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The possible planar superfluid B-B boundaries between inequivalent B-phase vacua are con-
sidered; such B-B interfaces provide an analogy with the cosmic domain walls that are believed to
have precipitated in the phase transitions of the early Universe. Several of them display nontrivial

structure in (k, r) space (i.e., the union of the momentum and real spaces). Such a wall represents an

instanton connecting two B-phase vacua with different k-space topology. The transition between
the vacua occurs through the formation of a pointlike defect either in the (k, r) space, or in the (k, t)

space. These defects are so-called diabolical points of codimension 4, at which the fermionic energy
tends to zero, thus providing the fermionic zero modes. Such points are new examples (within

condensed-rnatter physics) of the peculiar diabolical points, which are characterized by the oc-
currence of a contact between the different branches of the quasiparticle spectra; in the present case,
the branches of particles and holes, respectively. These points are here discussed for the case of the
superfluid phases of liquid He in close analogy with the quantum field theory of fermions interact-
ing with classical bosonic fields. The cosmiclike domain walls in superfluid 'He-B are observable in

principle; in particular, the motion of the superfluid A-B interface is governed at low temperatures

by the periodical emission of these topological excitation planes. The edges of B-B interfaces serve
to generate fractionally quantized pure and mixed mass and spin supercurrent vortices in He-B,
while holes in these surfaces may give rise to the corresponding vortex rings and combined vortex
and/or spin-disclination rings.

I. INTRODUCTION

The superfluid phases of liquid He provide systems
with the maximal known broken symmetries in the field
of condensed-matter physics. ' Consequently, a large
number of different stable nonuniform structures for the
order-parameter field —nonuniform vacua —can exist in
these extraordinary condensed states of matter, which
share not only the properties of superfluids and liquid
crystals, but also those of ferromagnets and antiferromag-
nets. Some of these structures are extremely stable due to
topological constraints: topological charge-conservation
laws prohibit them from transforming continuously into
the uniform vacuum state. There may occur many
different topological types for such configurations, which
may be classified in terms of the homotopic groups that
describe the continuous mappings of different parts of
real space into the vacuum manifold.

The most important groups describing topologically
stable configurations in superfiuid He are the so-called
relative homotopy groups tr„(%,A), where % and A
denote vacuum manifolds in neighboring length scales.
Since the hierarchy of interactions in He implies a corre-
sponding distribution of length scales [for instance, the
coherence length (go„,where GL denotes Ginzburg-
Landau); the dipole length (gD); the magnetic length
(gH); etc.], the variety of the different possible types of
topological configurations is quite numerous. Consider,
for example, the singular defects: pointlike, linear, and

planar; the nonsingular configurations (solitons) in the
form of lines which may terminate at a point, or in the
form of surfaces which may display an edge on a line; the
defects on the surface of the liquid, boojums, etc. More-
over, configurations belonging to the same given topo-
logical type and possessing specific topological
invariant(s) —charge(s) —may, nevertheless, yet differ
from each other not only in internal symmetry, but also,
owing to their topology in the momentum space (k
space), i.e., the topology of the zeros (nodes), in the ener-

gy gap on the Fermi surface ' for the fermionic excita-
tions.

These zeros of the energy gap —which correspond to
the diabolical points of the fermionic quasiparticle spec-
trutn where the intersection of the positive and negative
branches of particles and holes occurs (see Sec. V for de-
tails and references), thus providing fermionic zero
modes —are instrumental for the dynamics of superfluid
He. This plays a crucial role in the contacts between
He physics (in addition to the nontrivial topological

configurations) with cosmology and particle physics
growing stronger: near these nodes (here the diabolical
points have the so-called codimension equal to 3, see Sec.
V), the dynamics of the fermions interacting with the bo-
sonic order-parameter fields share many features in com-
mon with the quantum-field theory of massless chiral
Weyl fermions coupled to photons, W bosons, and gravi-
tons, including the chiral anomaly, in particular.

Here we consider yet another variety of
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configurations —domain waBs in He-B, which belong to
the trivial class within real-space topology. Although
there prevails no topological stability, several distinct lo-
cally stable solutions of the Ginzburg-Landau equations
(due to the complicated vacuum manifold that aBows the
existence of difFerent symmetry classes of domain walls)
even for the trivial topological class occur here. Essen-
tially, the stability of the domain walls is provided by
their symmetry, since in order to transform a wall from
one symmetry class to another one involves the violation
of symmetry in all of the intermediate states; the latter
can be accompanied with an activation-energy barrier be-
tween the states.

Some of these solutions display distinct topology in k
space: the domain walls connect two diff'erent k-space
vacua, possibly with unequal topological invariants in the
momentum space, thus representing instantons. These
instantons prove to provide examples of the diabolical
points displaying the new codimension 4, near which the
fermionic excitations are analogous to the Dirac fer-
mions, in contrast with the Weyl fermions encountered in
the case of diabolical points possessing codimension 3.
According to contemporary cosmological ideas, analo-
gous domain walls between inequivalent vacua may also
have been created in the course of the phase transitions of
the early Universe. s

Above, a=%(0)(1—T/T, )/3, with N(0)=m'kF/2m A

abbreviating the density of the He states (rn' denotes
the effective mass and kF the Fermi momentum for the
He quasiparticles) for one spin projection at the Fermi

level; the coefficients P; of the fourth-order invariants are
here taken within the weak-coupling approximation (this
in no way restricts the symmetry or momentum-space to-

pology of the solutions, which is our primary concern
below). The gradient energy in the Ginzburg-Landau
functional is given by

F,=fd"(y, a, A.,a, A:, +y,a, A., a, A:, .

+y,a, A.,a, A.*,), (4b)

where for weak coupling the bending coefficients are all
equal (strong-coupling corrections being small), and given
by yi ——y2 ——y3

——y =7((3)N(0)[up/240(irT) ].
The 8 phase of He, He-B, corresponds to a uniform

solution of the GL equation possessing the symmetry

Fs ——Jd r( —o'A';A;+PiA';A';Ap A~

+pi A ~; A ~; A pj. A tij +p3 A '; A p; A ~. A Iij.

+pq A ~; A ii; A $J A ~J +p~ A '; A p; A pj. A ~~ ) .

(4a)

II. VACUUM STRUCTURE OF SUPERFI.UID 'He-8 a=SO',", (5)

The group which is broken in He below the superfluid
phase-transition temperature T, into a pair-correlated
triplet state with Cooper-pair spin $=1 and with the
pair orbital momentum L =1 [for the zero-ffeld phase di-
agram of He in the (p, T) plane, see Fig. 13], is

S =U(1)x SO',"xSO'," .

Here the indices (S) and (L) refer to solid rotations in the
spin and orbital spaces, respectively. The breaking of the
rotation groups SOt3 ' and SO3 ' produce the magnetic
and liquid-crystal-like behavior for the ordered phases of
liquid He, while the broken U(1) gauge group is respon-
sible for the superffuidity. The order parameter in
super6uid 3He is specified by the 3&3 complex matrix
A, , which transforms under the action of the symmetry

group 9' in Eq. (1}as follows:

(2)

here R ' ' and R ' ' represent orthogonal matrices of spin
and orbital rotations.

The vacuum manifolds may be found by minimizing
the bulk part (Fs) of the following Ginzburg-Landau
(GL} functional

with the bulk condensation-energy term

wltll SO3 deliotllig flic grollp of coiilbilled splli alid or-
bital rotations. The uniform vacuum state with the sym-
metry specified by Eq. (5) is represented, e.g. , by the
order parameter (below, P;J k abbreviates P; +PJ
+ ' +&k):

A':,'=a, S... S',(T)=,

All the other degenerate 8-phase vacua may be ob-
tained operating on Eq. (6) by individual elements of the
group 9, thus,

A =e' R' '8' 'A' '=b, e' Rp ik &k
= ae (7)

where R, refers to an arbitrary orthogonal matrix, cor-
responding to a relative rotation of the spin and orbital
spaces. Thus the vacuum manifold of the 8-phase sub-
space of states is the product of U(1) for the phase 4 and
the SO3 manifold for the relative rotation

A=I/&=U(1)x, SOi .

This connected manifold allows no topologieally stable
domain walls; topologically stable walls can only appear
if an additional interaction [such as the spin-orbital (di-
pole} interaction and/or the magnetic-field energy] is tak-
en into account, which acts so as to reduce % into its sub-
space % for large distances. As a result, two difFerent
types of domain walls of topological origin can arise
which correspond, respectively, to the groups no(A ) and
mi(%)/1m[xi(A)-+m. ,(%)], comprising the relative
homotopy group ni(A, %) (see Refs. 2 and 9). Both
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latter types of domain walls exhibit widths several orders
of magnitude in excess of the coherence length goL (with

goL ——y/a) being determined by the tiny dipole forces.

III. VACUUM IN IKRFACES:
NONTOPOLOGICAL DOMAIN WALLS

Here we consider the rigid domain walls, whose stabili-
ty is not supported by topology. These are stationary
solutions of the GL equations —with width on the order
of got —which describe the interfaces separating
domains of He-8 with different orientations of the order
parameter A; in Eq. (7), i.e., with difFerent 4 and R, .
For a given nontopological wall, the mutual orientation
of the order parameters in the domains is not governed
by external or internal forces (such as the dipole interac-
tion), as in the topological domain walls, but instead it is
rather fixed through the solution itself.

In this section we first describe in full detail the types

of walls to be considered: we explain the physical princi-
ples necessary for the existence of stable domain walls
and we identify the symmetries of all the possible domain
walls separating the distinct B-phase vacua; these results
are summarized in Table I. We then consider the struc-
tures for each of these solutions; correspondingly, the re-
sults for the order-parameter amplitudes are presented in
Fig. 1.

The reason for the possible existence of nontopological
boundaries is related to symmetry only: to destroy such
an interface, one must exert the violation of its symmetry
throughout the intermediate states which separate the
state with the domain wall from a uniform vacuum equi-
librium state in the configuration space. (This occurs
when the symmetry Hz, of the wall is not a subgroup of
the symmetry &=SO(3 'XTXP of the uniform state. )

This may involve an activation barrier for the process—
thus providing the local stability of the domain wall even
within the trivial class of real-space topology.

TABLE I. The symmetries and energies for the different possible stationary B-Bdomain walls shown in Fig. 1 between the He-B
vacua at zero magnetic field. The groups C2„'and C'„'„aregiven in the Landau-Lifshitz notation; the additional superscript (J) here
means that the corresponding rotations are to be applied simultaneously both in the spin and orbital spaces. Time inversion is denot-
ed by T; P is the symmetry operator for space inversion: the space inversion P, when combined with a rotation that transforms the
left vacuum into the right one, conserves the state intact. Note that the boundaries 1, 6, and 7 all display continuous axial symmetry
about the symmetry axis x, while the remaining four B-B interfaces (2 through 5) share only discrete symmetry. The energies are
computed per unit area ( foL) and measured in normalized units as in Fig. 2. The minimum energy for solution 7, equal to 5.470, is
the sum of its constituent parts, walls 1 and 6, i.e. : 2.317+ 3.153. The energy of the saddle-point solution 7 with normal core
[A„„(x=0)= A„~(x=0)= A (x =0)=0] is considerably higher: 6.863, prior to decay into its elementary building blocks —the pair
of walls C' '"e' and O' '". The symmetry Pe' of the saddle-point solution becomes spontaneously broken in the minimum-energy
configuration (cf. Figs. 1 and 11). The change b,N= N(x =+ ao )

—N(x = ——oo ) in the topological invariant N [defined by Eq. (20)]
on crossing through the wall is also given for each vacuum interface.
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=A Let us find those kinds of distinct domain walls pos-
sessing trivial real-space topology, wliich can exist in
He-8. In the absence of external currents, a necessary

condition for the existence of an isolated stable domain
wall is the vanishing of mass and spin supercurrents
through the maO. This provides crucial constraints on the
mutual orientation of the order parameters on both sides
of the wall. First, the change in the order-parameter
phase 4 between the domains should be quantized in
units of n- on. ly in this case the phase difference gen-
erates no Josephson mass current through the wall. Like-
wise, the spin orientations in the domains should only
differ by spin-rotation angles through nm (with n an in-

teger) in order to comply with the absence of a spin
current normal to the wall. In the latter case, symmetry
also dictates that the spin-rotation axis should be either
normal to or within the plane of the wall.

As a result, we obtain the following group which we
denote here by %.0—of the possible rotations and phase
changes that may couple the two domains:

PO=Z2XSZ . (9)
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FIG. 1. The order-parameter A; variation for the seven ine-
quivalent possible cosmiclike 8-8 domain walls in superfiuid
'He-8. Calculations were performed using the weak-coupling
values for the five P parameters. The 8-phase asymptote at
x=+~ is fixed as A'~(x=ao)=b, II5;. [This introduces uo
limitation on generality, since solutions with an arbitrary
asymptote in Eq. (7) may be obtained from those found here
through rotations in the spin space aud/or via phase rotations. ]
The solid amplitudes denote A„„(x},dashed A»(x), and the
dashed-dotted A (x) between the vacuum states indicated in
the Sgure (see also Table B. The position coordinate normal to
the planar wall x is linear for

(
x

~
~ 10$«, for

(
x

( & 10$GI it
varies as x, to facilitate description of the complete axis:
—Co &x & + Oo. Distances are in units of the Ginxburg-Landau
coherence length (GL.

(J)x (5)x (L}xC r2=C r2C r2 ~ (10)

However, when combined with the other waBs, this de-
generacy may be lifted owing to a mutual interaction.
The pure phase wall e' was previously discussed by Golo
and Monastyrsky, ' who considered the most symmetric
possible form which necessitates a normal core state
(with vanishing order parameter) in the wall. However,
the solution for the e' domain wall proves to be more in-

Above, ZZ means the subgroup (e'", 1) possessing the
two elements that describe the changes of phase through
n and 0 (or 2Ir), while the subgroup 2)2 abbreviates the
group (1, C' '", C'„'», and C' ') of spin rotations
through m about the orthogonal axes x, y, and z. The x
axis is here chosen normal to the wall.

Rotation axes which are tangential to the wall may be
chosen at will. However, if one considers combinations
of several domain walls interacting with each other (de-
scribed by the product group of the corresponding ele-
ments), symmetry requires either mutually parallel or
perpendicular orientations for the rotation axes of the
successive constituent walls. Therefore, one should only
be limited by the existence of two tangential axes (y and
z).

There are seven nontrivial elements g constituting the
group IrII. Each element describes one of the seven
different walls separating the states A and gA. The walls
corresponding to the elements g are enumerated in Table
I, where the reference He-8 vacuum-state order parame-
ter A is chosen fixed as A = A', '=bii5;. For the com-
puted spatial variations of the order-parameter com-
ponents in each of these vacuum interfaces, see Fig. 1.

The summation law for the fission and fusion processes
of the domain walls is governed by the group multiplica-
tion table for ~c The isolat. ed interfaces with minimal
surface energy, C' '~e' and C' 'e', are degenerate in
the free state since they may be obtained from each other
through a combined rotation of the whole solution,
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+y3Ap VjAy, . ), (12)

where e t)y denotes the Levi-Civita symbol. We find that
there exist only two nonvanishing components of j( p ),
in the directions y and z, given by (in units of y )

BA„(x) BA„„(x)
jI~p),„),———A„„(x) " + A (x) (13a)

and

(3A„(x) aA.„(x)
(13b)

Figure 3 displays distributions for the density of spon-
taneous spin supercurrents along the plane of the B-B
vacuum interfaces.

Let us compare the properties of these solutions with
those of topological solitons in the nontrivial class (ele-
ment) of the relative homotopy group Iri(%,%). There
are two types of solitons, corresponding to the elements
of the groups 1ro(R) and )(AIr)/Im[n. (R))~ (%Ir))].

The planar sohtons of the first group are undestroyable:
they cannot possess an edge in the bulk, while the soli-
tons of the second group can support an edge on linear
topological defects (vortex, disclination, etc.) and, there-
fore, may be destroyed through the creation of a hole in
the wall, see Fig. 4, bordered by a disclination loop '

(these objects are called "walls bounded by strings" by
Vilenkin ).

Our solutions share the properties of solitons in the
second group. The sole difference is that the correspond-
ing linear defect, which serves as the edge of the wall, is
of nontopological origin. These defects are the following
(see Fig. 5): half-quantum vortices (HQV's) for the e'

teresting (see Fig. 1): the superfiuid state is restored at
the expense of symmetry breaking (cf. Fig. 11);moreover,
this state thus fissions into the composite of the two
domain walls C'„'"e' and C' ' .

Figure 2 illustrates the distributions of the gradient
and the condensation free-energy densities. Note that, up
to a constant (i.e., the bulk equilibrium condensation en-

ergy), the functional forms are identical: fs(x) =fG(x).
This follows from "energy conservation:" consider re-
placing x~t, where t is time. Then the Ginzburg-
Landau functional becomes the Lagrangian L =FG+Fs;
therefore, the conservation of "energy" E requires

E =fti(x) —fG(x) =const,

i.e., here the gradient energy FG corresponds to the usual
kinetic energy, while Fz is the analogue of potential ener-

gy. With an appropriate choice of ft)(x) (ft) =0 for
t~kao ), one ensures E=0, and hence fs(x) =fG(x) is
obeyed. This "virial theorem" is only valid for a one-
dimensional inhomogeneity (such as the planar A-B and
B Bbou-ndaries), and cannot be generalized, e.g., to the
case of vortices.

The general GL expression for the density of spin su-
percurrent in the direction (i) due to the ath component
of magnetization is

~ (i)
J(spin)a eaPy ( 1 IAttiVj yj+l'2At)j i Ayj
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FIG. 2. Distributions of the gradient (fG, dashed-dotted) and

the bulk condensation energy (fII, solid line) densities as func-
tions of x, the position coordinate between the different B-phase
vacua in Fig. 1. The equilibrium condensation-energy density in
bulk He-B is normalized to —1.5. Note that each of the
domain walls feature a superfluid core [with nouvanishing
condensation-energy density, fii(x)&0 for all x]; moreover, the
curves fulfill the virial theorem [cf. Eq. (11)]with the functional
form of the gradient energy (fG) coinciding with that of the
bulk condensation-energy density (fs ). Here the x axis is a
truthful analogue to the imaginary time in an instanton describ-
ing the tunneling solution from one k-space vacuum state into
another one. Apparently, 7 does not qualify as a genuine solu-
tion but rather a composite object, having spontaneously disin-
tegrated into the pair of walls, 1 and 6.
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FIG. 4. The instanton between separate B-phase vacua can
display a hole, bounded by a ring. Depending on the type of the
domain wall, the ring will be a half-quantum vortex ring (for the
e' wall), a half-integer spin-disclination ring (e.g., for the
boundary C'~)" ), or a simultaneous half-quantum vortex and a
half-integer disclination ring (e.g., for C'~)"e' ). Once formed,
and with its radius first exceeding several coherence lengths, the
ring spontaneously expands out. While the ring propagates ra-
dially outward it serves to extinguish the domain wall.
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FIG. 3. All the solutions for the domain walls in 'He-B found
here have vanishing magnetization and they support no spon-
taneous mass supercurrents, even within the plane of the wall
(due to time-inversion symmetry, owing to which the order pa-
rameter A; is real} but, nevertheless, they do display tangential
spin supercurrents along the plane of the vacuum interfaces.
Shown here are distributions of the components jII'~. „[Eq.
(13a)]—denoted in the figure by j» —and jI~,*~;„I~[Eq. (13b)]-
denoted by j,—for the spontaneous spin supercurrpnts in the
plane of the B-phase vacuum interfaces of Fig. 1. Note the ap-
parent mutual symmetries featured by the spin supercurrents
for solutions 2 and 3—and those for 4 and 5—and the compos-
ite spin-supercurrent structure of solution 7= 1 + 6.

FIG. 5. The vacuum interfaces in 'He-B represent planes of
phase slippage, which may terminate in linear defects. Illustrat-
ed here are such edges of the domain walls involving half-
quantum vortices (HQV) that carve the e' domain wall from
distinct 8-phase vacua. (a) The two HQV's have opposite circu-
lation: m = II and m = —2. (b) The HQV's both share the
same number of circulation quanta, m = —'.
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domain wall (in which the phase 4 changes by m. ), half-
disclinations for the domain walls C( ] C(s]v»d C[s)
and combinations thereof for the remaining walls.

Due to the above properties, these structures can play
an important part in the processes of phase slippage in
superfluid He-8: since a wall may have an end on the
HQV's with the same circulation quanta m = —,

' and

m = —,
' [see Fig. 5(b)], it could serve as a phase-slip center

through 64=2~, leading to the dissipation of superflow.
This structure closely resembles that of an extended vor-
tex: the vortex core is spread out into a planar "sheet, "
whereas vorticity resides concentrated in the cores of the
half-quantum vortices. The situation is analogous to
quark confinement, with the half-quantum vortices corre-
sponding to the quarks and the planar surface to the
"glue" that holds them topologically confined. Note that
the energetically most favorable walls, e' C' '~ and
e' C' ', and —related with them —the combinations of
HQV's and half-disclinations serve for the simultaneous
coupled dissipation of both mass and spin supercurrents.

~I
H(k, r)=

&(k)
(14)

low-temperature dynamics of the topological objects,
such as those of moving vortices, domain walls, instan-
tons, etc.

Here the domain walls e', C' ' e', C'„'"e'",and
C' 'e', for which there occurs a change through m. of
the phase factor for the He condensate, are found to pro-
vide another example of the intercoupling of real-space
and k-space properties. The corresponding defect
represents the diabolical point of codimension 4. Before
the general discussion of these points (in Sec. V) within
superfluid He and quantum-field theory, let us first con-
sider the topologies and structures of the order-parameter
distributions in these walls. Here we need in the (k, r}
representation of the order-parameter field in superfluid
He, which is relevant in the Bogoliubov-Nambu Hamil-

tonian, describing the fermionic excitation dynamics.
The corresponding Bogoliubov-Nambu matrix is as fol-
lows:

IV. lt-SPACE TOPOLOGY OF THE DOMAIN WALL:
INSTANTON

Although the walls under consideration display no
essential topological features in real (r) space, some of
them possess distinctive topology in the combined
momentum (k-) space and r-space manifold, which serves
to provide an instanton connecting the right and left va-
cua with difFerent topological invariants in the k space.
Topological defects in the k space are of paramount im-
portance in the physics of superfluid He, as well as in
quantum electrodynamics: owing to the vanishing of the
fermionic energy gap (zero modes) at the defects, they
give rise to such effects common to He and quantum
electrodynamics like the screening of electric charge due
to the polarization of the vacuum of chiral fermions and
to the chiral anomaly. The equivalence of the He dy-
namics near the k-space defects and quantum electro-
dynamics originates from the same topological nature of
these defects (see Sec. V).

Near the k-space point defect, "boojum on the Fermi
surface, " which represents the diabolical point of codi-
mension 3 (see Sec. V), where the energy gap for the He
quasiparticles tends towards zero, the dynamics of the
fermionic quasiparticles coupled to the Bose fields of the
order parameter is completely analogous to the dynamics
of massless chiral fermions interacting with photons, W
bosons, and gravitons within quantum-field theory, re-
sulting in the chiral anomaly effects —described by the
very same equation as in the particle theory. As for
He-3 and He-8, the following examples serve to illus-

trate the importance of k-space topology.
(i) Due to the k-space defects, singular vorticity of the

quantized vortex lines may be dissolved in such a manner
that superfluidity is broken nowhere within the cores of
the quantized vortices: The vortex singularity flares out
from the real space into the k space, ' thus facilitating a
continuous distribution of vorticity in real space.

(ii) The creation of the gapless excitation governs the

where k=(1/i)(B/Br) for the quantum problem; but in
the semiclassical approximation, which is a good model
for many physical situations, this k may be treated as a c
number, with e&

——(k —kz}/2m (where kz denotes the
Fermi momentum). The gap parameter b, (k, r) is a sym-
metric 2 X2 spin matrix for spin-triplet pairing and may
be expressed in terms of the vector d:

b,,&(k, r) =(ger ) &d(k, r),
where the cr abbreviate the Pauli spin matrices and

(15)

(16)

For the domain walls considered here, the vector d is real
[this follows from the time-inversion ( T) symmetry of the
domain walls, see Table I]; it depends on k and x, and the
energy of the fermionic excitations is in this case given by
E =H =e +

~

d
~

. Let us consider the asymptotics on
either side of the domain walls. For x tending to + ao,
we have fixed the limiting form corresponding to Eq. (6),

d(k, + ~)=b~ k
~kF ' (17)

while the asymptote for x ~—ao varies from one wall to
another, e.g.,

d(k, —00)=b,~
k

kF
for e'",

while

is the metric spinor.
For the case of L =1 pairing, d is linear in the momen-

tum k, and it may be expressed in terms of the order-
parameter matrix A; in Eq. (2) as follows:
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d(k, —ac )=As for C(s)x~in

correspondingly,

d{k,—ao }=As
k —zk„y

for C„'~'&e'

and

k —2k, x
d(k, —ac }=As

kp
for Q(s)z ei z (19c)

On both sides of each wall one asymptotically has

I
d

I
=ha for k on the Fermi surface, i.e., the d field is

defined on a sphere of radius b,s and it provides the map-

ping of the Fermi surface onto the d vector sphere with a
nontrivial element of the group m2.

r

Let us consider the instantons erst on the example of a
C' ' e' wall. There are two such point singularities,
each with X=—1: one at x =0, k=kzx and the other at
x =0, k= —kFx, see Fig. 7. For x =+ac, the field

d(k, + ~ ) produces the mapping of the x =+ &a spheri-
cal surface onto the d-Seld sphere S ~S with X =+1,
while at x = —oo, d(k, + ac) gives the mapping with
X = —1. The transition from one mapping to the other
takes place through the formation of the two singular
points on the Fermi surface at x =0, each with N = —1:
The integral in Eq. (20), taken over the two-dimensional
sphere embracing one of the point singularities in the
three-dimensional (k/k~, x) space, is equal to N = —l.
As a result, the real order parameter d should deviate
from the unit vector in the vicinity of the singularity and
tend to zero for x =0. Thus the gap in the quasiparticle
spectrum E

E= dS,.
ckrd.

over Fermi surface Sg
(20) k„

The topological charge N equals + 1 for the right vac-
uum (x =+ zc ), and N = —1 for the left one (x = —Dc )

in any of the four domain walls involving a change of
phase {in the other three 8-8 interfaces, b N =0: there is-
no change in N). Thus the x axis acts as the time variable
of the insianton, which serves to connect the k vacua
with diFerent topological invariants. Here the instanton
is the point singularity in the d field (sometimes called a
"hedgehog" ) in the three-dimensional (k/kF, x) space,
see Fig. 6, described by the homotopy group m2.

FIG. 7. The distribution of the field d(k, x)=d(r) in the

(k, x) space of Fig. 6 for solution 1 in Fig. 1. There are two
singular points ("hedgehogs") for x =0 at k= kkrx, both with

the topological charge X= —1, which undo the transition from
the x~+ ~ vacuum

+1 0 0
0 +1 0
0 0 +1

into the x~ —ao vacuum

FIG. 6. The three-dimensional (k,x) space is homeomorphic
to a solid sphere enclosing a hole. The x-axis maps into r, the
radial coordinate; the two-dimensional (2D) Fermi surfaces of k
{k is restrained to lie on the Fermi sphere, and should thus be
considered 2D) at each x maps onto a spherical surface with the
corresponding r. For the mapping between the points r of the
solid sphere and the coordinates k and x we use the relation
r=(k/I k

I )[1—i t»h(x/5/or )], through Figs. 7—10 (in Fig.
11,x is scaled by 7.5(GL).

—1 0 0
0 +1 0
0 0 +1

with the difkrent topological charges: %=+1 and X=—1,
correspondingly. Displayed is the (k,k„)projection of the

sphere; in the present case the instanton is axisymrnetric about

k„,such that the whole object can easily be pictured in the third
dimension as a surface of revolution.
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E =v~(k„kk~}+[A (x =0)] (k +k, )
T

+ (x =0) k~x
8 Axx

X
(21)

reduces to zero inside the domain wall at x =0, and this
occurs only for the two points on the Fermi sphere with
k=kk~x [Eq. (21}expresses E in the vicinity of the two
point singularities]. Thus E =0 at two points in the
four-dimensional (It,x ) space. The order-parameter
structure at x =0 corresponds to the so-called "planar"
super6uid pairing state. '

Figure 8 displays the corresponding topology for the
C' '"e' wall (or for the C'„'e' wall). In this case, the
pair of singularities has rotated into the direction 1 y per-
pendicular to k„.Figure 9 correspondingly shows the to-
pologies for the C' ' and C' '~ walls, which have the
same topological charges N = + 1 on both sides of the
wall. There occur in these ca~es a node on a ring (that we

would call a "myriapod") around the Fermi sphere. Note
the broken continuous axisymmetry of the ring node,
with the remaining discrete rotational symmetry C2. Fig-
ure 10 illustrates, however, an axisymmetric ring node,
realized for the wall O' '". A ring node is a topologically
unstable disclination loop, with the trivial topological
charge N =0, corresponding to the "polar" pairing state
for the superfluid He at x =0.

Figure 11 shows the spontaneous breaking of the maxi-
mally symmetric state for the pure phase-slip wall e',
which is unstable towards bifurcation into the two walls:
C' '"e' and C'„'".The whole Fermi sphere of zeros in
the gap corresponds to the normal state, He-N, at x =0
[Fig. 11(a)]. During the splitting, it transforms into a
pair of point singularities, accompanied with a string:
the ring node [see Fig. 11(b}]. The remaining composite
topological object, nevertheless, retains axisymmetry.

k„
(a) k„

N=+1

N= -'1

k
;I;I',".'l:
Nr:'

@i:,:

= k„

(b) k„

N =+1

FIG. 8. As in Fig. 7, but for solution 2 (or number 3, upon
the replacement y~z) in Fig. 1. Unlike Fig. 7, this instanton
provides an example of broken axisymrnetry in the (k, r) space:
the solution is not rotationally symmetric about the axis ky,
along which the point singularities at x =0 here occur for
k=kkFy, both with N = —1. The singular points in this in-
stanton realize the transformation from the x =+ 00 vacuum
with N =+1,

+1 0 0
0 +1 0
0 0 +1

into the vacuum for x = —ao with N = —1,

+1 0 0
0 —1 0
0 0 +1

The walls 2 and 3 are degenerate in zero magnetic field, but a
finite field serves to lift this degeneracy.

FIG. 9. Same as in Fig. 7, but in two different projections for
the nonaxisymmetric solution 4 (and for 5, upon the interchange
y~z) of Fig. 1. (a) In the (k„,ky) plane, instead of a point
singularity ("hedgehog"), the solution exhibits a circular node
for x =0 on a ring at the equator, a nonaxisymmetric ring node
("myriapod"), with the topological charge N =0, which in this
case possesses only discrete symmetry C2 upon a rotation
through m about the axis k, . (b) The (k,k, ) projection of
the same object shows the ring extending into the third dimen-
sion.
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the homotopic groups m„
Let us first discuss the familiar case of the diabolical

points featuring the codlmenslon pl =3 in superAmd He.
This means the points in the three-dimensional k space
where the difterent branches of the Hamiltonian 4&&4

matrix, Eq. (14), encounter a contact. Such points are
de6ned as topological defects described by the homotopy

= k
Y

k„

FIG. 10. The same as in Fig. 9, but far solution 6. This case
exhibits full rotational symmetry C„about the k„axis. The ax-
isymmetric ring node —with N =0—occurs in the cross-
sectional (ky, kg ) plane.

symmetry
break)ng

V. INSTANTON IN (jr.,r}SPACE:
A NE% DIASOI.ICAI, POINT

The point within the four-dimensional (k, r) space
where the fermionic energy spectrum E(k,x)=[a„
+dz(k, x)]'~ tends towards zero, serves to provide an ex-
ample of diabolical points occurring in condensed-matter
and particle theory, which play a crucial role in the quan-
tum dynamics. The diabolical points" are exclusive
points in the spectrum of the dynamical system in the
sense that at these points the usual energy-level anticross-
ing rule of quantum mechanics is violated, i.e., the con-
tact of two branches of the spectrum with the same sym-
metry may take place. '2

The particular points where the two branches are in
contact are topologicaHy stable: they are described by a
topological charge ' therefore, they cannot be des-
troyed by a continuous deformation of the spectrum. If
the two branches which cross each other at the diabolical
points correspond to particles and holes with energies
having opposite signs —then, in the diabolical points, the
fermionic energy reaches to zero, i.e., the fermionic zero
modes occur, which are stable towards the perturbations.
These give rise to several profound anomalies encoun-
tered both within condensed-matter and elementary-
particle physics.

The more commonly examined diabolical points" have
the codimensions n =2 or n =3 (the codimension n of a
diabolical point is defined as the dimension of the space
of parameters where the pointlike contact of the diferent
branches of the energy spectrum occurs). However,
several more complicated diabolical points with higher
codimensions are also possible for prescribed symmetries
of the Hamiltonian matrix, and they are described' by

(b3 k„
j)

= k
Y

FIG. 11. The symmetry-breaking scenario for the saddle-
point solution 7 in Fig. 1. (a) For the e'" waH in the maximally
symmetric possible state, the symmetry Pe' requires the simul-
taneous vanishing of aH the order-parameter components,
A„„(x=0)—:A»(x =0):—A (x =0)=0 at x =0 and, conse-
quently, a node surface around the Fermi sphere at x =0, i.e.,
this wall {Ref. 10) would have a normal core ( He-X) at x =0,
with the gap amplitude vanishing on the whole Fermi sphere.
(b) Solution 7 has spontaneously decayed into two domain walls,
6 and 1. The symmetry Pe' is broken in this process, but ax-
isymmetry remains {such as in the constituent solutions 1 and 6
as well, see Figs. 7 and 10) about k„:the sphere S has disin-
tegrated into a pair of point singularities in the directions
lr. =+kzx, and a node ring on a circle S' contained in the cross-

A
sectional (k. ,k, ) plane.
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group n2(R), where R stands for the manifold of 4X4
matrices with all eigenvalues being distinct, ' which is to-
pologically equivalent to the manifold

R =U(4)/U(1) XU(1)XU(1)XU(1) (22)

[or, what is equivalent: R =SU(4)/U(1)XU(1)XU(1)].
Since tr2(R)=ZXZXZ, such topologically nontrivial
points can indeed exist. Moreover, if the symmetry is
favorable, these points should be realized just on the Fer-
mi surface, where the positive-energy quasiparticle spec-
trum touches the negative-energy quasihole spectrum.

Near such a diabolical point ko, the Hamiltonian (14)
reduces into a 2)&2 matrix, describing the two crossing
degenerate branches in touch, quasiparticles and
quasiholes, and obtains the following general form:

H=o"m(k), m (k)=e' (k; —ko, ) . (23)

In the semiclassical representation, as the coefficients e'
and the position ko of the diabolical point become r
dependent, and in the further quantum generalization as
k~V/i, Eq. (23) corresponds to the Hamiltonian of a
chiral massless fermion moving in the electromagnetic
field A =ko(r, t) and in the gravitational field specified by
the triads e' (r, t) (g'J=g e'ej defines the metric ten-
sor}.

Consequently, the massless Fermi excitations in
superfluid He and the chiral Weyl fermions in quantum
electrodynamics share a common origin: the topological-
ly stable diabolical point with the codimension n =3 in
the k space. This is a source of the close analo y be-
tween the anomalous dynamics of superfiuid He-A,

R (real d)=SU(2), (24)

with m2(R)=0 and m3(R)=Z. Such symmetry excludes
the possibility of topologically stable diabolical points
with n =3—since nz(R }=0—but, because n3(R) is non-
trivial, it nevertheless admits the existence of the diaboli-
cal points displaying the new —and higher —codimension
n =4, i.e., for the branches' point of contact to occur in a
four-dimensional space.

It is easy to verify that the point defects in the four-
dimensional (k,x} space found in Sec. IV correspond to
diabolical points having n =4; namely, the integral over a
three-dimensional sphere S in the (k, x) space, embrac-
ing the point:

where two such diabolical points exist on the Fermi sur-
face (also referred to as the "boojums on the Fermi sur-
face" ' ), and anomalies in the 3+ 1 quantum electro-
dynamics with Weyl fermions. Note, however, that —as
distinct from elementary-particle physics —the usual
problems of a quantum-field theory, such as the chiral
anomaly and the vacuum polarization, can here be solved
completely since in He-A one knows the ultraviolet
asymptotics and there occurs absolutely no need to intro-
duce an unknown cutoff.

The instantons in the (k, r) space, i.e., the analogues to
the "cosmic" vacuum interfaces in superfluid He-B, pro-
duce novel examples of diabolical points featuring a
higher codimension, namely n =4. The topological ori-
gin for such a point is the additional symmetry of the
Hamiltonian in Eq. (14)—Cue to the field d(k, r) being
real in the domain wall. The space R of the 4)(4 matrix
H(k, r) in Eq. (14) with a real d field is

f, dS„e-t'Tr(V'a„V}(V'a. V)( V'a, V)
1

48tt S3 around instanton
(25)

is unity. Here U is the unitary matrix diagonalizing the
Hermitian matrix H [Eq. (14},with real d].

The general form of the fermionic Hamiltonian in the
vicinity of the diabolical point with n =4 produces a new
generic class of Hamiltonians in condensed-matter and
particle physics. This class contains, in particular, the
Dirac Hamiltonian (below, a and p are 4X4 Dirac ma-
trices):

H=a k+Pm, (26)

with a diabolical point occurring at k=0, m =0 in the
four-dimensional (k, m) space. Thus the fermionic dy-
namics near the instanton in the (k,x) space found in the
previous section is analogous to the fermionic dynamics
in the domain wall within the quantum-field theory of
Dirac fermions, whose mass m vanishes at x =0.

The fermionic zero modes are also responsible for the
spontaneous spin supercurrent in the cosmiclike He-B
domain walls at T =0 (near T„this supercurrent was cal-
culated in the Ginzburg-Landau approximation in Sec.

j = gk (nt+ni}=0. (27)

However, the spin currents of both branches add up,
hence producing the sum total spontaneous ground-state
spin supercurrent

j*=g k„(n& n&)& .0— (28)

This is here seen to be a direct consequence of the break-
ing of the discrete symmetry in the cosmiclike B-Bvacu-
urn interface.

III}. The exact spectrum of the fermions in the wall may
be found in a quantum-mechanical treatment' of the
Hamiltonian in Eq. (14). There exist two asymmetric
branches of the fermionic spectrum in the wall —one for
each spin projection —see Figs. 12, which intersect the
energy-level zero, i.e., the Fermi surface. The ferrnions
occupying the negative levels in any one of these
branches serve to produce the net ground-state mass
current. The mass currents carried by both branches ex-
actly compensate each other, thus,
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E" (I )n=o

fermion zero mode

k

The same situation occurs inside the cores of quantized
vortices in superfluid 3He, where the breaking of parity
spontaneously produces either spin or mass supercurrents
in the core along the vortex axis. An analogous symme-
try breaking has been postulated to occur also in the hy-
pothetical "superconducting" cosmic strings, in such a
manner that there will arise a spontaneous electric
current along the string axis.

The massless fermions can exist only in the plane x =0,
while outside this plane the fermions necessarily acquire
a finite mass. Therefore, the 8-8 vacuum interfaces, as
well as the quantized vortices~ in iHe, serve to provide in-
trigueing analogies —within condensed-matter physics-
to the concept of space compuctijkation. Note that the
linear objects in superfluid iHe, such as vortices and dis-
clinations, may contain diabolical points of the codimen-
sion n =5, while the pointlike sohton can have diabolical
points of codimension n =6.

VI. MSCUSSION

fermion zero mode
7 2

(b)

FIG. 12. Schematic illustration of the dispersion relation for
the fermion energy spectrum in the cosmiclike He-8 domain
wall for both branches of the spectrum, as a function of k~ —the
wave vector within the plane of the interfac= —for k» tending to-
wards zero. (a) For spin s = f; (b) for spin s = $. The spectrum
displays a diabolical point at the crossing of the fermionic zero
modes for the midgap energy (for full details of the quantum-
mechanical calculations, see Ref. 16). The occurrence of these
zero modes leads to a Snite density of states at zero tempera-
ture; the fermions occupying the negative-energy levels of the
asymmetric branches (solid lines in the Sgure) produce the
ground-state spin supercurrent, while the mass supercurrent is
exactly compensated.

In the super6uid phases of He —including He-8—
such as within modern gauge theories of the fundamental
interactions, the "vacuum" is far from being an inactive
"ether. " Instead, it constitutes a dynamical object, cap-
able of occupying difFerent ground states. The state of
the vacuum and its possible inhomogeneities determine
all the physical properties (such as the masses and in-
teractions) of any particles —fermionic He quasiparticles
and/or bosonic collective modes —immersed into it. Al-
though the vacuum assumes a ground state —that with
the lowest energy —this state is by no means unique, ow-
ing to the internal degrees of freedom which specify the
state of the vacuum. Therefore, there may occur 8-8
boundaries separating the inequivalent vacua of He-8:
nontopological domain walls, objects analogous to the
domain walls in cosmology, supported by symmetry and
bridging the mutually degenerate ground states.

Note that unlike the present modelss for the postulated
"cosmic domain walls" in the Higgs fIelds of the early
Universe, the 8-8 vacuum interfaces considered here,
owing to energy considerations, never possess a "normal"
core: with all the order-parameter components vanishing
simultaneously; instead, the domain walls (like the vor-
tices in He-8) display superfluid cores. The maximally
symmetric normal-core wall e' proves to be unstable to-
wards splitting into two walls=ach with a superfiuid
core. This is because of the internal degrees of freedom
for the vacuum state; clearly, it is not possible for the
"classical" superfluid 4He, which lacks such degrees of
freedom, to have superfluid-core domain walls.

Within gauge-field theories, instantons represent tun-
neling solutions in imaginary time between topologically
dilerent vacua; in the present context the instantons are
realized in the (k,x) space, and represent tunnehng solu-
tions in x space between topologically dilerent k-space
vacua. However, the tunneling solution obtained
through substitution of the real-space coordinate x to
imaginary time is also possibly: in this case the diabohcal
points will occur in the four-dimensional (k, t) space. It
will be of interest to examine whether these elusive ob-
jects in space or time —inhomogeneities of the vacuum—
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can be verified experimentally. In order to produce the
B-Bdomain walls in the laboratory frame, consider:

(i) The outcome of a rapid pressurization scheme de-
picted in Fig. 13. Essentia11y, this is equivalent to the
"Kibble scenario" for the formation of domain structures
in a spontaneously broken gauge theory, ' first suggested
in the cosmological context. Note that while the cosmo-
logical theories generating domain walls can probably be
eliminated because of their unacceptable gravitational
effects, a network of domain walls can be generated in
superfluid He-B, as suggested in the caption of Fig. 13.

(ii) Alternatively, one may conceive nucleating
superfluid He in the B phase confined to a tube divided
by a wall: once both sides of the wall reside in the 8
phase the wall is removed, thus possibly introducing the
8-8 domain boundary in the samp1e, provided that the
two sides occupy disparate vacua. Reflections of these
walls in a sample volume could be seen in the propaga-
tion of ultrasound through the cell.

(iii) The domain walls can also be emitted by moving
objects, such as the hypercooled superfluid A-8 phase
boundary, ' in particular. This emission process can be-
come the most prominent dissipation mechanism for
superflow decay at low temperatures, where the friction
force due to the scattering of the He quasiparticle excita-
tions off the A-8 interface may be neglected, since the
thermal excitations tend to become rapidly frozen out.
Combined objects, bound states of the A-8 phase bound-
ary, and an accompanying 8-B domain wall, have been
found t moreover, the critical velocities at which emis-
sion of the 8-8 walls occur were calculated in Ref. 20 for
the moving A-B interface (these very same B-B vacuum
interfaces were referred to as "interphasons" in Ref. 20),
i.e., since in a cooldown one a priori cannot flx the phase
of the superfluid condensate, one would expect that in
one-half of the experimental realizations of the superfluid
A-B interface, the phase boundary would be a one-core
structure, while the two-core structure —the bound state
of an A -B interface with a B Binterface -—is equally like-
ly. The moving A-8 phase boundary becomes unstable
towards the emission of the 8-B vacuum interfaces at a
finite propagation velocity, thus giving rise to the genera-
tion of these structures in the bulk superfluid.

Experimentally, the occurrence of the domain walls in
superfluid He is further complicated due to the existence
of the two length scales, goL and gn, in the domain-wall
structure (analogously to the hard- and soft-core struc-
tures of vortices in He). However, since for small mag-
netic fields one has gD &&goL, the structure in these
different core regimes is in this case independent of each
other. The topologically stable domain wa11s due to the
dipole interaction ("soft" core) may contain inner nonto-
pological cosmiclike domain walls (i.e., a "hard" core), in
which the mutual orientation of the order parameter in
the domains (see Sec. III) is not determined by the dipole
interaction, but rather is due to the symmetry of the vac-
uum alone. Within the soft dipole core, the superfluid is
in the B-phase state (whose orientation is just rotated),

AB Tc

3 He-N

0' I

2

b)

(c)

I

3
T (mK)

FIG. 13. A sudden pressurization of normal 'He Fermi
liquid, 3He-N, from just below T, into the superfluid state, may
be carried out (a) into He-A, (b) into He-B, or (c) onto the
super6uid 3He A-B coexistence curve. Here we are interested
in the possibility to generate, as the outcome, causally disjoint
nucleation centers of 'He-B (separated spatially by distances
d &&go„, a condition equivalent to "cosmic inflation") in
dilerent vacuum states. At the interfaces for domains in the
inequivalent vacua, it is possible to encounter actual experimen-
tal realizations of the different cosmiclike B-Bboundaries intro-
duced in the present paper. (See Ref. 18 for further details. )
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while, in contrast, in the hard core the He-B state is bro-
ken (while retaining superfluidity everywhere) in one of
the two passible ways found necessary for a plane of
phase slippage in bulk He-8: through the formation of
the polar or planar states, respectively.

In the future, we investigate the magnetic-field depen-
dence of the 8-8 interfacial energies, in order to study
the lifting of the degeneracy of the domain walls; in high
fields it will also be of special interest to consider the in-
teraction of the hard core of the domain wall, which we
have considered in detail above, with the soft dipole core.
In addition, it is motivated to study moving B-B inter-
faces, where, like for the moving A-B boundary, the
loss of time-reversal invariance (T) inay radically alter
the structure of the walls and their relative energies due
to the dispersion relation as a function of the propagation
velocity for the front. We have recently found ' related
A-A vacuum interfaces also in the superfluid A phase.



37 CQSMICLIKE DOMAIN %ALLS IN SUPERFLUID 'He-8: . . . 9311

'For review+ on the superfluid phases of He, see, A. J. Leggett,
Rev. Mod. Phys. 47, 331 (1975);J. C. %'heatley, ibid. 47, 415
(1975); P. %. Anderson and %'. F. Brinkman, in The Physics
of Liquid and SobdH'eiiurn, Part II, edited by K. H. Ben-
nemann and J. B. Ketterson (%'iley, New York, 1978), Chap.
3; D. M. Lee and R. C. Richardson, ibid. , Chap. 4.

For comprehensive reviews on topological defects in condensed
matter, see, N. D. Mermin, Rev. Mod. Phys. Si, 591 (1979);
V. P. Mineev, in Souiet Scienttftc Reuietus A2, edited by I. M.
Khalatnikov (Ha+eood Academic, Chur, Svritzerland, 1980),
p. 173; M. Kleman, Points, Lines and 8'a1ls in Liquid Crys-
ta1s, Magnetic Systems and Vanous Ordered Media (Wiley,
New York, 1983).

3The symmetry of defects in condensed matter is discussed in
M. M. Salomaa and G. E. Volovik, Phys. Rev. Lett. 51„2040
{1983);Phys. Rev. 8 31, 203 (1985); Phys. Rev. Lett. 54, 2127
{1985);A. A. Balinskii, G. E. Volovik, and E. I. Kats, Zh.
Eksp. Teor. Fiz. 87, 1305 (1984) [Sov. Phys. —JETP 60, 748
(1984)],and Ref. 5.

~On the momentum-space topology in 'He, see„G.E. Volovik
and V. P. Mineev, Zh. Eksp. Teor. Fiz. 83, 1025 (1982) [Sov.
Phys. —JETP 56, 579 (1982)];M. M. Salomaa and G. E. Volo-
vik, Europhys. Lett. 2, 781 (1986),and Ref. 5.

5M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533
(1987).

The analogy between super6uid 'He- A dynamics and
quantum-6eld theory, including the chiral anomaly, is
developed in G. E. Volovik, Pis'ma Zh. Eksp. Teor. Fix. 43,
428 (1986) [JETP Lett. 43, 551 (1986)];43, 535 (1986) [43, 693
(1986)];44, 144 (1986) [44, 185 (1986)];44, 388 (1986) [44, 498

(1986)]; for a review, see, G. E. Volovik, J. Low Temp. Phys.
67, 331 (1987).

7S. Coleman, Aspects ofSymmetry (Cambridge University Press,
Cambridge, 1985); see, in particular, Chap. 8.

SOn cosmic strings and cosmic domain ~alls, see, Ya. B.
Zel'dovich, I. Yu. Kobzarev, and L. B.Okun, Zh. Eksp. Teor.
Fiz. 67, 3 (1974) [Sov. Phys. —JETP 67, 401 (1975)];T. W. B.
Kibble, Phys. Rep. 67, 183 (1980};A. Vilenkin, ibid. 121, 263
(1985),and Ref. 17.

9V. P. Mineev and G. E. Volovik, Phys. Rev. 8 18, 3197 (1978).
toV. L. Golo and M. I. Monastyrsky, Phys. Lett. 66A, 302

(1978).
~'M. U. Berry and M. %ilkinson, Proc. R. Soc. London, Ser. A

392, 15 (1984);M. V. Berry, ibid. 392, 45 (1984).
~~J. von Neumann and E. P. %igner, Phys. Z. 30, 465 (1929);

ibid, 30, 467 (1929).
S. P. Novikov, Dokl. Akad. Nauk SSSR 257, 538 (1981}.
J. E. Avron, R. Seiler, and B. Simon, Phys, Rev. Lett. Si, 51
(1983).

~~G. E. Volovik, Pis'ma Zh. Eksp. Teor. Fiz. 46, 81 (1987)
[JETP Lett. 46, 98 (1987)].

'6M. M. Salomaa and G. E. Volovik (unpublished).
~~E. %itten, Nucl. Phys. 8249, 557 {1985).
'ST. %, B, Kibble, J. Phys. A 9, 1387 (1976).
'9For the moving super6uid He A-8 phase boundary, see, D. S.

Buchanan, G. %'. Swift, and J. C. %heatley, Phys. Rev. Lett.
57, 341 (1986);S. Yip and A. J. Leggett, ibid. 57, 345 (1986).

2 M. M. Salomaa, J. Phys. C (to be published).
M. M, Salomaa and G. E. Volovik, J. Low Temp. Phys. (to be
published).






















