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We have investigated the acoustic plasma branch present in the longitudinal spectrum of two
spatially separated parallel quasi-two-dimensional conducting layers. Our approach is based on
the dielectric theory and is completely analytical within the random-phase approximation. By
means of a systematic analysis we have obtained several exact results concerning the plasma
dispersion relation. In particular, we have derived an exact expression for ¢, the acoustic plasmon
group velocity in terms of the effective masses, densities and geometrical parameters of the hetero-
structure. We find that when the two layers are identical the system always admits a branch of
acoustic plasmons as undamped modes for any finite value of the distance between the layers.

INTRODUCTION

Momentous advances in growth techniques presently
allow the fabrication of materials consisting of alternat-
ing layers of two or more semiconductors. At the vari-
ous interfaces electronic or hole layers can be trapped
whose low-energy dynamics is, for all practical purposes,
quasi-two-dimensional.! The current growth techniques
can actually be exploited to tailor the properties of a het-
erostructure to specific dynamical requirements. In par-
ticular, it is in principle possible to design heterostruc-
tures with a customized excitation spectrum.

Semiconducting electronic heterostructures have re-
cently provided a valuable testing ground for the study
of plasma excitations in various geometrical
configurations.>~* Semiconducting superlattices are a
typical example of such a class of materials. In particu-
lar, they are the only known electronic systems in which
plasmons have been directly observed.’ Recently the
possibility of acoustic surface plasma modes in certain
semiconducting superlattices has also been investigat-
ed.>¢

In this paper we focus our attention on a peculiar
electronic system comprised of two spatially separated
parallel quasi-two-dimensional conducting layers (Fig. 1).
This problem is of current experimental interest because
the system at hand is a model for double-quantum-well
heterojunctions and single inversion layers with more
than one populated subband.”~*

The collective plasma excitation spectrum in double-
quantum-well electronic structures has been first investi-
gated by numerical means.” A more transparent analyt-
ic treatment based on the dielectric approach has been
later presented which explicitly showed the existence of
two plasmon branches of which one is characterized in
the electrostatic limit by an acoustic dispersion relation
at long wavelength.® The properties of such an acoustic
branch have also been studied in the context of a single
electronic inversion layer with two populated subbands.’
Recently the possibility of the plasmon mechanism for
superconductivity in a double well in which the effective
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interaction is mediated by both plasmon branches has
also been studied.'®

The present analysis focuses on the condition for the
existence as undamped modes of the acoustic plasma
branch in terms of the relevant physical parameters of
the heterostructure. Although our theory is based on
the same formalism used in previous studies, our main
results significantly differ from the ones previously re-
ported. In what follows we will develop a systematic
and analytic approach which allows us to precisely
characterize and examine the plasma dispersion relation
in terms of the geometry, the Fermi velocities, and the
electronic effective masses. In particular, for the case of
identical layers we will explicitly derive in closed form a
simple and exact expression for the plasmon group ve-
locity. Finally, we will prove that in the same situation
the system always admits a branch of acoustic plasmons
as undamped modes for any finite value of the layer sep-
aration.
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FIG. 1. Schematic of the electronic double layer system
studied in the text. The layers are parallel and separated by a
distance d.
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DISPERSION RELATION

At long wavelength the collective plasma oscillations
of a single (i.e., isolated) two-dimensional electronic layer
have a dispersion relation given by!!

wolq)=(2mne’q /egm *)'/? | (1)

where ¢ is the magnitude of the (two-dimensional) in-
plane wave vector, n and m* the electronic density and
effective mass, and €, is the average dielectric constant
of the medium. Within the random-phase approxima-
tion (RPA), two-dimensional plasma excitations are
therefore undamped for ¢ =0 since w(q) lies outside the
continuum of the electron-hole pair excitations. In what
follows we shall refer to this type of mode as an optical
plasmon.

Consider next two parallel conducting quasi-two-
dimensional layers separated by a finite distance d (see
Fig. 1). Because of the lack of translational invariance
the collective modes for the system at hand are given by
the zeros of the determinant of the dielectric tensor
€;(g,).> The RPA expression for €;(g,) in this sys-
tem is given by

0.(

6,j(q,a))=5,j—V,j(q)Xj q,OJ), l,]:lyz ’ (2)

where X?j(q,a)) is the noninteracting charge susceptibili-
ty of the jth layer and V};(q) stands for the Coulomb in-
teraction vertex between two electrons, respectively, in
the ith and jth layer. In obtaining Eq. (2) we have as-
sumed that there is no overlap between electronic wave
functions on different layers. If for simplicity sake we
limit our analysis strictly to literally two-dimensional
electronic layers the matrix elements V;’s are simply
given by V,,(q)=V,,(q)=2me/exq, and V,,(¢)=V,,(q)
=e ""2me’/e,q. Making use of Eq. (2) the dispersion
relation is readily obtained as given by

D(g,0)=1—V,(g)[X})(g,®)+X%(g,0)]

+Vi(@(1—e 24X (q,0)X%(q,0)=0, (3)

where the layer susceptibilities are accordingly evaluated
for literally two-dimensional electrons.!! Clearly this re-
sult is independent of the sign of the charge of the car-
riers on each layer. Equation (3) must then be then ex-
plicitly solved for w as a function of ¢.

As shown in Ref. 8 the longitudinal spectrum of the
total system is comprised of an optical plasmon branch
[of the type of Eq. (1)], plus a new branch whose disper-
sion relation at long wavelength is of the type
wlg)=c,q, i.e., an acoustic plasmon. A schematic of this
spectrum is shown in Fig. 2. Although it is rather sim-
ple to arrive at a rough characterization of the spectrum
some care must be taken in evaluating the acoustic
plasmon group velocity c,. The physical origin of the
difficulty lies in the fact that in calculating the energy as-

q

FIG. 2. Schematic of the long-wavelength region of the lon-
gitudinal spectrum o vs g for the electronic double layer sys-
tem studied in the text. The two shaded regions labeled 1 and
1 + 2 are the electron-hole pair continua for the two layers. In
region 1 only pairs in layer 1 can be excited, in region 1+ 2
pairs in both layers can be excited. The two continuous thick
lines represent, respectively, the optical (OP) and the acoustic
branch (AP) of the plasmon spectrum. In this case the acous-
tic plasmon group velocity is taken to be larger than vy, the
largest of the two Fermi velocities.

sociated with the plasma oscillations a cancellation due
to the screening of the long-range part of the Coulomb
interaction occurs in the case of the acoustic branch.

As well known within the RPA a bulk acoustic plas-
ma branch is well defined only if it lies outside the
electron-hole pair continua of the two charge com-
ponents (see dashed regions in Fig. 2), i.e., the region of
the ¢, plane in which the imaginary part of the suscep-
tibilities X% (g,®) is different from zero. If w(g) lies in-
side one of the continua the plasma mode can decay into
electron-hole pairs and is Landau damped. Accordingly,
in RPA the condition for the existence of the acoustic
branch as an undamped mode in the long-wavelength
limit is then simply ¢, >vg, where vp is by definition
the largest of v, and vp,, the Fermi velocities in the two
layers. Our aim is to determine the precise condition for
the validity of the above inequality.'”

In order to obtain an exact expression for the plasmon
group velocity ¢, in the region of Fig. 2 in which ¢ =0
and Im{X%(q,w)} =0, we proceed as follows. We first
introduce for ¢ =0 the power expansion

olg)=c,g+c,q°+c3¢°+ -, )

for the plasmon dispersion relation, and define a func-
tion F(q) as

F(q):D(q,cpq+Czq2+C3q3+ ), (5)

where D is defined in Eq. (3). For ¢ =0, F(g) can in
turn be written in terms of the power expansion (in fact
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a Laurent-Taylor expansion)

Fl@=f_1g '+ fo+f1a+f29"+ ", (6)

where the f,’s are suitable coefficients which are derived
with the use of Stern’s formulas for the X?j(q,w)’s (Ref.

11) in Egs. (3) and (5). The mode condition Eq. (3) is
then satisfied by requiring that all the coefficients f;’s
vanish independently. As can be readily found f_, de-
pends on ¢, only and by equating its expression to zero
we arrive after some algebra at the following equation:

2kyd —(1+42k,d)[1—(vpy /c, P12 —(m3 /m ¥ )1+ 2k d)[1—(vf, /¢, ]2
+[14+(m3 /m})+2k,d 1 — (v, /c, P11 —(vpy /e, P]2=0, ()

where k; =2m*e?/e.#’ is the Thomas-Fermi wave vector of the ith layer. Equation (7) is the sought condition which
determines in the general case the plasmon group velocity ¢, in terms of the effective masses, densities, and geometri-
cal parameters of the heterostructure.

It should be noted that the present procedure is quite general in character and allows to obtain the dispersion rela-
tion at all orders in ¢. In fact, as it turns out the coefficients of the higher-order terms in the expansion for w(q) can
in principle be systematically evaluated simply by solving an equation in which only the coefficients of the lower-order
terms appear. For instance, the value of ¢, can be readily obtained in terms of ¢, as determined in Eq. (7) by requir-

p

ing that f, in Eq. (6) be zero. This leads to the following equation:

(wywy)[ww, —2k kyd (e, —w, ), —w,)]

CZ:

where we have defined w; =(c} —v})"/%

ACOUSTIC PLASMON: EXISTENCE CONDITION

By definition, the critical value d, of d is the value of
the layers separation for which ¢, =vg,. By using this
value of ¢, in Eq. (7) we obtain

2

)1/2
F2

1 (Ugl—”

d 9

¢ 2k v — (g —vEy)"? .
For larger values of the distance, the branch lies outside
the electron-hole continua. We immediately notice that
our exact, and indeed very simple, expression for d,
clearly predicts a critical distance equal to zero in the
particular case in which the two Fermi velocities are
identical. Accordingly, in such a situation an undamped
acoustic plasmon branch always exists for all finite of the
interlayer distance d. This is at variance with the results
of Refs. 8 and 9. Furthermore, when vy =vp,=vy and
mi=m3, Eq. (7) has an exact simple closed form solu-
tion, given by

vp(l+4-kd)

° = (142kd) 7 1o
where k =k,=k,. As illustrated in Fig. 3, c, increases
from its critical value vy, at first quadratically and then
(asymptotically) like a square root with kd.

We also want to stress the fact that for any finite value
of d greater then d. there always exists an acoustic
branch. The plasma modes in each layer are decoupled
strictly only for d = co.!*

With a procedure similar to that used to obtain Eq. (7)

kR wi[2k,d(c, —w,)—w, ]+ kyvpwi[2k,d(c, —w,)—w,]

we have also studied the solution for the acoustic mode
in the region which is outside the electron-hole continu-
um of the layer with smaller Fermi velocity, but inside
the continuum of the electron-hole excitations of the lay-
er with greater Fermi velocity (the shaded region labeled
1 in Fig. 2). In this region Im{X},(¢,0)] is different
from zero. The solution for w(q) is then necessarily
complex, and the acoustic branch is damped. One can
verify that when ¢, approaches (from below) the limiting
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FIG. 3. Plot of the ratio of ¢,, the plasmon group velocity,
to vy the Fermi velocity vs kd, the product of the Thomas-
Fermi wave vector and the layers distance, for the case in
which the two layers are identical. Notice that for small kd,
the value of ¢, increases quadratically from its critical value v,.
For large kd, c, increases like (kd)'/?



940 GIUSEPPE E. SANTORO AND GABRIELE F. GIULIANI 37

value vy, the imaginary part of w(q) is much smaller
than the real part and is exactly zero for ¢, =vp). The
latter situation occurs when d =d.. The two solutions
for c,(d) obtained in this way perfectly match. This is
in contrast with the conclusions reached in Ref. 8.
There the RPA is held responsible for a series of odd re-
sults that are instead a consequence of an incorrect
analysis.

It must be mentioned here that Landau damping of
the acoustic branch is still possible via intersubband ex-
citations. This will, of course, have an energy threshold
close in value to the subband separation and will there-
fore be negligible in the long-wavelength limit.!’

In conclusion, we have characterized the acoustic part
of the longitudinal spectrum of an electronic double lay-
er system within the RPA. By means of a systematic
analytical approach we have obtained several exact re-
sults concerning the plasma dispersion relation. In par-
ticular, we have derived an exact expression for c,, the
acoustic plasmon group velocity, and d,, the critical dis-

tance for their existence, in terms of the effective masses,
densities, and geometrical parameters of the structure.
Finally, an interesting and exact result is that when the
two layers are identical, for any finite value of their dis-
tance, the system always admits a branch of acoustic
plasmons as undamped modes.

A similar analysis can be carried out also for the opti-
cal plasmon. In such a case, however, the energy is
mainly determined by the long-range part of the
Coulomb interaction which makes the problem rather
trivial.
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