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An upper bound for the strong-coupling correction 7y , to the second upper critical magnetic
c

field of an Eliashberg superconductor is established as a function of Coulomb pseudopotential (1*)
and of impurity content (¢ *). Results are also given for many actual superconductors for which the
electron-phonon spectral densities are known. These are found to always fall below our upper
bound although in some cases they can fall fairly close to the maximum, which varies with 4* and

tt.

I. INTRODUCTION

Superconductivity in many systems can be explained
through the use of Eliashberg theory, which assumes that
it is the electron-phonon interaction which is responsible
for the superconductivity.! ~* However, in the case of the
recently discovered very-high-critical-temperature (T,)
oxides,’ 7 there is much evidence against the electron-
phonon interaction being the mechanism exclusively re-
sponsible,>~ 1% and other mechanisms have been con-
sidered.!!—1® Still, it is of interest to know the limitations
placed on superconducting properties by the Eliashberg
equations themselves. This is especially true since the ex-
act mechanism involved in the oxides is still an open
question and, in particular, if the mechanism still in-
volves a boson exchange (say excitons or plasmons in-
stead of phonons), the Eliashberg equations can still be
applied, at least as a first approximation. Upper bounds
on such quantities as the gap ratio 2A,/kT. (Ref. 17), the
normalized specific-heat jump AC(T,)/y(0)T, (Ref. 18)
and the zero-temperature reduced upper critical field
h.,(0) (Ref. 19) have been explored in previous work.

The quantity we concern ourselves with in this paper is
the strong-coupling correction factor to the upper critical
magnetic field, an( T,t*). As we have made explicit,

this factor is dependent on absolute temperature 7, and
on an impurity parameter ¢ ¥, which is related to the im-
purity lifetime 7 by t*=1/277. For T < T, ny (T,t*)
is defined through the expression?%2!

H,,( T,t+):anz(T,t“L)HszS(T,t“L) ,

where HES is the renormalized BCS result. Since H,,

vanishes at T,, we must define anz( T,,t") using the ex-

pression

dH_,(T,t™")
dT T

i t+)dHCBZCS(T,t+)
_r, " M, e dT T=T, '

In either case, the Fermi velocity does not appear in
17HC2( T,t*) since we have not included Pauli limiting in

our calculations. We shall limit ourselves to the cases
T =0and T =T, using values of t* of 0 meV (the clean
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limit), 50 meV (a reasonable value for real materials), and
500 meV (a value which is taken to represent the dirty
limit, t ¥ — o ). The question we intend to answer for the
above cases is, given any superconductor described by the
Eliashberg equations, and with arbitrary electron-phonon
spectral density a’F(w), does the strong-coupling correc-
tion factor 7y | exhibit a maximum? It should be noted
that, in our attempt to answer this question, no con-
sideration is given as to whether or not the spectral densi-
ties used are consistent with, for example, lattice stability.
This is simply assumed to be the case. In Sec. II the
mathematics behind 7 | is discussed and this is followed

by a discussion of functional derivatives in Sec. III. Sec-
tion IV is concerned with proving a scaling theorem. In
Sec. V results are given and in Sec. VI conclusions are
drawn.

II. MATHEMATICAL THEORY OF 9 H,,

As is obvious from the way 7y ) is defined, we must

first know what H,, and HEZS are in order to calculate it.
The strong-coupling equations for H ,(T), applicable for
any impurity concentration, were first given by
Schossmann and Schachinger.?? These are

Aiw,)=7T 3 [Mo,, —0,)—p* 0o, — |0, | )]

Aliw,,)

X Y@lio,))—mt*

, (1)

and

olio,)=w,+7T 3 Mo, —o,)sgn(w,,)
+ 7t tsgn(w,) , (2)

where iw,=inT(2n—1), n =0, £1, £2,..., are the
Matsubara frequencies. T and ¢t were defined in the In-
troduction. In Egs. (1) and (2)

» _ Qa’F(Q)
Mom =00 =2 G e

dQ , (3)
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A(iw,) is the Matsubara pairing energy and w, is a cutoff
for the Coulomb pseudopotential u* required for conver-
gence. The quantity X which is a function of the renor-
malized Matsubara frequencies @(iw,, ) is given by

X(Zb(iw,,))=—z:-fmdqe“qzarctan _g9Va ,
Vao |@lio,)]
4)
where
€ +p,2
a= |3 H (Tt )vg .

Here e is the absolute charge on an electron and vy the
Fermi velocity.
In order to find H BCS, one must solve

T _ s 1 WT/TH/R*) W ey,
T <l 2m+1| 1—[AL/(h ") (a?)
(5a)
where
R *(T)=1eHES(Twp?/7*T? (5b)
k{,:-——tj——— , (5¢)
T,(14+A)
and
J(a} )=2f0°°da) exp( —w?)arctan(wat, ) ,
with
m= (h*)” (5d)

T 2m +1|[(T/T)+A
These equations were derived from the full Egs. (1) and
(2) by Schachinger et al.?* They are the same as in the
work of Werthamer et al.,?*~2 as written also by Orlan-
do et al.,*' and Decroux et al.?’ except for appropriate
renormalization factors of 14+ A with A given by (3) with
n=m

In the clean and dirty limits the calculation is greatly
simplified. Marsiglio et al.?® have derived expressions
for a'(T,). These can be related to H2*(T,) using the
relationship

a'(T,)=(e/2)HZS(T, W},

giving us
—28.2T,(1+A)?
H3S(T,)= > , 6)
evg
in the clean limit and
_ +
HEoS(T,)= =2 UEA) @)
evg

in the dirty limit.
In the same paper, a,,(0) was also derived so that us-
ing the relationship between a and H_, gives us for the
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clean limit

20.5

ev?

HES(0)=

TH1+1) (8)

In the dirty limit, Eq. (5a) reduces to the following re-
sult given by Rainer and Bergmann:*°

1 BCS(t
o702 T wiy=
In(¢)+ W 2 Py >)=0 9
where t=T/T. and hES(t) is related to HES(T)

through

61TTC(1+)»)I

ev?

HBCS( BCS(t)

Using Eq. (9) one can easily derive that, for the dirty lim-
it,

16.6
ev}

HESS(0)=—"t+T.(1+1) . (10)

Equations (6), (7),
in Sec. III.

(8), and (10) will be particularly useful

III. FUNCTIONAL DERIVATIVES

For the purpose of this work, the functional derivative
of ny » with respect to the electron-phonon density
c

a’F(w), is required. This is defined in terms of the
change in My, and A"ch when a?F(w) is enhanced by an

infinitesimal amount € at a particular frequency w,. Tak-
ing the limit of Anyz/e as €—0 gives us
c

Sanz/SaZF(wo). For convenience, we use the dimen-
sionless logarithmic form for the functional derivative
following Rainer and Bergmann,?

T, oM,

[4

2"y, 8a’F(o) .
Using the definition of Ny, One finds that at T=0

81y (0,6 )=8H (0,1 ") —8HES(0,17) . (12)

For T =T,, we have simply that

8y (Te,t P )=8H,H (Tt 1) —8HZS(T 1) . (13)

Expressions for 8H,, and 8H_, are given in the work of
Marsiglio et al.?® The necessary expressions are lengthy
and will not be reproduced here. On the other hand,

HECS(0,¢+) and 8HBCS( Tt *) can be calculated in the
clean and dirty limits using Egs. (6), (7), (8), and (10)
given in Sec. II. These yield

SHESS(0,t+=0)=28T, +28(1+A), (14)
SH2S(0,t% — 00 )=8T,.+8(1+1), (15)
S8HIS(T,,t+=0)=8T, +28(141), (16)
SHBS(T,,t+— 0 )=8(1+A) . (17)
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FIG. 1. The functional derivative 87 H,, VS /T, for the case
with T=0, t*+=0.0 meV, and u*=0.15 is plotted for three
different 8-function spectra, a’Fg(w)= A8(w—wg), where g is
the Einstein frequency. Note that the solid curve is negative
definite and peaks at exactly zero when w=wg. This indicates a
local maximum. The dotted curve has the peak in &7y , occur-
ring above wg/T, and the dashed curve has Snﬂcz peaking

below wg /T,.

As in the case for 8H,, and 8H/,, 8T, has been evalu-
ated in previous work?*?® and will not be repeated here.
Using Eq. (5) with m =n gives the result

T, 2

14X 0

8(1+A)=

The argument we give here for the maximization of
MH,, is along the same lines as that first supplied by
Leavens? for T,. We argue that, given that the curves
for &7 H,, display some sort of maximum, then in order to
increase Mh,, for a given a’F(w), we should take weight

from some frequency where the functional derivative is
smaller than its value at maximum and transfer it to the
optimum frequency, keeping the total area constant.
Given that such a process is required to increase MH,,
leads one to believe that, for a given value of
A= [a’F(w)dw, a 8 function should be used with all its
weight at the same Einstein frequency wg in order to
maximize 7 Hy

Figures 1 and 2 feature plots of Snﬂcz(O,t+=0) and
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FIG. 2. The same as Fig. 1 except that now T'=T, and
t*=500.0 meV.

817HC2( T.,t*=500 meV), respectively, using several

different
a’Fg(w)= A80—owg) ,

for u*=0.15. These figures illustrate our attempts to
place a & function in the same location as the maximum
in 8771#2' As both figures show, when the position of the

6 function is below the peak in 67 H_ the peak value falls

below zero, i.e., is negative. Similarly, when the position

of the 6 function occurs above the peak, the maximum in

oy , occurs above zero. It is only when wg /T, and the
C

position of the peaks coincide that we have that 87 ch=0

at the peak, indicating that a local extremum has been
reached.

IV. A SCALING THEOREM

For all our calculations, a single value of 4 was used.
What we intend to show in this section is that our esti-
mates for the maxima in Ny, are independent of this

[4

choice for the area under the & function, except for small
corrections due to a finite u*, which can be neglected.
Since ny4 ) is given by the ratio of Eliashberg and BCS re-

sults, we first return to Egs. (1) and (2) for H,,. Inserting
our §-function spectrum into them gives

Aiw,)=7T 20 *6( | @,, | 4) G (18)
iw,)=1m — w,— | D, = — >
" % i+ (@,—0,)* K X Y@liow,)—7f+
and
_ 20y _
oliv,)=o,+7T 3, —; >sgn(®,, )+ 7T *sgn(@,) , (19)
m E’E+(5m_6n)
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where T=T/A, @gp=wp/A, &,=0,/A4, Alio,)
=Aiw,)/A, @lio,)=dlio,)/A, Tt=t*/A4, and
X(@,)=A4X(®,).

From Eq. (6) for X{(®(iw,)), one can see that

X(@(iw,)) has the same form as X(&(iw,)) except that
one must replace a with @=a/A4? and @(iw,) with
@liw,). In writing the equations in terms of the barred
quantities, we have removed the dependence on A4 except
for a very small dependence in the cutoff associated with
u*. Leavens® followed a similar approach for 7. and,
following him, we likewise ignore the small correction re-
quired. Given this, T, and @ become completely in-
dependent of A and are only functions of @g,7 *, and pu*.
We can therefore write

T, =F(@&g,u*) (20a)

and

a=H(og,T1,t,u*), (20b)

where t =T /T,. Here, F and H represent universal func-
tions which can be determined from Egs. (18) and (19)
and from the definition of X(@(iw,)). In Eq. (20b), the
7 * parameter falls out in the clean limit while the depen-
dence is trivial in the dirty limit and does not appear at
all in (20a) as it drops out in the T, equations. Using Egs.
(20a) and (20b), we find that T, is proportional to 4 and
H,,(T) to A% From this, one can also conclude that
dH ,(T)/dT is proportional to 4. These results have al-
ready been obtained by Schossmann et al.!® and are re-
peated here for the reader’s convenience only.

To determine the A proportionality of HE®S, we can
turn back to Egs. (5a)-(5d). From Eq. (5b), HE®S gains
an A? dependence due to the T? being present. Using
Egs. (5a), (5¢), and (5d), it follows that the functional
form of h * is given by

R*(D)=f(1,A%) . (21a)

However, noting the definition of A{, given in Eq. (5¢),
it can be seen that A}, is itself dependent on 7 * (using the
A dependence of T,) and @ (for a §-function spectrum
A=2A /wg). This being the case, we can rewrite h*as
being

YT =ft,7%,&;), (21b)

which has no A proportionality. Given this and the
functional form for T,, a complete functional form for

HECS(T) can be written as
HES(T)= A%g(@g,u*, 1,7 %) . (22)

It in turn follows that dHE®S(T)/dT is proportional to
A.
From the definitions of M, for T<T, and T=T,

given in Sec. I, and the proportionalities we have just

determined, it becomes obvious that, for all temperatures,

Mh,, has no explicit dependence on A (except for small
(4

corrections), which is what we wished to prove. Also, for
tt=0.0 or w0, 7y , depends only on &y and pu*. For in-

termediate impurity concentrations the constant impurity
parameter is 7 *. As A is changed, 7 * does change. It is
important to keep this in mind.

V. RESULTS

We have examined the u* dependence of 9y ,at T=0,

and T =T, for t*=0.0, 50.0, and 500.0 meV. The re-
sults of our calculations for the maximum 7 H_, are given

in Table I. The t*=0.0 meV and ¢t * =500.0 meV results
were found using the previously outlined functional-
derivative technique. That is, we find the frequency wg
for a base 8-function spectrum of arbitrary A4 such that
its functional derivative is exactly zero at the same fre-
quency wgp. This means that we have reached a max-
imum in 7 u,fora 6 function

a’Flo)= Adw—og) .

This procedure was not possible without modifications in
the case of ¢+ =50.0 meV since this falls in between the
clean and dirty limits so that none of Eqgs. (14)-(17) could
be used. The technique in this case was to use a &-
function spectrum and vary its Einstein frequency, wg,
until a maximum in 7 H,, Was mapped out. No attempt at

calculating a functional derivative was made as this was
thought unnecessary considering the amount of extra
work it would have entailed. Figures 3 and 4 of 5y ,

<

versus g /T, illustrate this process for two cases (at T
with u*=0.051 and T =0 with u*=0.25). The fact that
Mh,, displays a maximum is clearly evident in both

figures. Such curves are universal, independent of A4 for
agiven T Y=t % /A. The value of 4 used was 7.0 meV, a
value typical of a real material.

In Table II, M, values for several real materials are

TABLE I. Calculated maximum value for the strong-coupling parameter Mh, for temperature 7 =0

and T =T, and for three different impurity concentrations, namely, ¢t * =0.0 (clean limit), t * =50.0
meV, and ¢ * =500.0 meV (dirty sample). Rows one to three apply to different values of the Coulomb
pseudopotential, namely, u* =0.0514, 0.15, and 0.25, which should cover the physical range.

T 0 T, 0 T, 0 T,

e t+ 0 0 50 50 500 500
0.0514 1.36 1.24 1.30 1.34 1.32 1.39
0.15 1.39 1.27 1.32 1.37 1.34 1.42
0.225 1.41 1.28 1.33 1.39 1.35 1.43




9322

1.35 T 1 T L T

(s"=0.051)

7y (Tt+=50)

1.25 1 1 L 1 1
6.0 7.0 8.0 9.0 10.0

wgp/T,

FIG. 3. The value of ny  when T =T, t*=50.0 meV, and
1*=0.051 for an Einstein spectrum as a function of wg/T,.
The results are independent of the value used for the area ( 4) of
the 8 function for a given value of 7 * =¢*/A. We have singled
out the region in which 7 H,, clearly reaches a maximum.

calculated using ¢t =0.0 and 50.0 meV only. These are
combined with the results in Table I to produce Figs.
5-8. These figures feature plots of 7 H_, Versus u* for the

cases T=0and t *=0.0 meV, T =T, and t ¥ =0.0 meV,
T=0and t*=50.0 meV, and T=T, and ¢t * =50 meV,
respectively. In all these figures, the solid dots represent
the 5 H, values for the real materials while the solid lines

represent maximum value of 7y R calculated for a given
C.

p*. In all cases, the real materials fall below the solid

lines. While all we can claim rigorously is that we have
found local maxima, this fact gives us confidence that we
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=0.25)

(u

(0,4 =50)

! 1 1 1 1 1
3.0 4.0 5.0 6.0 7.0 8.0 9.0

wg/T,

FIG. 4. The same as Fig. 3 except that T =0 and u*=0.25.

have indeed determined the absolute maximum for 7 H,

in each case for realistic a*F(w) spectra. It should be
noted that in Figs. 7 and 8, we have shown the maximum
curve for a fixed t ¥ =50 meV and an 4 of 7 meV so that
f+=7.1. At the same time, the calculations for real ma-
terials are for fixed t ¥ =50.0 meV while they should be
for the same 7 *=7.1. As the area under a’F(w) will
vary from material to material, so will . The
differences implied in Nn,, are, however, not large, and

since no real material falls very close to the maximum
curve we need not be concerned about small differences.

VI. CONCLUSIONS

In conclusion, we have found local maxima for
"ch( T,t*)for T=0and T =T, with t * =0.0, 50.0, and

TABLE II. Values of the strong-coupling correction LR for various superconductors. The third to

sixth column apply, respectively, to temperature T=0 and impurity content ¢t*=0.0 (clean limit),
T=T, with t*=0.0, T=0 with t*=50.0 meV, and T=T, with t*=50.0 meV. The values of
Coulomb pseudopotential are entered in column two. All entries are for systems in which reliable tun-
neling data on the electron-phonon spectral density a’F(w) exists. Details are given in the paper of Mi-

trovic et al. (Ref. 30).

T T, 0 T,
u* t+ 0 50 50
Nb 0.1158 1.105 1.093 1.117 1.166
Nb,Sn 0.1513 1.196 1.133 1.189 1.213
V,Si 0.1357 1.117 1.119 1.12 1.188
Pb 0.1392 1.246 1.198 1.223 1.307
a-Ga 0.1711 0.942 0.899 1.052 0.970
Va 0.2193 1.04 1.045 1.06 1.097
Tlo sBig | 0.1116 1.068 1.071 1.091 1.144
Ta 0.1187 1.042 1.047 1.064 1.102
Pby ¢sBio 35 0.0866 1.246 1.097 1.238 1.195
Nb;,Al 0.1245 1.189 1115 1.187 1.195
V,Ga 0.088 1.15 1.122 1.1148 1.196
a-Mo 0.0695 1.108 1.095 1.119 1.168
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FIG. 5. The maximum possible value of Mh,, with T =0 and

t*=0.0 meV is plotted as a function of u*. The solid dots
represent theoretical values for real materials (see Table II).

500.0 meV, respectively. We believe that these maxima
are absolute at least as far as realistic electron-phonon
spectral densities are concerned.

For all cases considered, the maximum in Mh,, is a

slowly varying function of u*. The maxima in My, do
not appear to be radically higher than the Mh,, values

found in real materials.

It is worth noting again that in as much as other boson
exchange mechanisms such as plasmon or exciton ex-
change can be cast within the framework of Eliashberg
theory, to a first approximation the maxima we have
found here could be applied (with discretion) to these oth-
er possible mechanisms as well.

Another possible application of our results has to do
with the Sommerfeld constant y(0). For example, there
exists a formula for the dirty limit?®

1.5 T T T T T T T T T T

1.4 -

1.3 + .
= —/’/—‘_————_———
I
- 1.2 | . E
e
= .
g o o o

1.1 Y . . -

.
. .
1.0 | -
) I L ! n I L L L L
0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
*
m

FIG. 6. The same as Fig. 5 except that T =T..
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1.5 T T T T T T T T T T

14 —

1.3 .

=50)
[ ]

qu‘z(O,t"’

1.1 —

1.0 + -1

1 1 1 1 1 1 1 1 1 1
0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

*
Qg

FIG. 7. The same as Fig. 5 except that 1 ¥ =50.0 meV.

dH ,(T)

_ 4 —~1
T |, =448X 104, (T)y(0)p OeK ™', (23)

<

where p is the residual resistivity in units of 1 cm. From
our results, we know that for the dirty limit
M, (T.)S1.4. Since [dH(T)/dt]|; and p are

measurable quantities, a lower limit on ¥(0) could possi-
bly be placed.

ACKNOWLEDGMENTS

We thank Dr. M. Schossmann for interest in this work.
We acknowledge, with thanks, partial financial support
from the Natural Sciences and Engineering Research
Council of Canada (NSERC).

L5 T T T T T T T T T

1.4 =

1.3 i -
)
w
i .
to12 P o o 4
[..“ . °
< .
&
1.1 . ° .
1.0 + .

L]
1 1 1 1 1 1 1 1 1 1

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
*
m
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