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Dynamics of Suxons in a system of coupled Josephson junctions
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DiFerent dynamical processes with fluxons are analyzed in the framework of a known model
describing two weakly coupled long Josephson junctions. It is demonstrated that two colliding
fluxons belonging to diFerent junctions can form a bound state due to energy dissipative losses.
Collision between a fast fluxon and a large-amplitude (low-frequency) breather {bound fluxon-
antifluxon state) belonging to diFerent junctions is considered too, and a threshold condition for
the possibility of breaking the breather into the fluxon-antifluxon pair is found. Some radiative
eFects are investigated. The equilibrium velocity of the fluxon s motion in the case when this ve-

locity exceeds the limit velocity of the mate junction is found with regard to the "Cherenkov" en-

ergy losses. Then radiative eFects accompanying collision of two fluxons are considered for the
cases when the fluxons belong either to the same or to diFerent junctions. For both eases the total
emitted energy and its spectral distribution are obtained.

I. INTRODUCTION

Solitons play an important role in different branches
of modern solid-state physics (see, e.g. , Refs. 1-3}. The
concept of a soliton is especially important in dynamics
of long Josephson junctions (LJJ's), where a fluxon (mag-
netic Aux quantum} is a fundamental solitonic excitation.
The standard equation to describe I.JJ is2'

CP„—riP, =A, s—in/+ Jo/J, A,

where P is the nondimensional magnetic faux, Jo is the
bias current, and C, s), and J, are the Swihart velocity,
the viscosity (coefficient of dissipative losses), and the
critical current density of the junction. The junction's
length is assumed to be much greater than the Josephson
penetration depth A. (see, e.g., Ref. 3). The parametersf:Jo/J, and y =A—,Csl are often considered to be small,
which enables us to apply the technique of perturbation
theory for solitons. A number of problems concerning
dynamics of 6uxons and breathers, the latter being
bound fiuxon-anti8uxon states, have been treated by
means of this technique (see, e.g., Refs. 2 —10).

A more specialized object which may demonstrate
nontrivial solitonic dynamics is a weakly coupled system
of two I.JJ's. A model describing such a system has
been elaborated in Ref. 11. According to that paper, the
coupled junctions are described by the system of two
equations for P,:—P and $2=/:

yak =»n4+f—i+~4

af„y2abg, =b—sintti+—fib +a/„„,
where x and t are measured in units of, respectively, A, ,

d ~1lC1 ~ =C1~C2 b =~1~~2 & is a small couphng
constant, and the sense of other notation is obvious.

Note that a system of two sine-Gordon equations with

a coupling of a more general form arises when one con-
siders interaction of two linear arrays of atoms adsorbed
on a metal surface. '

In the quoted paper" only one dynamical problem
was considered: emission of radiation by a Auxon moving
in the 6rst junction due to its interaction with a small-
amplitude periodic wave in the second one. In the
present paper we shall consider several other problems,
which also may be experimentally realizable.

In Sec. II we consider, in the adiabatic approximation
(i.e., disregarding radiative losses), interaction of two
fluxons belonging to difFerent junctions. %e demon-
strate that, due to the action of dissipation, the two Qux-
ons may fuse into a bound state which we shall call a
bifluxon. Assuming

~

ct
~

&&yf„y22, we find a threshold
condition which makes the fusion possible. Then we

briefly consider one more problem which is at least of
methodological interest: breaking of a low-frequency
(large-amplitude) breather into a fluxon-antifluxon pair
due to interaction with a fast Quxon belonging to the
mate junction.

In Sec. III we study radiative effects. First we deter-
mine the equilibrium velocity of the motion of a Auxon
in the ease when this velocity is larger than the limit ve-
locity C, of the mate junction [provided C& &Cz, i.e.,
a & 1, see (2)), i.e., the effective radiative dissipation due
.to "Cherenkov" emission in the mate junction should be
taken into account. Then we consider radiative effects
accompanying interaction of Auxons belonging to the
same or difFerent junctions. In the ease when the two
colliding (interacting) fluxons belong to difFerent junc-
tions we are able to calculate the energy spectral density
of emitted radiation and the total emitted energy provid-
ed their' relative velocity V is not too small: V»

~

a
~

.
In the case of two Auxons of opposite polarities belong-
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ing to the same junction we calculate the energy emitted
in the mate junction. In the latter case the calculation
can be explicitly performed provided V « 1 or
1 —V «1 ~

II. ADIABATIC INTERACTIONS OF FLUXONS

A. Dissipative binding of two fluxons
into a bifluxon

In absence of perturbations (i.e., at f; =y;=a=0,
i =1,2) the system of equations (2) turns into uncoupled,
exactly integrable, sine-Gordon equations. The solutions
corresponding to fluxons (or antifluxons} are

P(x, t) =4 arctan[exp[o &(x —V& t )/(1 —V, )' ]], (3a)

where V, are the fluxons' velocities and cr; =+1 are their
polarities. The interaction between the junctions (a&0)
distorts the fluxon's form; most important is the "image"
of the fluxon [Eq. (3)] in the mate junction, e.g. , the im-
age of the fluxon (3b) in the first junction is

g(x, t)=4arctan(exp[crab(x —V2t)/[1 —(aV2) ]'~ j },
(3b)

U(g) = —8ao &o zg/sinhg . (7)

Evidently, the law of motion is determined by the energy
equation

where g=g& —$2. Equations (6) are written in the "non-
relativistic" approximation, i.e., at (d gj /dt ) « 1

(j =1,2).
The simplest adiabatic effect which can be described

by these equations is the binding of the two fluxons into
a bifluxon (a bound state of fluxons) due to dissipative
losses. We shall study this effect in the most interesting
case when the uniform motion of free fluxons is nonrela-
tivistic, i.e., f «y. [see (5)], and the coupling between
the two equations is the strongest perturbation in (2),
i.e.,

~

a
~

&&yj. Our goal is to find a threshold condition
admitting the binding of the two fluxons colliding with
the velocities V& z [see (5) and formula (15) below]. Us-
ing specified conditions, we may consider the problem in
the nearly inertial center-of-mass reference frame (the
time of braking of the center of mass will be much larger
than the binding time). So, in the first approximation we
may neglect the terms =f,y in Eqs.. (6) to arrive at the
mechanical problem for the effective particle with the re-
duced mass m =4 [see (6)] moving in the potential

2ao. 2b sgnZ2
P(Zz ) = [Z2 coshZ2

[1—(a Vz )2]
2

d
'2

+ U(g) =2V02, (8)

—sinhZ2 ln(2 coshZz )], (4)

where

V, =cr, [1+(4y,/n f, )'] (5)

In the presence of the mate junction relative corrections
to (5) are -0(a ).

Adiabatic equations describing the interaction of two
fluxons belonging to the two different junctions can be
obtained in a simple way if one employs the energetic
approach (see Ref. 3): Inserting the expressions (3) into
the term of the Hamiltonian which accounts for the
interaction between the two junctions, i.e., H;„,
=a f dx P„g„yields the equations of motion for the

centers of the two fluxons g& and (2. In the simplest case
a =b =—1 these equations are

41 ~f la 1 dkl
4 1

aCT )0 2
(1—g/tanhg),

sinh

Zp b(x ———V2t )/[1 —(a V2 )~]'~~ .

Besides, it should be taken into account that in the ab-
sence of a mate junction, but in presence of the bias
current and dissipation, the velocity of the fluxon's uni-
form motion is uniquely determined (see, e.g., Ref. 3 ) as

dg, 2/dt =+&
~

a
~
g/sinhg . (9)

To obtain the threshold condition for the binding pro-
cess, it is necessary to calculate the total dissipative en-

ergy loss hE during the collision between the fluxons:
The threshold condition may be written as

AE & T)+T2 —Tb (10)

where T, z =4V, z =~ f, 2 /4y, z are the kinetic ener-2 2 2 2

gies of the two fluxons prior to the collision, and
Tb =8Vb is the kinetic energy of an eventual bound state
(bifluxon), V& being its equilibrium velocity analogous to
V& 2. To calculate Vb, let us note that the total driving
force and friction force acting upon it are, respectively,
2m(o, f, +o 2f2 ) and —8 V(y, +y2), so that

Vp = V~ —V2 being the velocity of the effective particle
at infinity.

The cases of the attractive (ao,crz&0) and repulsive
(ao&cr2&0) potentials (7) are qualitatively different (as
are interactions of a fluxon in a solitary junction with an
attractive microinhomogeneity and with a repulsive
one'3' }. In the former case we shall assume

y &
~

a
~

&&f., which enables us to neglect the term 2VO

in Eq. (8). Then the law of motion of the two fluxons

may be represented in the form

~f~a~ dk—y, + . (1—g/tanhg),
4 dt sinh

(6a)

(6b)

m a2i+a2f2
V =—

4 ri+r2

The quantity b,E can be calculated, with regard to (9), as
follows:
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2

DE=8 + y) I
g=1

where

D—= 8 J dx

' 1/2

= 15.01

=2(ri+r&) f" d(=D(ri+rz)&
I
a

I—ao dt
(12)

There also exist other interesting adiabatic e8'ects.
One of them is the capture of a fluxon moving in one
junction by a microinhomogeneity localized in another
junction. If, for example, the microinhomogeneity is
repulsive, a condition providing the possibility of the
capture can be readily obtained as was done for the
w ell-known analogous problem when both the Auxon

and the inhomogeneity belonged to the same junction
(see Refs. 3, 13, and 14).

Inserting (11) and (12) into (10), we obtain the binding
threshold condition for the attraction case

fz 2(f itTi+fzaz)'
(ri+rz) I

a
I

& 4D, +
(r, +y, )'

(13)

2(f itT i+f2az}'
2+ 2

r2 (r i+r2)
(14)

provided the same condition
I
a

I »y, 2 holds. The
latter inequality demonstrates that the condition (14) is
less restrictive than (13).

The repulsive interaction of the two Auxons (o, =cr2,
a&0) in the particular case of two identical coupled
junctions [a =b =1, y, =y& in (2}]with f,&f2 was con-
sidered in the recent paper by Volkov. ' The threshold
condition for dissipation-induced binding of the colliding
Auxons into a bifluxon obtained in Ref. 15 is a particular
case of our condition (14).

The bifluxon may perform damped internal oscilla-
tions; in particular, the frequency of small oscillations is
~ =

I
a

I
/3 in the attraction case, and

~'= ~
I
(a d i aA ) /—8a

I

in the repulsion case (the latter expression is valid as
long as it gives co2«1). When the internal oscillations
are absent the distance between the two Auxons bound
into a biAuxon is, respectively,

3K
0o= If iai —f2a2 I4a

0o= »1«(f iai f~tJ~)I—
for the attraction and repulsion cases [we again regard
(f ia i f2a~ }la as a small paramete—r)

The relation (13) is valid if the potential force (-a) act-
ing upon the Auxons during their overlapping is much
larger than the friction force -yV-yv'I a I, which
explains the above condition y, « I

a
I

.

In the repulsion case (i.e., ao~o2&0) obtaining the
binding threshold condition is more simple: One should
require that the height 8

I
a

I
of the potential barrier (7)

be larger than the same combination T& + T2 —T& of the
kinetic energies which occurs in the right-hand side of
(10} (cf. an analogous condition for trapping the fluxon
by a repulsive microinhomogeneity },

B. Destructive collison between a Suxon
and a low-frequency breather

Now we shall briefly consider a problem where adia-
batic inelastic interaction between solitons is possible on
account of interjunction coupling only, with no direct
participation of the dissipation. Let us consider collision
between a Auxon moving in the second junction with the
velocity V2 —here we shall regard it as an independent
parameter, but one should bear in mind that, as above, it
is expressed in terms of f2 and y2 according to the rela-
tion

V2 = tJ2[tt '+ (4r 2/~f

similar to (5}—and a low-frequency (large-amplitude)
breather resting in the first junction. In the absence of
perturbations the breather is described by the solution

Pb,(x, t) =4 arctan[to ' sin(cot }sechx ], to « 1 . (16)

b.(co )= ma+, b [1——(aV, ) ]' ( coXs) F( T)o,

where

[sinh(t /a)][cosh (t /a) —(To+ t ) ]F(To)= dt
[cosh (t /a)+(To+ t )~]2

To=(slIlX)/Coo too is the value of co prior to the col-
lision, and 7 is the value of the breather's internal phase
at the collision moment. The result (17) is applicable if
[1—(aV2)2]'~~«1. The collision breaks the breather
into a free Auxon —antifluxon pair if co becomes negative
after the collison, i.e., if —b(to ) &too (see also Refs. 16
and 17).

The breather (16) may be treated as a bound state of the
Auxon-antifluxon pair; the breather's binding energy is

Eb = —8' (see, e.g. , Ref. 16). The collision may result
in breaking the breather (16) into a pair of the free
Auxon and antifluxon. This problem is of certain meth-
odological interest, and it has been considered in Refs.
16 and 17 for difFerent dissipative and conservative per-
turbations within the framework of one sine-Gordon
equation. For the problem described by the coupled
equations (2) we obtain the following result: The change
of the breather's parameter m due to the interaction
with a moving fast Auxon is
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III. EMISSION OF RADIATION IN THE SYSTEM
OF COUPLED JUNCTIONS

A. "Cherenkov" emission from a fast fluxon

As was emphasized in Refs. 3 and 8—11, emission of
radiation by fluxons under the action of different pertur-
bations is of significant physical interest. The simplest
problem related to radiative effects in the system con-
sidered is to determine an equilibrium velocity of the
fluxon's motion in the case when the velocity defined ac-
cording to Eq. (15) is larger than the limit velocity C, of
the mate junction (in our notation C, =1). In this case
the equilibrium velocity V2 is determined by the energy
balance where the radiative losses due to the Cherenkov
emission generated by the "tachyonic" motion of the
Auxon's image (4) in the mate junction should be taken
into account on a level with the dissipative losses and
the input term originating from a bias current. Follow-
ing the general method of calculating the emission power
(the energy emission rate), 's'9 it is straightforward to
find the rate P of the Cherenkov radiative losses:

1/a
Vp

FIG. 1. The solid line depicts the I-V (current-voltage)
characteristic corresponding to Eq. (19); the dashed line depicts
the standard I-V characteristic of LJJ with a fluxon in absence
of the mate junction.

2m a V2 2 n [1—(aV2) ]'
P( V2) = sech

(V', —1)' » (V', —1)'" (18)
B. Emission from colliding fluxon and

antifluxon belonging to the same junction

The energy balance equation has the form

2g V2f 2
—8y2V2+P( V2) .

4&2 a V2

[1 (aV )2]1/2

[1—(a V )2]'/

b2( V2 1)2 2b ( V2 1)1/2sech (19)

As is well known, the fluxon's equilibrium velocity is
proportional to the voltage across the junction, so that
Eq. (19) is, in fact, the I-V (current-voltage} characteris-
tic of LJJ with a trapped fluxon in the presence of a
weakly coupled mate junction (Fig. 1). As we see, the
differential I-V characteristic df2/dV2 as a function of
V2 may acquire two extrema (local maximum and
minimum) in the range 1& V2 &a ' on account of the
"Cherenkov correction, "provided a is sufficiently large.

I

Inserting the expression (18), we obtain the following
equation:

More sophisticated problems are related to investiga-
tion of radiation emission accompanying a collision of
two fluxons. If.the fluxons belong to the same junction
we mean a fluxon-antifluxon collision, while in the case
when they belong to different junctions any relative po-
larity for the fluxons is possible. We shall deal with the
case f»4y, / when the fluxon-antifluxon collision does
not result in their dissipative annihilation. '

First let us examine the former case. A general
method for calculating the emitted energy has been put
forward in Ref. 17. The distinctive feature of the
present problem is that colliding fluxons generate radia-
tion in both junctions. In their own junction the emis-
sion is generated on account of the perturbating term
-(f, —y, P, ) in (2). This emission has been investigated
in Refs. 9 and 10. Here we shall investigate the
perturbation-induced emission of radiation in the mate
junction where there are no fluxons. The corresponding
emitted energy can be explicitly calculated in the two
limiting cases. First is the case when, as in Refs. 9 and
10, the colliding fluxon and antifluxon are "relativistic, "
i.e., fi »yi [1—V, «1, see (5}]. Substitution of the
exact two-soliton solution of the sine-Gordon equation
into the right-hand side of the second equation from (2}
and subsequent straightforward calculations yield the
spectral density of the emitted energy (a =b =1)

n a sinh [(n/2v, )(1+k )'/ ]62(k}=
4v, sinh [{n./2v, )[(1+k )' +k]] sinh [(n./2vi)[(1+k2)'/2 —k]I

(20)

where v, —:{1—V, )
' »1, V, is defined by (5), and k

is the radiation wave number. The total emitted energy
can be readily obtained from (20):

(E, )2= f 82(k}dk =—', a v, .

The second tractable case is that when f, «y, (i.e.,
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Vii «1). In this case, in the first approximatio~ we may

insert into the right-hand side of the second equation (2)
the well-known exact sine-Gordon solution which de-
scribes the colliding kink (fluxon) and antikink
(antifluxon) with the zero velocity at infinity:

P(x, t) =4arctan(t sechx ) . (22)

In this case calculations yield the following expression
for the emitted energy spectral density:

Cz(k)= J dx[1 —(1+k )'~ sinhx tanhx]

&(exp[ —ikx —eoshx(1+k )' ~]

and the total emitted energy

(E,~ )2 =38.4a

(23}

As we see from (20) and (23), in the case v, »1 the emit-
ted energy is concentrated in the spectral range k & vi,
while in the case Vi «1 (slow fluxons) it is concentrated
in the long-wave range k2 & l.

It is pertinent to note that, provided that (E,~)i
defined in (24) is larger than the total kinetic energy 8V2

of the colliding fluxon and antifluxon, the considered ra-
diative losses will result in a fluxon-antifluxon annihila-
tion into a bound state (breather).

82(k)=8,(k; V, +~V2), (26)

~, —= (1—Vi)' [(1+@ )' —kVq]/I Vi —V, I

x2=(1—V2)'~ [(1+k )'~ kVi]/I V2 —V, I—

V, and V2 are determined according to (5) and (15).
The corresponding total emitted energies can be calcu-

lated in the same two limiting cases that have been dis-
tinguished above: 1 —VJ «1 and a «(V2 —Vi) «1.
In the former case

C. Emission from colliding Nuxons belonging
to difFerent junctions

In the case when the colliding fluxons belong to
different junctions the emitted energy can be explicitly
found for all the values of the fluxons' velocities except
for the case when their relative velocity V is very small,
V & a, as in this case the collision may result in radia-
tive binding of the fluxons into a bifluxon (dissipative
binding was considered in Sec. II).

Straightforward calculations yield the following ex-
pressions for the spectral densities of the energy emitted
in both junctions (as above, o =b =1):

m a (1—Vi)
8i(k)=

( V2 —V, ) sinh (m.a, /2) cosh (na2/2)

(25)

(E, ), =8a v2/3v, ,

(E, )2=8a v, /3v~,

where v, =—(1—V ) '~, j=1,2. In the latter case

(E, )i=(E, )2=16m. a (V2 —Vi)

&(exp( —2ir/
I V2 —Vi I

) (28)

exp(00) = [16
I
a

I /[Wf i f 2)l]—
xln[16I a

I /[m(f, f2)]]— (30)

(for definiteness, we assume f, f2 &0). On—the other
hand, it is well known that, in the absence of perturba-
tions, a collision between two sine-Gordon kinks (flux-
ons) moving with nonrelativistic velocities V, (V, «1)
gives rise to the shifts b g, 2 of the centers of the kinks,

b,g, z= sgn( V, i —V2, ) in[4/( V, —Vi )2] . (31)

Straightforward analysis based upon Eqs. (30) and (31)
brings us to the following conclusion (for the sake of
simplicity, hereafter we set y, =y2 —=y): Collision be-
tween a bifluxon with ag & 0 and a free fluxon which has
the same polarity a as a corresponding (jth) component
of the bifiuxon results in the breakup of the bifluxon un-
der the condition

(fi —fz) &32y'/~
I
a

I
. (32)

Expression (32) is relevant provided
I
a

I

& y « I
a

I
.

Bifluxons with a/&0 are more stable against the col-
lision.

In the opposite case, when the polarity o3 of the free
fluxon is —o -, the situation is more complicated. If, for
instance, the free fluxon belongs to the 6rst junction„and
f, &

I f2 I, the breakup takes place under the condition

(3fi+f2 }'/(f i
—f2}

& 16y /[m
I
a

I
in[16

I
a

I
/n(f i f2)]j, (33)—

The expressions (25)—(28) demonstrate the same qualita-
tive features as Eqs. (20), (21), and (23).

In conclusion let us note that the efFects which have
been analyzed theoretically in the present paper should
manifest themselves in an experiment as peculiarities of
I-V characteristics of the systems of coupled junctions.
Details will be presented elsewhere.¹teadded in proof The. collision of a bifluxon with a
free fluxon may give rise to interesting inelastic efFects.
The simplest one is breakup of a biAuxon into a pair of
free fluxons. Indeed, the total potential U„,(g} of the
interaction between two fiuxons bound into a bifluxon is
given by expression (7} plus a contribution from the bias
currents:

U„,(g) = 8acrg—/sinhg n(f, —f g, — (29)

where g =g,g2, f =a f(j=1., .2). It is straightfor-
ward to see that, provided

I
a

I » I f i f2 I, the —p«en-
tial (29) has a local minimum and a local maximum
separated by the distance go determined by the expres-
sion
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irrespectively of the sign of ao Expression (33) is
relevant provided a «y «

~

a
~

. However, in the
present case (o3= —o, ), two other channels of inelastic
interaction between the bifluxon and the free fluxon are
possible. If ao. &0, the fluxons with the polarities cr&

and o.
3
———o.

i colliding in the first junction annihilate
(due to dissipative losses) into a breather under the con-
dition

13ft+f21 &8&3y'", (34)

so that eventually there will remain a free fluxon in the
second junction and nothing in the first one. If acr &0
and

~

a
~

&&y, the collision leads, under the same condi-
tion (34), to another result ("recharge" ): The two flux-
ons in the first junction switch roles, so that eventually
one will see a free fluxon with the polarity cr3 ——+0 i in
the first junction, and a bifluxon with the reversed sign
of acr (acr &0).

Analogous consideration reveals that a collision be-
tween a bifluxon with ao & 0 and a corresponding
antibifluxon results in their dissipative annihilation pro-
vided

(35)

A colliding bifluxon and antibifluxon with ao. &0 turn,
due to the dissipative losses and under the same condi-
tion (35), into a bifluxon-antibifluxon pair with ao &0.
Finally, collision between two bifluxons with the polari-
ties (a, ,o z) and (o', , —tr2) gives rise to two free unipolar
fluxons in the first junction and dissipative annihilation
in the second one under the condition

~ f2 ~

& 4V2y ~ .
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