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Nearest-neighbor resonating-valence-bond state in two dimensions
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The ground state of the spin- 2 Heisenberg model with antiferromagnetic coupling on a square

lattice is analyzed in terms of nearest-neighbor resonating pair-bond states. Extrapolating from
finite lattice calculations it is found that the pair-bond state provides a much closer variational es-
timate of the ground-state energy than the widely used Gutzwiller wave function. The effect of
an orthorhombic distortion of the square lattice, such as that observed in the Cu-0 planes in the
high-T, oxides, on the spin state is analyzed by exact calculation for finite lattices. From total-

energy considerations it is found that the system has a slight tendency towards such a lattice dis-

tortion.

I. INTRODUCTION

It is well known' that in the large-U limit the half-filled
Hubbard model can be transformed into the spin- —,

'

Heisenberg model with antiferromagnetic coupling. The
latter was solved exactly for a one-dimensional chain by
Bethe, 2 and analyzed in terms of pair-bond states by
Hulthen. For two dimensions no exact solution is avail-
able; however, finite lattice and quantum Monte Carlo
calculations5 have been carried out for the square lattice.
The ground state has long-range order smaller than ex-
pected from the naive Neel state; the extrapolated
ground-state energy is very close to spin-wave calcula-
tions. '

For the spin- 2 antiferromagnet on a triangular lattice,
Anderson argued that a resonating pair-bond state
[resonating valence bond (RVB)] such as that which
arises in the one-dimensional (1D) case is a much closer
description of the ground state than the Neel state. This
description has taken new significance with Anderson's
suggestion that the RVB state is relevant to the high-T,
superconducting oxides. The expectation is that doping or
lattice coupling would stabilize the RVB state in the
square lattice representing the Cu —0 planes in these ma-
terials. This has led to a resurgence of interest in the
Hubbard model in the large-U limit, notably in terms of
Gutzwiller variational calculations. '0" Although it is
known '2 that in one dimension the Gutzwiller form gives
an excellent description of the ground state for the large-U
transformed Hamiltonian, the same cannot be said in
higher dimensions. In fact, the Gutzwiller variational en-
ergy" for the half-filled case for a square lattice is 15%
higher than the exact energy. When the filling is less than
one-half a state without long-ran e order is likely stable,
but whether the Gutzwiller form, "which can be viewed
as an RVB state with a wide range of bond lengths, is a
good variational state is uncertain. A somewhat different
view, in which the RVB state is pictured in terms of
short-ran~e pair-bond states, has been adopted by other
authors. '

In this note, we examine the spin- —,
'

Heisenberg antifer-
romagnet on a square lattice directly in terms of the pair-

bond states much in the spirit of Anderson's original sug-
gestion. Our motivation is to compare the widely used
Gutzwiller correlated state to the pair-bond state. We
also investigate the effect of a lattice distortion represent-
ing the orthorhombic deformation observed'4 ' in the
new materials on the ground state of the system.

IL RVB ANALYSIS OF THE SQUARE
ANTIFERROMAGNET

(tJ)(kl)+ (ll)(Jk)+ (tk)(lJ) 0, (3)

which can be readily established from (1). This relation
may be represented graphically as in Fig. 1(a). A way to
extract a linearly independent set of pair-bond states was
enunciated by Rumer write labels 1,2, . . . ,N (repre-
senting the spins) along the circumference of a circle, in

A. Sackgroiind and definitions

Following Hulthen3 we use the notation (ij ) to repre-
sent a singlet state of two spin- —,

' objects,

1(ij)- (a;p, —p;aj),
2

where a and p are the usual S, eigenstates. Define a
pair-bond state of N spins to be a direct product of N/2
such terms:

~Pb)-(t ttz)(t3t4) (ttv t, ttv). -
The set of pair-bond states consists of all such states with
every possible pairing of spins, a set consisting of (N —1)!!
states. The most general definition of an RVB state is as
any superposition of such pair-bond states. 3 s The more
recently proposed forms for the RVB state9 " are partic-
ular choices within this general category. In what follows,
we will use the term RVB in the more general sense.

There are two diSculties in dealing with pair-bond
states: they are nonorthogonal, and the set of all such
states is hugely overdetermined. The linear dependence is
evident from the relation
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bor pair-bond (NNPB) states and its subset of linearly in-

dependent nearest-neighbor pair-bond (LINNPB) states.
The original work of Hulthen applied the pair-bond

concept to the Heisenberg antiferromagnetic chain. By a
recursive approach he showed that the best variational en-
ergy for a ground state constructed out of a superposition
of LIPB states reproduced the exact W ~ Bethe result
quite well. Andersons proposed that such a state also de-
scribed the ground state of the Heisenberg antiferromag-
net on a two-dimensional triangular lattice, where the
simple Neel state is frustrated. As already mentioned, he
has more recently proposed that such a state, or a spin
liquid state similar to it, is responsible for the unusual
properties of the high-T, oxides.

8. Pair-bond analysis and discussion

We first note the almost trivial result that the ground
state of the spin- —,

' Heisenberg antiferromagnetic Hamil-
tonian,

(b)

FIG. 1. (a) Graphical representation of the linear depen-
dence of pair-bond states [Eq. (3)l; (b) Rumer's graph of the
pair-bond state (14)(23)(58) (67).

any order; represent each singlet pair in a pair-bond state
by drawing a line segment between the corresponding la-
bels [see Fig. 1(b)); then, the set of linearly independent
pair-bond states corresponds to the set of graphs in which
no two segments cross. A graph in which two segments
cross can be expressed, as in Fig. 1(a), as a sum of two
other graphs in which the segments are uncrossed. By un-

crossing one pair at a time, every graph can be written as
a sum of noncrossing graphs. In the following, we refer to
these as the linearly independent pair-bond (LIPB) states.

It is evident that a pair-bond state is a spin-0 state,
since it is a direct product of spin singlet-pair states.
Bloch'~ showed that the number of independent ways in

which spin-0 states can be formed from N spin- —,
' parti-

cles is

M~ N!/[N/2! (N/2+ I )!1.

The rule for enumerating LIPB states given above gen-
erates exactly M~ states; the LIPB states are, in fact, in-
dependent2o and span the subspace described by Bloch.
The LIPB states can be chosen in a very large number of
ways: every rearrangement of the labels on the circle gen-
erates a different set; furthermore, different sets of LIPS,
not expressible in terms of Rumer's noncrossing graphs,
can also be chosen. In passing, we note a relation useful in

generating the Hamiltonian matrix for the Heisenberg
Hamiltoniaa:

(5)

In the following, we will have occasion to consider two
smaller sets of pair-bond states, the set of nearest-neigh-

on a square lattice (where J &Q, and the sum is over
nearest neighbors) can, in fact, be expressed exactly as an
RVB state (with the RVB state defined in the original
sense as a superposition of LIPB states). The proof fol-
lows. For any lattice consisting of two interpenetrating
sublattices, Marshall, following a suggestion by Peierls,
showed that the ground state of the Heisenberg antifer-
romagnet must be a total spin-zero state. 2' Since the
LIPB states span the S 0 subspace, as discussed above,
the ground state must be expressible as a superposition of
LIPB, i.e., as an RVB state. (For the same reason,
Hulthen's LIPB formulation of the ground state of the 1D
chain should be exact. ) This conclusion does not preclude
the possibility of long-range order: since the set of LIPB
states includes states in which greatly separated spins are
paired in singlets, an RVB state defirled in this manner
could possess long-range order. The intuitive picture im-
plied by Andersons 9 and adopted by others'3 emphasizes
short-range singlet pairs. Accordingly, we restrict our at-
tention to the smaller set formed by the linearly indepen-
dent nearest-neighbor pair-bond (LINNPB) states.

The Rumer procedure for generating the LIPB set does
not contain any geometric input. Nor, given a pair-bond
state, is there any simple way to determine its projection
on, say, nearest-neighbor pair-bond states. We have
found it simpler to start from the opposite end, namely, to
construct an LINNPB set by pairing each spin successive-
ly with all of its nearest neighbors and retaining only those
that are linearly independent. These form the basis for a
variational wave function. Obviously, the LINNPB set
depends on the lattice under consideration, and for finite
lattices, on the cell chosen. For the square lattice one can
construct periodically extended square cells for which the
interpenetrating two-sublattice feature is retained for cells
of size %=2k=i +j, where i,j,k are integers. Cells
for N 4 and %=20 are shown in Fig. 2. The number of
LINNPB states for values of N up to 20 are given in
Table I. We note that for N 4 and 8, the LINNPB
states, in fact, span the S 0 subspace by themselves. In
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FIG. 3. Extrapolation of finite cell results to the infinite lat-
tice; the LINNPB and exact ground-state energies are shown.

FIG. 2. Unit cells for N 4 and N 20.

Table I, the number of LIPB states [which is independent
of geometry, and is given by Eq. (4)] is also listed for each
N. As 1V grows, the LINNPB set forms an ever smaller
subset of the LIPB set. In a system well described as a
quantum spin liquid, this small subset should contain the
physically important states and provide a good description
of the ground state.

We have calculated the variational ground-state energy
of the Heisenberg antiferromagnet for the square lattice
within the manifold of LINNPB states for periodically ex-
tended finite systems with N 4, 8, 10, 16, 18, and 20
spins. The ground-state energy estimates thus obtained
can be compared with the exact finite cell ground-state en-
ergies calculated by Oitmaa and Betts~ (extended by us
here to include N 20). For both the variational calcula-
tion and the exact calculation, the computational effort
grows rapidly with N, and becomes excessive beyond 20
spins. For instance, the exact calculation for N 20 re-

quired approximately 2 h CRAY time.
The results are listed in Table I and plotted in Fig. 3.

The calculated energies are linear in I/N for N ) 8, with
a small oscillation. Fitting the results to a straight line,
the extrapolated ground-state energy is E/JN —0.651
~0.005 for the exact calculation, and —0.600+'0.005
for the LINNPB state.

Using the Gutzwiller variational wave function on a
square lattice, Gros, Joynt, and Rice" found E/JN—0.550 (15% higher than the exact energy), to be com-
pared with the LINNPB energy of —0.600 (8% higher
than the exact value). Evidently, the LINNPB is a better
variational form in this case. The various N ee energies
are shown in Table II.

As mentioned earlier, the ground state of this system
very probably possesses long-range order. 4 ~ For exam-
ple, spin-wave calculations yield a ground-state energy
very close to the exact (numerical) value for a state with a
Neel-type order (although greatly reduced from the naive
Neel value). 67 Nevertheless, the LINNPB state gives a
surprisingly good answer for the ground-state energy,

TABLE I. Exact and variational ground-state energies for periodically extended finite cells on the
square lattice. The columns headed by LIPB, NNPB, and LINNPB contain, respectively, the number
of linearly independent pair-bond states, nearest-neighbor pair-bond states, and linearly independent
nearest-neighbor pair-bond states.

N

4
8

10
16
18
20
26

LIPB

2
14
42

1430
4862

16796
742900

NNPB

2
24
44

272
448
808

4684

LINNPB

2
14
37

272
447
808

E/NJ (exact)—
1.00000
0.75000
0.73007
0.701 78
0.693 99
0.69081

E/NJ (LINNPB)—
1.00000
0.75000
0.71865
0.676 68
0.665 69
0.659 26
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Calculational approach

Neel state
Gutzwiller state'
LINNPB state

Spin wave

Exact numerical'

—0.500
—0.550
—0.600+' 0.005
—0.645
-0.651 +' 0.005

'Reference 11.
bReference 6.
'Reference 4, extended to % 20.

TABLE II. Ground-state energy of the infinite square lattice
computed several ways.

considering here a spin-Peierls type of distortion in

which alternating pairs along a chain would have different
couplings. This will be considered elsewhere.

We have carried out exact calculations of the ground
state for the above model for periodically continued cells
with N 8, 10, 16, and 18 for several small values of h, .
The procedure we use is identical to that described by Oit-
maa and Betts4 for the case J, =J». Marshall's proof '

that the ground state is a singlet can be readily general-
ized to the case where he0. Here the basis set is larger
due to the reduced symmetry. The difference in energy
between the undistorted and distorted lattices is linear for
small 6:

(E' —E)/x-Jg~t
~

. (10)

better in this limit than the Gutzwiller form. Away from
the half-filled limit of the large-U Hubbard model, where
it is likely that the ground state lacks long-range or-
der, 9"'3 the LINNPB should fare better as a variational
ground state by comparison. This question is currently
under investigation.

0 J& S&J St+),J+J» Stj'S(,J+&,
&J lJ

(7)

where S;J denotes the spin at lattice location (i,j) on the
simple quadratic lattice. The difference between J„and
J» arises from the difference in the hopping integral be-
tween neighbors along the x and y directions in the large-
U Hubbard Hamiltonian caused by an orthorhombic dis-
tortion of the square lattice. For simplicity, and in close
approximation to the experimental situation, we assume
the distortion is area preserving to lowest order, i.e.,
a a(1+b) along y, and a a(l —b) along x. If we
write the hopping integral as

t-to-cu, (8)

where u + ab is the change in hopping distance, then, to
lowest order,

J, ,-J,(1~~/2),

III. ORTHORHOMSIC DISTORTION

Both the 30-K oxides and the 90-K oxides undergo a
tetragonal-to-orthorhombic transition before they attain
the superconducting state. '4 ' It is known that suppress-
ing the tetragonal-orthorhombic transition (e.g., by regu-
lating oxygen content) also suppresses superconductivity.
Anderson, Baskaran, Zou, and Hsu22 have found in a
mean-field treatment of the RVB state a "twitch" transi-
tion which they identify with the observed crystal distor-
tion. Further, Mattis and Mattisz3 have advanced a
theory which uses the in-plane bond asymmetry to explain
the high transition temperature. Thus, one might ask
whether the 2D square Heisenberg model ground state
shows any tendency for a lattice distortion. To investigate
this, we write the spin Hamiltonian in the following form:

b' -—4ga Jo/(«to) . (12)

According to band-structure calculations, (Ref. 25) to
=0.5 eV; from Weber's work26 on the electron-phonon
interaction we estimate a=2.5 eV/A; from the Raman
observation27 of phonon modes we take &= 4 eV/&'; a is
known from experiments to be 3.8 A; following Anderson
and Zou2s we take Jo = 1000 K. This gives b'* = 10

TABLE III. Energy change of the spin system due to lattice
distortion for various cell sizes: Ed;. —Fo gANJ.

10
—0.0088

In Table III, our results for g are shown. Note that g is

nearly constant (= —0.009), independent of ¹ We see
that the energy of the spin system is lowered by such a dis-
tortion, which can easily be understood. In the limit when

J»/J„O (i.e., 5 2), the system is equivalent to a
noninteracting set of antiferromagnetic one-dimensional
chains, for which E' —E is —0.235NJ (using the exact
numerical result for the square lattice, and the analytical
result2 for the chains). The adiabatic theorem suggests
that the system evolves continuously from 2D to 1D as the
anisotropy in the coupling strength is increased.

We have also carried out a variational calculation of the
ground-state energy for the distorted system within the
LINNPB manifold. Our motivation was to determine
whether the distortion might be related to a reduction in

long-range order. We find, however, that the degree of
agreement between the LINNPB ground-state energy and
the exact energy is nearly independent of 5 for small 6,
extrapolating as above to 8% as N

Using our estimate (10) of the reduction in the elec-
tronic energy due the lattice distortion, we may now cal-
culate the expected size of the distortion. The analysis
below is simplified in that it ignores quantum fiuctuations.
The change in the total energy of the system, including
elastic energy, due to the lattice distortion is

(E,'- F., )/W -J,g~+ —,
' SC(ab) ', (»)

where K is an appropriate elastic force constant and all
other quantities have been defined earlier. Minimizing
with respect to b gives

where A 4aab/to and Jo 4t)/U is the coupling strength
for the undistorted square lattice. Note that we are not

8
—0.0091

16
—0.0113

18
—0.0089
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The observed T 0 distortion is of this order of magnitude
in the La-Sr-Cu-0 system, 's and an order of magnitude
larger in the Y-Ba-Cu-0 material. ' However, the energy
gain we find is very small (=5x 10 eV), while the ob-
served structural transition occurs at several hundred K,
which implies that the observed distortion cannot be ex-
plained solely in terms of the large-U Hubbard model. In
the Y-Ba-Cu-0 material it is believed that the
tetragonal-orthorhombic distortion is driven by oxygen
vacancies in the intervening Cu-0 chains. z9

this result extends to the partially filled case, as we
suspect, then the short-range pair-bond state should be a
better candidate for an RVB state lacking long-range or-
der than the Gutzwiller form. By exact small-cell calcula-
tions we have found that the spin energy is lowered by an
orthorhombic distortion. Our estimate of the energy gain
indicates, however, that this effect is not significant in
driving the observed crystal distortion.

Note added in proof. Kohmoto [Phys. Rev. B 37, 3812
(1988)) has also performed a similar analysis of the 2D
Heisenberg antiferromagnet.

IV. SUMMARY AND CONCLUSION

We have performed a variational calculation of the
ground-state energy of the 2D square Heisenberg antifer-
romagnetic Hamiltonian within the manifold of resonat-
ing nearest-neighbor pair-bond states. Such states are an
explicit representation of the intuitive picture used for the
RVB. Compared with the (numerical) exact ground-state
energy, we find that the pair-bond state gives a much
closer estimate than the widely used Gutzwiller state. If
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