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Upper bound on strong-coupling corrections to the second upper critical field
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An upper bound for the strong-coupling correction gH to the second upper critical magnetic
c2

field of an Eliashberg superconductor is established as a function of Coulomb pseudopotential (p*)
and of impurity content (t+). Results are also given for many actual superconductors for which the
electron-phonon spectral densities are known. These are found to always fall below our upper
bound although in some cases they can fall fairly close to the maximum, which varies with p* and
t+.

I. INTRODUCTION

dH, q( T, t+ }

dT
dH '(T r+}

(T,r+)
RHc2 C dT T=Tc

In either case, the Fermi velocity does not appear in

gH (T, t ) since we have not included Pauli limiting in
c2

our calculations. We shall limit ourselves to the cases
T =0 and T = T, using values of t+ of 0 meV (the clean

Superconductivity in many systems can be explained
through the use of Eliashberg theory, which assumes that
it is the electron-phonon interaction which is responsible
for the superconductivity. ' However, in the case of the
recently discovered very-high-critical-temperature ( T, )

oxides, there is much evidence against the electron-
phonon interaction being the mechanism exclusively re-
sponsible, ' and other rnechanisrns have been con-
sidered. " ' Still, it is of interest to know the limitations
placed on superconducting properties by the Eliashberg
equations themselves. This is especially true since the ex-
act mechanism involved in the oxides is still an open
question and, in particular, if the mechanism still in-
volves a boson exchange (say excitons or plasmons in-
stead of phonons), the Eliashberg equations can still be
applied, at least as a first approximation. Upper bounds
on such quantities as the gap ratio 2b olkT, (Ref. 17), the
normalized specific-heat jump DC(T, )ly(0)T, (Ref. 18)
and the zero-temperature reduced upper critical field

h, z(0) (Ref. 19) have been explored in previous work.
The quantity we concern ourselves with in this paper is

the strong-coupling correction factor to the upper critical
magnetic field, AH ( T, t + ). As we have made explicit,

c2

this factor is dependent on absolute temperature T, and
on an impurity parameter t+, which is related to the im-
purity lifetime r by t + = 1/2n r For T & T.„riH ( T, t +

)
c2

is defined through the expression

H, 2(T, t+)=riH (T, t+)H (T, t+)
c2

where H, 2 is the renorrnalized BCS result. Since H, 2

vanishes at T„we must define gH (T„t+) using the ex-
c2

pression

limit), 50 meV (a reasonable value for real materials), and
500 meV (a value which is taken to represent the dirty
limit, t+ ~ oo ). The question we intend to answer for the
above cases is, given any superconductor described by the
Eliashberg equations, and with arbitrary electron-phonon
spectral density a F(co), does the strong-coupling correc-
tion factor gH exhibit a maximum? It should be noted

c2

that, in our attempt to answer this question, no con-
sideration is given as to whether or not the spectral densi-
ties used are consistent with, for example, lattice stability.
This is simply assumed to be the case. In Sec. II the
mathematics behind gH is discussed and this is followed

c2

by a discussion of functional derivatives in Sec. III. Sec-
tion IV is concerned with proving a scaling theorem. In
Sec. V results are given and in Sec. VI conclusions are
drawn.

II. MATHEMATICAL THEORY OF g~c2

b (i co )

X '(co(ico ))—~t+

and

co(i co„)=co„+~Tg A, (co —co„)sgn(co )

+m t +sgn(co„}, (2)

where ico„=inT(2n —1), n =.0, +1, +2, . . . , are the
Matsubara frequencies. T and t+ were defined in the In-
troduction. In Eqs. (1) and (2)

)(( ) 2f"
0 +(co„—co )

As is obvious from the way gH is defined, we must
c2

first know what H, 2 and H, 2 are in order to calculate it.
The strong-coupling equations for H, z( T), applicable for
any impurity concentration, were first given by
Schossmann and Schachinger. These are

E(i co„)=n.T g [A,(co —co„) p'8(co, —
~

co —
~
)]
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b, (it@„)is the Matsubara pairing energy and to, is a cutoff'

for the Coulomb pseudopotential p' required for conver-
gence. The quantity X which is a function of the renor-
malized Matsubara frequencies co(i to ) is given by

clean limit

a,',"(o)=, T, (1
eUF

Qo 2
X(co(iso„))= — dq e q arctanu'a o

q V'a

[ to(iso„) [

(4)
h,',"(t)

ln(t)+% —q'(-,' )=0

In the dirty limit, Eq. (5a) reduces to the following re-
sult given by Rainer and Bergmann:

where

a= —H 2(T, t+)uF .C2

C

ln
T

(5a)

Here e is the absolute charge on an electron and UF the
Fermi velocity.

In order to find H,2, one must solve

[(TIT,)/(~')' '|J(a' )

12~+ I
I I-[~;,/(t')'"]J(a' )

HB2~(0)= ', t+T, (1+A, ) .16«6

eUF
(10)

Equations (6), (7), (8), and (10) will be particularly useful
in Sec. III.

where t=T/T, and h, z (t) is related to H, 2 (T)
through

6~T,(1+A, )t +

eve

Using Eq. (9) one can easily derive that, for the dirty lim-
it,

f'(T) 'eH (—T)u' /m T (5b)

and

+

T, (1+A, )

J(a' )=2f dtoexp( to )ar—ctan(cuba' ),
0

(5c)

with

(f «)1/2

~

2m +1
~
(T/T, )+A,;„

(5d)

These equations were derived from the full Eqs. (1) and
(2) by Schachinger et al. They are the same as in the
work of Werthamer et al. , as written also by Orlan-
do et al. ,

2' and Decroux et al. except for appropriate
renormalization factors of 1+X with A, given by (3) with
7l =PFt.

In the clean and dirty limits the calculation is greatly
simplified. Marsiglio et a/. have derived expressions
for a'(T, ). These can be related to H, 2 (T, ) using the
relationship

a'( T, ) = (e /2)H, '2 ( T, )uF,

giving us

—28.2T, (1+A, )'H'Bcs( T )
eUF

in the clean limit and

III. FUNCTIONAL DKRIUATIVKS

Using the definition of gH, one finds that at T=0
c2

5q„(O, t+) =5a„(O,t+) —5H,',"{O,t+) .
c2

For T = T„we have simply that

5gH (T„t+)=5H,', (T„t+)—5H,BC'(T„t+) .

(12)

(13)

Expressions for 5a, z and 5H,'2 are given in the work of
Marsiglio et aI. The necessary expressions are lengthy
and will not be reproduced here. On the other hand,
5a~z (0, t+ ) and 5H,'2 {T„t+ ) can be calculated in the
clean and dirty limits using Eqs. {6), (7), (8), and (10)
given in Sec. II. These yield

For the purpose of this work, the functional derivative
of gH, with respect to the electron-phonon density

c2

a F{to), is required. This is defined in terms of the
change in gH and b gH when a F(to) is enhanced by an

C2 c2

infinitesimal amount e at a particular frequency co0. Tak-
ing the limit of b, 7)H /e as e~o gives us

c2

5rtH /5a F(coo). For convenience, we use the dimen-
c2

sionless logarithmic form for the functional derivative
following Rainer and Bergmann,

Tq 9H2
5nH —=

—24t+( 1+A )
2

eUF
(7)

in the dirty limit.
In the same paper, a„(0) was also derived so that us-

ing the relationship between a and 0,2 gives us for the

5H„C'(O, t+ =0)=25T, +25(1+k.),
5H, 2 (0, t+ ~ ca ) =5T, +5(1+A,),
5H,'~ (T„t+=0)=5T, +25(1+A.),
5a,',"'(T„t+- ) =5(1+){,) .

(14)

(15)
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FIG. 1. The functional derivative 5gH vs co/,vs co/T for the case

=0 t+=0.0 meV, and p =0.15 is plotted for three
different 5-function spectra, a FE(N) = A (co—coE,
h E' stein frequency. Note that the solid curve is negativet e insein r

de6nite and peaks at exactly zero when co=coE. is
local maximum. e. Th dotted curve has the peak in gH occur-

ring above coE , an/T and the dashed curve has 5gH peaking

below coE /T, .

As in the case for 5H, 2 and 5H, 2, 5T,~T has been evalu-
k ' and will not be repeated here.ated in previous wor ' an

U
'

Eq. (5) with rn =n gives the resultU sing

5(1+A, ) =

Th rgument we give here for thhe maximization ofe a
lied bis aong e1 n the same lines as that first supp' y" ns" for T reargue that, given that the curves

m then in order tofor 5gH display some sort of maximum, en
'

F(co) we should take weightincrease gH for a given a co,
f frequency where the functional derivative is
smaller than its value at maximum and trans e

the total area constant.optimum frequency, keeping t e o

A = fa F(co)dco, a 5 function should be used with all its
co in order toweight at the same Einstein frequency coE

'

maximize gH .
Figures 1 and 2 feature plots of 5gH O, t+=0 and

FIG. 2. The same as Fig. 1 except that that now T = T, and
t+ =500.0 meV.

( T + =500 meV), respectively, using several5riH „t
different

a Fz(co)= A5(co coE), —
*—0 15 These figures illustrate our attempts tofor p = . . ese

place a 5 function in eth same location as the maximu'' nofthein5rtH . s o g. A b th fi ures show, when the position o e

5 function is below the peak in 5rtH, p
c2

the eak value falls

below zero, i.e., is negative. Similarly, when the position
eak the maximum ino e uf th 5 function occurs above the peak, e

5riH occurs above zero. It is only when coE/,T and the
c2

that 5 =0position o ef the zeaks coincide that we have

at the peak, indicating that a local extremum has been
reached.

IV. A SCALING THEOREM

F all our calculations, a single va uue of A was used.or a o
n is that our esti-Wh t we intend to show in this section is

in e endent of thismates for the maxima in gH are in ep

choice for the area under the 5 function, pexce t for small
which can be neglected.corrections due to a finite p, w

'

S re-Since gH is given yb the ratio of Eliashberg and BC re-

suits, we first return to Eqs. (1) and ( ) or
c2

2 for H . Inserting
our 5-function spectrum into them gives

and

Z(ico„)=a T g
E(co )

p @coc

(corn

i
—

i( .
)co z + (corn con )

2ME
sgn(co )+mt +sgn(co„),co(leo„)=co„+irTg

m ~ E+&~m ~n
(19)
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T, =F(co+,p') (20a)

where T=T/A, coE ——
coE /A, co„=co„/A, h(ice„)

=EL(ice„)/A, co(i ru„) =co(ice„)/A, r + = r +/A, and

X(co„)= AX(co„).
From Eq. (6) for X(co(ico„)), one can see that

X(co(ice„)) has the same form as X(co(iso„)) except that
one must replace a with a=a/A and co(iso„) with
co(ice„). In writing the equations in terms of the barred
quantities, we have removed the dependence on A except
for a very small dependence in the cuto8'associated with
p'. Leavens followed a similar approach for T, and,
following him, we likewise ignore the small correction re-
quired. Given this, T, and n become completely in-

dependent of 3 and are only functions of coF, t +, and p'.
We can therefore write

H, 2 ( T) can be written as

H, 2 ( T)= A g (coF,p, ', t, t +
) . (22)

V. RKSUI.TS

It in turn follows that dH, 2 (T)/dT is proportional to
A.

From the de6nitions of gH for T & T, and T = T,
given in Sec. I, and the proportionalities we have just
determined, it becomes obvious that, for all temperatures,

has no explicit dependence on A (except for small
C2

corrections), which is what we wished to prove. Also, for
t+ =0.0 or ao, qH depends only on BE and p'. For in-

C2

termediate impurity concentrations the constant impurity
parameter is t+. As 3 is changed, t+ does change. It is
important to keep this in mind.

a =H(cog, r +, t,p'), (20b)

f'(T)=f(t, A,;,) . (21a)

However, noting the definition of A,„given in Eq. (5c),
it can be seen that A,;, is itself dependent on t + (using the
A dependence of T, ) and cps (for a 5-function spectrum

A, =2A /coz). This being the case, we can rewrite k' as
being

f'(T)=f(t, t +,coz), (21b)

which has no A proportionality. Given this and the
functional form for T„a complete functional form for

where t = T/T, . Here, F and H represent universal func-
tions which can be determined from Eqs. (18) and (19)
and from the definition of X{ro(ia)„)). In Eq. (20b), the
r + parameter falls out in the clean limit while the depen-
dence is trivial in the dirty limit and does not appear at
all in (20a) as it drops out in the T, equations. Using Eqs.
(20a) and (20b), we Iind that T, is proportional to A and

H, z(T) to A . From this, one can also conclude that
dH, 2(T)/dT is proportional to A. These results have al-
ready been obtained by Schossmann et al. '9 and are re-
peated here for the reader's convenience only.

To determine the A proportionality of H,82cs, we can
turn back to Eqs. (5a)-(Sd). From Eq. (5b), H, z gains
an A dependence due to the T, being present. Using
Eqs. (5a), (Sc), and (5d), it follows that the functional
form of h ' is given by

%'e have examined the p' dependence of qz at T=0,
C2

and T=T, for t+=0.0, 50.0, and 500.0 meV. The re-
sults of our calculations for the maximum rlH are given

C2

in Table I. The t+ =0.0 meV and t+ =500.0 meV results
were found using the previously outlined functional-
derivative technique. That is, we find the frequency coE
for a base 5-function spectrum of arbitrary A such that
its functional derivative is exactly zero at the same fre-
quency ~E. This means that we have reached a max-
imum in rlH for a 5 function

C2

a F(co)=A5(co —cox) .

This procedure was not possible without modifications in
the case of t+ =50.0 meV since this falls in between the
clean and dirty limits so that none of Eqs. (14)-(17)could
be used. The technique in this case was to use a 5-
function spectrum and vary its Einstein frequency, &ATE,

until a maximum in gH was mapped out. No attempt at
C2

calculating a functional derivative was made as this was
thought unnecessary considering the amount of extra
work it would have entailed. Figures 3 and 4 of gz

C2

versus coE/T, illustrate this process for two cases (at T,
with p =0.051 and T=0 with p, '=0.25). The fact that

displays a maximum is clearly evident in both
C2

6gures. Such curves are universal, independent of A for
a given t + =1+/A. The value of A used was 7.0 meV, a
value typical of a real material.

In Table II, q~ values for several real Inaterials are
C2

TABLE I. Calculated maximum value for the strong-coupling parameter gH for temperature T =0
C2

and T=T, and for three difFerent impurity concentrations, namely, t+ =0.0 %clean limit), t+ =50.0
meV, and t+ =500.0 meV (dirty sample). Rovers one to three apply to difFerent values of the Coulomb
pseudopotential, namely, p* =0.0514, 0.15, and 0.25, which should cover the physical range.

0.0514
0.15
0.225

1.36
1.39
1.41

1.24
1.27
1.28

0
50

1.30
1.32
1.33

T.
50

1.34
1.37
1.39

0
500

1.32
1.34
1.35

1.39
1.42
1.43
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FIG. 3. The value of gH when T=T„ t+=50.0 meV, and
c2

p*=0.051 for an Einstein spectrum as a function of coE/T, .
The results are independent of the value used for the area ( A ) of
the 5 function for a given value of t +:—t+/A. We have singled
out the region in which gH clearly reaches a maximum.

c2

calculated using t+ =0.0 and 50.0 meV only. These are
combined with the results in Table I to produce Figs.
5 —8. These figures feature plots of gH versus p' for the

c2

cases T=O and t+=0.0 meV, T=T, and t+=0.0 meV,
T =0 and t+ =50.0 meV, and T = T, and t+ =50 meV,
respectively. In all these figures, the solid dots represent
the gH values for the real materials while the solid lines

c2

represent maximum value of g& calculated for a given
c2

p'. In all cases, the real materials fall below the solid
lines. While all we can claim rigorously is that we have
found local maxima, this fact gives us confidence that we

FIG. 4. The same as Fig. 3 except that T =0 and p =0.25.

have indeed determined the absolute maximum for gH c2

in each case for realistic a F(co) spectra. It should be
noted that in Figs. 7 and 8, we have shown the maximum
curve for a fixed t + =50 meV and an 3 of 7 meV so that
t + =7.1. At the same time, the calculations for real ma-
terials are for fixed t+ =50.0 meV while they should be
for the same t +=7.1. As the area under a F(co) will
vary from material to material, so will t +. The
differences implied in gH are, however, not large, and

c2

since no real material falls very close to the maximum
curve we need not be concerned about small differences.

VI. CONCLUSIONS

In conclusion, we have found local maxima for
gH (T, t+) for T =0 and T = T, with t+ =0.0, 50.0, and

TABLE II. Values of the strong-coupling correction gH for various superconductors. The third to
c2

sixth column apply, respectively, to temperature T=O and impurity content t+=0.0 (clean limit),
T=T, with t+=0.0, T=0 with t+=50.0 meV, and T=T, with t+=50.0 meV. The values of
Coulomb pseudopotential are entered in column two. All entries are for systems in which reliable tun-
neling data on the electron-phonon spectral density a F(e) exists. Details are given in the paper of Mi-
trovic et al. (Ref. 30).

T.
0

0
50

T.
50

Nb
Nb3Sn
V3Si
Pb
a-Ga
Va
Tlo 9Bio l

Ta
0.65 0 35

Nb3A1
V3Ga
a-Mo

0.1158
0.1513
0.1357
0.1392
0.1711
0.2193
0.1116
0.1187
0.0866
0.1245
0.088
0.0695

1.105
1.196
1 ~ 117
1.246
0.942
1.04
1.068
1.042
1.246
1.189
1.15
1.108

1.093
1.133
1.119
1.198
0.899
1.045
1.071
1.047
1.097
1.115
1.122
1.095

1.117
1.189
1.12
1.223
1.052
1.06
1.091
1.064
1.238
1.187
1 ~ 1148
1.119

1.166
1.213
1.188
1.307
0.970
1.097
1.144
1.102
1.195
1.195
1.196
1.168
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FIG. 5. The m

t =00 meV i+
maximum possible value of hmt T =0 and

is plotted as a function of . The s
c2

represent theoretical valu
p . e solid dots

ica values for real materials (see Table II). FIG. 7. The samsame as Fig. 5 except that t+ =50.0 meV.

500.0 meVmeV, respectively. %e believe that these m
eas as ar as realistic electron-phonon

spectral densities are concerned.
For all cases considered, the maximum

'
imum in gH is a

lo ly yi g f tio of '. ThJM . e maxima in 'gH do

not appear to be radically higher th han t e gH values

found in real materials.
c2

It is worth noting again that in as much as other boson
exchange mechanisms such as 1

theor
c ange can be cast within the framework f El' hb g

y, to a 6rst approximation th
o ias erg

e maxima we have
found here could be applied ( 'th d'wi tscretion) to these oth-
er possible mechanisms as well.

Another possible a lipp ication of our results has to do
wtt the Sommerfeld constant y(0). For exam le t
exists a formula for the dirty limit2

dH, z( T)
=4.48X10 qH (T, )y(0)p OeK

where p is the residual resistivity in unit f 0
our results, we know that f

'
s o cm. From

qH (T, )-1.4. Since [dH, 2(T) jdt] T and p are
a or the dirty limit

measurable uan
' '

C

bly be placed.
q antities, a lower limit on y(0) ldcou possi-
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