapless (assuming translational
invariance of the ground state); this however does nor ap-
ply to the two-dimensional square lattice. This was noted
by Affieck, ' who argues that this unproven result is
nonetheless probably correct. The possibility of long-
range order in the ground state of the spin- 2 system is
also unresolved. A spin-wave calculation due to Ander-
son z suggests the existence of long-range order in the iso-

tropic case. Rigorous results include proofs by Frohlich
and Lieb that the two-dimensional anisotropic spin-S
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Heisenberg antiferromagnet possesses Neel order for all S
at sufficiently small temperature and transverse coupling,
and by Neves and Perez, who showed that long-range
order exists in the ground state of the isotropic system for
S& —,'.

Numerical studies have been carried out at zero tem-
perature by Oitmaa and Betts on periodic lattices up to
4x4 in extent, and at finite temperature by Lee, Joanno-
poulos, and Negele

's on square lattices up to 32x 32. Oit-
maa and Betts gave results for the ground-state energy
per spin and the staggered magnetization of the two-
dimensional isotropic system using direct diagonalization.
With our normalization they found Ep/N2 —0.702 on
the 4X4 lattice, and their estimate for an infinite system
was Ep/N = —0.655+'0.005. The approximate calcula-
tions summarized in Table II have yielded a number of
Ep/N2 estimates within a few percent of this value. Their
estimate of a finite staggered magnetization on an infinite
lattice is frequently cited as evidence for Neel ordering in
the ground state, although ambiguities in. the extrapola-
tion procedure noted in more recent studies of the triangu-
lar lattice imply a corresponding uncertainty in this re-
sult. The finite-temperature study of Lee et al. gave nu-
merical results for the internal energy, the specific heat,
and the susceptibility of this system, and from this the au-
thors inferred the existence of a gap that scaled as 1/N on
N&&N square lattices. A numerical simulation on a
moderately large lattice at zero temperature might im-
prove our understanding of this system by providing more
accurate estimates of the energy levels or by searching for
evidence of long-range order.

In this paper we address the first of these problems and
determine the ground-state energy per spin and the
singlet-triplet energy gap from numerical simulations of
4X4, 6x6, and Sx8 lattices. These finite-N results are
then extrapolated to give estimates for an infinite system.

Here, g&;J& denoted a sum over nearest-neighbor spins.
The minus sign in Ht is induced Q the unitary transfor-
mation U exp[ —ig; x.(i, +i~)s,'], which changes the
phase of down-spin basis vectors as

~
))~ —

~ J) on a
"checkerboard" of sites. This change in the sign of Ht is
convenient because it gives all weight factors the same
overall sign.

The algorithm requires that we generate an ensemble of
N random walks in the configuration space [S] of the
system, each of which follows a trajectory S (r) (m

1, . . . ,N ) in Euclidean time. These trajectories are
determined by the rule that we start at a specified initial
configuration S(0), and with each time step h, we attempt
a transition from the current configuration S(r) to anoth-
er configuration S'(i+h, ) with a probability of success
given by

p(S S') Nee rye h, . (4)

The configuration S' is chosen at random from the set of
Nett "allowed" configurations for which the matrix ele-
ment (S'~ Ht ~

S) is nonzero. The stepping rate re& is an
arbitrary positive number, provided that the resultin
p(S S') is small compared to unity. The [r&&
comprise the algorithm's importance-sampling mecha-
nism; they are chosen to encourage the random walk to
move towards configurations expected to have a large
overlap with the ground state.

A weight factor w (z) is associated with the mth ran-
dom walk, and these weight factors are defined so that
their histogram in configuration space [S( gives the
Euclidean-time wave function yr(S, r) when averaged over
an infinite number of random walks. The weight factor
w (i) is determined from the path followed by the mth
walk, the matrix elements of H and the stepping rates
freeI according to

II. THE METHOD w (r) -exp —gcttTg[0, i] (S'IHt I»

As the random-walk algorithm employed here has been
discussed elsewhere in an application to the one-
dimensional Heisenberg antiferromagnet, ' we merely
summarize the technique and will describe in detail only
those changes which were implemented in generalizing to
two dimensions. The algorithm allows one to generate
ground-state energies and expectation values from the
Euclidean-time wave function y(S, i) by following the
evolution of a sequence of random walks. We assume that
a Hamiltonian H and a space of configurations [Sj which
can be used as a complete set of basis states [

~
S)] for the

quantum system have been specified. In this case we take
for [S] the 2~ S,-diagonal spin states on an N xN square
lattice, and the Hamiltonian is divided into an [(S)] diag-
onal part Hp and an interaction part Ht which has no di-
agonal matrix elements;

where

ce Ep(S) greg~

transitions

(5)

r =R exp ——h,a
R

where R and S are adjustable guidance parameters and
Aa is the change in spin alignment which the transition
S S' would induce

Te[0,r] is the time the mth walk was at the configuration
S between the start and r, and Ep(S) is the eigenvalue of
Hpon IS&.

For this application we have chosen an exponential
form for r+. ,

H-Ho+H
A A

Hp =ps,'SJ,
(ij)

A A A

H, = —
—,'g(s, sj +s' sj, ) .

&ij &

(2)

(3)

aa—=a Qs,'SJ (8)
(ij )

This simple generalization of the R —Sha used in the
one-dimensional problem is automatically positive definite
for positive R. For S/R & 0 this r&e guides the random
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This allows an estimate of the ground-state energy which
becomes exact as z~ approaches infinity,

(w(z))&

(z2 —z)) (w(zz)&

Corrections to the asymptotic value of EP'(zi) due to ex-
cited states give this energy estimate an explicit time
dependence of the form

»m Eg'(z, )=E,+ee ~' "'",
gl ~ oo

(12)

where Eo is the energy of the first excited state above Eo
which also couples to the state

~
4'(0)&.

The numerically determined estimate EP(z~) is only
equal to the true ground-state energy Eo in the triple limit
h, 0, N~ oo, and zi oo. As in Ref. 14 we have
tested for systematic errors due to A„N, and zi depen-
dence, and have included appropriate corrections in our
reported values for the energies. The h, step size was
chosen to be 0.2/N; finite h, dependence was only visible
in our results on the 4X4 lattice. For that case only we
corrected for finite h, bias by measuring EP(zi) and
Ef"(z~) at the smaller step size h, 0.1/N2 and extrapo-
lating the two sets of measurements to h, 0 as in Sec.
III C of Ref. 14. Bias due to a finite random-walk ensem-
ble size was studied by partitioning the weight factors
from a set of N random walks into two sets of N~/2,

walks preferentially towards Neel order. We determine
approximate optimum values of R and S by minimizing
the variance of the log weights flu(w„, )1; this suppresses
the statistical errors of energies and matrix elements mea-
sured using these weight factors. The estimated optimum
values used in our simulations were R 0.5 and S 0.2.

Although a histogram of the weight factors in (5) could
be used to generate the explicit wave function y(A', z), in

practice there are too many basis states to construct such
a histogram, and we instead use the weight factors to
determine energies and matrix elements directly as de-
scribed in Ref. 14. To measure ground-state energies we
evaluate the mean weight (w(z)& at two Euclidean times,
z~ and z2& z~. (The angle brackets signify an average
over random walks. ) If the state ) 4'(0)& corresponding to
the initial configuration 4'(0) has a nonzero amplitude in
the ground state, at large Euclidean times the normalized
weight-factor histogram will approach

( yo&&yo ( 4'(0) &e (9)

so the mean weight satisfies

lim (w(z)&=xe
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FIG. 1. Energy per spin vs Euclidean time for the 6&6 lat-
tice.

four sets of N /4, and so forth, and recalculating the en-
ergies from each partition. The bias estimated in this
manner was incorporated in our fitted energies, although
it was found to be smaller than the statistical error in all
the measurements used in our fits. Bias due to finite z~

was studied by carrying our Ef"(z~) measurements at a
sequence of z~ values, and these results were then fitted to
the expected three-parameter asymptotic form (12) after
the inclusion of h, and N corrections.

The number of configurations used for each Edt't(zt)
[or Ep" (z~)] measurement on the 4x 4 lattice was 2's, di-
vided into 8 runs of 2'3 random walks each to generate
statistical errors. Measurements were carried out at zi
values of 0.8 to 2.0 in steps of 0.2 and at 3.0, and the re-
sults were fitted to (12) after inclusion of the other bias
corrections. On the 6&6 and 8 x 8 lattices central process-

in~ unit (CPU) time constraints restricted us to 8 runs of
2' walks each. On the 6&6 lattice the above values of z~

between 0.8 and 2.0 were used, and on the 8X8 we used
these and an additional measurement at zi 2.5. The
second Euclidean time z2 was taken to be 2z~ except on
the 8 &8 lattice, where it was decreased to z~+1.0 to com-
pensate for the increased weight-factor variance. (The
effect of different choices for z2 is discussed in more detail
in Ref. 14.) This procedure for generating finite-zi ener-

gy estimates was not followed strictly in every case; on the
6&6 lattice we did not carry out a zi 0.8 measurement
of Et'" because Ei was determined to sufficient accuracy
by the higher-zi measurements, and we also used the re-
sults of several earlier runs in our fits. These additional
measurements were generated during preliminary tests,
and incorporating them slightly improved our final statist-
ical accuracy.

TABLE I. Measured energy levels of the t~o-dimensional Heisenberg antiferromagnet.

F.o/N
E&/Iv

EI —E0

—0.7025 + 0.0006
—0.6660+ 0.0002

0.584+ 0.010

—0.6815 +' 0.0007
—0.6702+ 0.0004

0.407+ 0.029

—0.6766+' 0.0016
—0.6718 +' 0.0016

0.31 +' 0.14

—0.6727+' 0;0009
—0.6720+ 0.0005

0.052 ~ 0.085
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The fits of the finite r~ energy estimates E/I" (r~ ) (lower
curve) and EI'"(r~) (upper curve) on the 6X6 lattice to
the expected asymptotic form (12) are shown in Fig. 1;
our results for the energies per spin on this lattice in Table
I are the fitted values of the asymptotes Eo and E~. The
Eo and E ~ evaluations were distinguished by the choice of
the starting configuration 4'(0); this was a pure Neel state
for the singlet (Eo) measurements and a Neel state with a
single flipped spin for the triplet (E~) measurements.

The Monte Carlo calculations were performed on micro
VAX-II, Sun-4, and CRAY X-MP computers. As an in-
dication of the CPU time used, the measurement of
EIi"(r~ 2.0) on the 8X8 lattice using 2'5 random walks
required 1940 CRAY seconds, and this was our longest
run. The Sun-4 and micro VAX-II were approximately
10 and 60 times slower in execution of this program. The
total CPU time required to accumulate the energy esti-
mates used for our final results corresponds to approxi-
mately 15 CRAY hours.

—0.66

—0.67

—0.68

—0.69

—0.70

—0.71

—0.78
0 8 4 6 8

Lattice size (8/N)~

10

FIG. 2. Extrapolation of Eo/N2 (lower curve) and E~/N2 to
infinite square lattices.

III. RESULTS AND DISCUSSION

Our final results for the energy per spin of the lowest-
lying singlet and triplet states and the singlet-triplet ener-

gy gap E ~

—Eo on the 4 x 4, 6 x 6, and 8 x 8 lattices are
given in Table I.

To obtain-estimates for infinite-lattice energies we fitted
the finite-N numbers to the assumed asymptotic forms

E; (N)
+2

E; (N)
2N

+c;N (i3)

and independently to

(E & Eo) (E i Eo) + «.N (14)

These forms were motivated by the large-N behavior of
the one-dimensional system2 and by inspection of our
data. The resulting estimates for an infinite system are
also given in Table I, and the data and the corresponding
fits to (13) are shown in Fig. 2.

As the ground-state energy per spin on an infinite sys-
tem is given by both the Ep/N and E&/N asymptotes,

we combined these to obtain our final estimate of

lim
EG(N) —0.6724 ~ 0.0005 .

Of course there remain systematic errors due to the as-
sumption of the asymptotic forms (13) and (14) which we
cannot easily determine, but the convergence of Eo/N2
and E&/N2 to within 0.001 suggests that the systematic
errors are no larger than this.

Our value for the 4 x 4 ground-state energy agrees with
the result found by Oitmaa and Betts, but our energies on
larger lattices are somewhat more negative than expected
given their extrapolation. Our estimate of the ground-
state energy per spin on an infinite lattice is also more
negative than the results found by most of the approxi-
mate calculations which have appeared in the literature.
For comparison these are summarized in Table II with
our normalization convention.

We find that this system is gapless to within the numer-
ical accuracy of our simulation; the singlet-triplet energy
gap E~ —Eo appears to converge to zero as x/N, where
«. =2.1. This is consistent with the results of Lee, Joan-

Eo/N

TABLE II. Summary of Eo/N2 estimates for an infinite square lattice.

Method Reference

—0.641
—0.641
—0.642
—0.643

—0.655 +' 0.005
—0.656
—0.658
—0.659
—0.664
—0.6666
—0.670

—0.6724 + 0.0005
—0.716

Variation al
Variation al
Variation al
Variation al
Direct diag.
Variation al

Spin wave I/S
Variation al

Perturbative
Mean-field theory
Spin wave I/S
Random walks

Perturbative

28
29
30
31
25
32

22,33
34
35
25

33,36

37
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nopoulos, and Negele, ' and is reminiscent of the large-N
behavior of the oneMimensional system.

We have shown that a Monte Carlo simulation of a
moderately large twoMimensional Heisenberg antifer-
romagnet at zero temperature is feasible, and that it is
possible to extrapolate to estimates of the properties of
infinite systems with relatively small statistical errors. As
this system is very similar to models proposed for the
high-temperature superconductors, it should also be possi-
ble to study these systems numerically using Monte Carlo
techniques. In future work we hope to investigate hole-
hole interactions and the efFect of holes on long-range or-
der; these efFects are widely held to be central to the phys-
ics of high-temperature superconductivity, but detailed
numerical studies in two&imensional systems such as the

Heisenberg and Hubbard models have not been attempt-

Nore added in proof. The apparent E) in Fig. 1 repre-
sents an average over many excited states and hence is
larger than it would be at infinite Euclidean time. We are
grateful to D. A. Huse for noting this discrepancy.
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