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A quantization of the classical theory of a two-vortex system in a superfluid film is carried out.
This is done by finding the representations of an algebra of observables which respect the fact that
the vortices are identical objects. The representations depend on an undetermined parameter 0,
which may be interpreted as defining intermediate types of statistics for the vortices. We relate our
approach to a previous discussion, where only two values for 6 were claimed to be possible.

I. INTRODUCTION

In a two-dimensional world the types of particle statis-
tics are not restricted to the two well-known types:
Fermi-Dirac and Bose-Einstein. Theoretically a continu-
um of intermediate statistics appear, which interpolate be-
tween the only two types which are possible in three (and
higher) dimensions. We originally showed this in an ear-
lier paper,' and it has also been discussed by other au-
thors.? In the last few years this theoretical possibility
has been related to real physical phenomena in quasi-
two-dimensional systems. In particular, it has been sug-
gested that systems that demonstrate the fractional quan-
tum Hall effect contain quasiparticle excitations with
fractional statistics.> Also the quantized system of vor-
tices in thin films of superfluid helium has been examined
from this point of view.*~¢

Chiao, Hansen, and Moulthrop have analyzed the
quantization of the classical vortex motion in superfluid
films, and draw from this the conclusion that the vortices
satisfy a statistic halfway between the fermion and boson
cases. However, this result has been disputed in other
papers.>$ In this paper we reexamine the quantization of
the two-vortex system, to study this question. We restrict
the discussion mainly to the question of the “correct”
quantization of the classical motion, with the effect of the
vortices being identical taken properly into account. The
microscopic basis for such a quantum description, ad-
dressed in Ref. 5, we would only briefly comment on at
the end of the paper.

From a particle point of view the vortex system is
somewhat unusual, since, although physically it is a two-
dimensional system, dynamically it is only one dimen-
sional. This is so because the two orthogonal coordinates
in the plane, in a Hamiltonian formulation, are canonical-
ly conjugate. Therefore, the general analysis of the wave
functions of two-dimensional systems, carried out in Ref.
1, is not so readily applied to the vortex system. For this
reason we would rather examine the system by studying
the algebra of observables of the quantized system. The
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identical-particle effect is then introduced by restricting
the observables to operators that are symmetric under ex-
change of particle indices.

The conclusion we reach is that the quantized system
contains an undetermined parameter, which is naturally
interpreted as representing the possible intermediate
statistics. This agrees with the canonical quantization of
the two-vortex system in polar coordinates, discussed by
Chiao et al.* However, in Ref. 4 a canonical quantiza-
tion was carried out also in Cartesian coordinates, and
this quantization introduced a restriction on the statistics
parameter, to only two possible values. From our point
of view, the latter quantization scheme is too restrictive.
This has to do with the fact that the position variables
are not observables in the sense that they respect the
identical-particle effect. Another way to state this is that
the quantization does not take into account the singulari-
ty structure of phase space, and therefore is restricted by
the fact that it conserves more symmetries than are actu-
ally present in the physical system. And, as discussed in
Ref. 1, the presence of the singularities, due to
identification of particle coordinates, is really the reason
for the appearance of the generalized types of particle
statistics, both in one- and two-dimensional systems.

II. THE TWO-VORTEX SYSTEM

Following Ref. 4 we consider a two-vortex system, con-
sisting of two identical vortices, in a thin, incompressible
superfluid film. In the approximation where the vortices
are treated as pointlike objects, the classical motion of
their relative coordinates is described by the equations

dx _,

dt "3y’

dy oH
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41

9286 ©1988 The American Physical Society



37 INTERMEDIATE STATISTICS FOR VORTICES IN . . .

In these expressions a is a scale parameter and x is the
quantized vorticity of the superfluid.” The vorticity is re-
lated to the mass m of the atoms in the superfluid,
w=2m#/m. (We assume throughout the paper that x is
positive; negative % corresponds to vortices of opposite
circulation.) The system is thus a Hamiltonian one, with
the two orthogonal coordinates in the plane, x and y, as
canonically conjugate [but only in a limited sense can the
system (1) be considered a “‘classical” one, since Planck’s
constant already appears through the parameter x]. The

Hamiltonian # is related to the energy H by
H=pd# , (2)

with p as the density and 8 as the thickness of the
superfluid film. (H, then, is the energy relative to the en-
ergy for a separation r =a between the vortices.) There-
fore the momentum with correct dimension, conjugate to
X, is

po="22y . 3)

2

A standard canonical quantization then gives the follow-
ing commutation relation for x and y:*
2i#
®xpd

[x,y]= 4)

The relative coordinates x and y are not invariant un-
der interchange of the position of the two vortices:

(x,y)—(—x,—yp) . (5)

However the following quantities, derived from x and y,
are invariant,

A=1updlx?+y?),
B:%xp&(yz—xz) , (6)
C=npdlxy +yx) ,

and therefore represent observables of the system. They
have the following commutation relations implied by Eq.
(4):

[A4,B]=ifiC ,
[A4,Cl=—i#B , 7
[B,Cl=—i#hd .

Our approach is now to consider the commutation re-
lations (7), with the additional positivity constraint
A >0, as the fundamental relations which define the
quantization of the system. These relations replace the
commutation relation (4), which deals with operators that
are not necessarily represented within the algebra of ob-
servables.

III. QUANTIZATION

The commutator algebra of the operators 4, B, and C
is identical to the algebra of the group SL(2,R). To
quantize the system means to find irreducible representa-
tions of this algebra, with inequivalent representations
then meaning inequivalent quantizations of the system.
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The irreducible representations are most easily found
by considering the common eigenvectors |a,y) of A4
and the Casimir operator

'=4?-B*-C?, (8)

Ala,y)=afi|a,y) ,
X 9)
Cla,y)=y#|a,v) .
If y is calculated by use of the commutation relation (4),
we find y = -——l-‘g. However, in the present case, with (7)
as the fundamental commutation relation, y is not re-
stricted to this value.

The operators
B, =B+iC (10)

raising and lowering operators in the spectrum of 4, as
shown by the commutation relations

[A,B.]=x#B, ,
[BF’B,]:"'ZﬁA .

We consequently have

B, |a,y)=B(a,v)i|atl,y), (12)
with

B_(a,y)=B, (a—1,7)*. (13)

The functions 3. are determined by the second of the
commutation relations in Eq. (11), when we fix their
phases by convention,

Bila,y)=Vala+1)—y ,
B_(a,y)=Vala—1)—y .

In general, the spectrum of A4 is unbounded both from
below and above. The spectrum is bounded from below
only if A has a minimum eigenvalue «,, where the corre-
sponding eigenvector is annihilated by B _,

B_(ayy)=0. (15)
This gives

ap=1E(y + 1)1,
(16)
‘)/=a()(a0—1) .

As shown by the equation, the possible eigenvalues of T’
then are restricted by y > — 1. Positivity of A further
gives the restriction ay > 0.

The parameter a, now characterizes the inequivalent
representations of the algebra (7), and therefore ine-
quivalent quantizations of the system. (The representa-
tions may alternatively be characterized by 7;, but then
there are two inequivalent representations for each y in
the interval —+ <y <0.) The value of a; has physical
implications through the eigenvalues a, of 4 and the cor-
responding energies E,,
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a,=(apg+n), n=0,1,2,...,
(17

2
E,=— i{;pS In(8a, /xpda?) .
In the following we shall denote the corresponding eigen-
vectors by |n,a,), rather than by |a,7), which has
been used above.

IV. THE ¢-REPRESENTATION

The operator A4 generates rotations in the plane and
thus represents (except for a sign) the relative angular
momentum of the two-vortex system. This operator can
be given the standard representation

1% 9
== (18)
4 2 i 3¢
by introducing the following representation W(¢) for the
state vectors | W),

o0

1 —2ilay+n)é
Y(p)=—+ 0 .
(¢) Vo n=oe (n,oy|¥) (19)
In this representation the operators B get the form
Bi=ei""’[Az—(ao-%)z]mei""s ) (20)

and if we consider the classical limit, where [ 4,¢]—0
and A4 >>a,, we find the following expressions for B and
C:

B = A cos2d ,
C=—A4sin2¢ .

2D

This shows that ¢ indeed represents the polar angle of the
relative position of the two vortices. [To be precise
¢+ /2 is the standard polar angle. The additional angle
/2 comes from our phase convention in Eq. (14).]

The wave functions W(¢) satisfy the periodicity condi-
tion

W(gtm=e ~TOW(H) . 22)

The parameter 6 =2ma, then corresponds to the parame-
ter which determines the (generalized) statistics of the
particles in the case of two identical particles in the
plane.! In the present case, with the commutation rela-
tions (7) as the fundamental relations for the quantized
system, there is no restriction on the possible values of 6
(except 8>0). This is different from what would happen
if (4) were assumed to be the fundamental quantization
relation. Then we would have y:—%, and therefore
ay=1 or 2, so that the parameter 6 would have only two
possible values,
T o,
9=737>
as was discussed also in Ref. 4.
A naive comparison between the periodicity condition
(22) and the corresponding condition for a two-particle
system in the plane may lead to the conclusion that the
following 6 values correspond to the boson and fermion
cases,

(23)

6=0 mod 27 (bosons) ,
(24)
0= mod 27 (fermions) .

The values (23) then would be midway between the boson
and fermion values. However, as pointed out in Ref. 1,
the phase factor which determines the (generalized)
statistics of particles in two dimensions, does not only de-
pend on symmetry properties of the wave functions, but
in part also depends on the form of observables, like the
Hamiltonian. Thus for any value of 8 the wave functions
may be transformed to a symmetric form, but the 6 pa-
rameter will then instead appear explicitly in the expres-
sion for the observables. Since the dynamics of the two-
vortex system is genuinely different from the dynamics of
a two-particle system, this introduces an ambiguity in the
identification of certain values of 6 as corresponding to
the boson and fermion cases. We shall return to this
point.

One of the characteristic differences between the two-
vortex system and the two-particle system in the plane is
seen by considering the spectrum of the angular momen-
tum operator A. For the two-particle system, the angu-
lar momentum is unbounded both from above and below.
An increase in the value of 8 lifts the spectrum, but when
60— 0+ 27, each level is simply moved into the position of
the next level one step higher up. In fact all observables
have a similar periodic dependence on 6, and the physics
thus only depends on the phase factor e’® which charac-
terizes the statistics of the particles.

For the two-vortex system, however, the spectrum of
A is bounded from below. (Negative values of 4 would
correspond to vortices of opposite circulation, x— —x.)
A change 60— 0+ 27 therefore lifts all the levels into the
position of the next level one step higher up, but the spec-
trum of A is not restored, since the lowest level of the
original spectrum now is missing. The expression (20) for
the operators B, shows that these operators also have a
nonperiodic dependence on 6. As a consequence of this
there is a series of dynamically different quantizations for
each value of the phase factor e’®, whereas by the naive
argument these should all define particles with the same
generalized statistics.

The above discussion points out some similarities and
differences between the two-vortex system and a system
of two identical particles in two dimensions. However, as
already pointed out, the two-vortex system has dynami-
cally the character of a one-dimensional system. There-
fore, one may, perhaps more naturally, analyze the sys-
tem as consisting of two identical particles moving in one
dimension. This we will do in the next section.

V. THE x REPRESENTATION

As already stated, we do not consider the variables x
and y as representing observables of the system, since
they do not respect the identification

(x,y)=(—x,—y), (25)

which represents the fact that the two vortices are identi-
cal. However, if x is restricted to positive values, we may
define the observable
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4

xpd

x=(xH1"2= (A —B) (26)

This is well defined, since 4 —B is a positive definite
operator for ay>0. Interpreting the variable x as
describing the configuration space of the system, we note
that the restriction of x to the positive half line is the
same restriction as found for the relative motion of two
identical particles in one dimension.! The (xy) plane,
with the identification (25), indeed, is identical to the
phase space (of the relative motion) of two identical parti-
cles moving on a line.

We may now introduce a set of basis vectors | x ) and
the corresponding x representation W(x) of the state vec-
tors | W) by the relations

—j'—(A—-B)]x)zx2|x) ,

®pd

(x|x")=8(x —x"), (27
Y(x)=(x |¥) .

The x representation of the operators 4,B, and C can be

found from the commutation relations (7). For C we find
e 1€Cx2eicC=¢ —fix? (28)

with € as a parameter for the transformations generated
by C. This implies

e “Clx)=N(ex)|e "x), (29)

with N(€,x) as a normalization factor. This factor is
determined from the normalization of the |x) vectors,
and choosing N (¢€,x) to be real we find

N(e,x)=e 4 (30)

Equation (29), in the x representation, then reads
(e €CW)(x)=e " W(e 2x) . 31

Expanding this to first order in € we find the following ex-
pression for C:

ifi d d
o 32
¢ 4 dx + dx x (2
The operator
yi=—2 (4 +B) (33)
xpd
has the following commutator with x2:
32i#
Lxl]=— : (34)
L ] (%p8)?
Writing y? as
2 || &
=== |- : (35)
‘ ®p8 dx? +/
we get from Eq. (34),
[f,x*1=0, (36)

which implies f = f(x?).
The third of the commutation relations implied by (7)
can be written as

[y%Cl=—ifiy* . 37

With C given by Eq. (32), this gives the following equa-
tion for f,

% a0, (38)
dx

This equation has the solution
r=>, (39)
x

with A as a parameter which is undetermined by the com-
mutation relations (7). The expression for y? then is
yie 47’
(xpd)?

d? A

— , (40)
dx?  x?

and for 4 and B this gives the following x representa-
tions:

1 L )
A=— |- ———— 4 —= ,
8 Xp8 dx2 Kp5 xz +xp8x
41)
1 4 d? AR )
= | —— 4 —— = —%pd
B 8 xpd dx?  xpd x? pox

The parameter A, which introduces a (1/x?)-*potential”
in the expressions for 4 and B, is in fact directly related
to the parameter . This can be seen by evaluating the
Casimir operator

zﬁ;(k—%), (42)
which gives
A=d4y+3
=dag— 1) ag—13) . (43)

In the same way as for the ¢ representation, the param-
eter 6=2ma, can be interpreted as defining intermediate
types of statistics, interpolating between the boson and
fermion cases. To see this we consider the asymptotic be-
havior of the eigenfunctions of A as x approaches the
singular point x =0,
2207172

W(x)~ (44)

This x dependence, which shows that the analytic con-
tinuation of W(x) has a branch point singularity at x =0,
also implies the following symmetry property when the
wave function is continued to the negative real axis,

W(—x)=e' 0~ y(x) . (45)

Interpreting symmetric functions as describing bosons
and antisymmetric functions as describing fermions, we
then have
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=%mod2ﬂ' (bosons) ,
(46)
9:3%mod27-r (fermions) ,

while other values of 6 define something in between. The
curious fact now is that the interpretation (46) does not
agree with the corresponding “‘two-dimensional” inter-
pretation (24). In particular, the two special values
6=m/2 and 6=37/2, singled out by Chiao et al.* [Eq.
(23)], in the present interpretation are the boson and fer-
mion cases, respectively. The relation (43) between A and
ay now offers an explanation of what is special about
these values of 6. For 6=m/2 and 6=37/2 the parame-
ter A vanishes. The singular potential A/x? then disap-
pears and the wave functions W(x) have a nonsingular be-
havior at x =0.

VI. CONCLUDING REMARKS

The approach we have chosen for the quantization of
the two-vortex system shows that an undetermined pa-
rameter 6 is present, which may be interpreted as
representing possible “intermediate statistics” for the sys-
tem. We have found no restriction on the possible values
of 8 (except 6> 0), since we have allowed a singular be-
havior of the wave functions at the singular point x =0 of
the configuration space.

We have pointed out that there is a certain ambiguity
in identifying what values of 8 that correspond to the bo-
son and fermion cases. This is related to the fact that the
distinction between the effects of ‘‘statistics” and *‘dy-
namics” is not completely unambiguous in one and two
dimensions. In the x representation the values 8=1m/2
and 6=37/2 seem most natural identified as describing
bosons and fermions. The singular potential A/x? then
vanishes and the wave functions can be continued to neg-
ative x, to give symmetric and antisymmetric wave func-
tions, respectively. On the other hand, in the ¢ represen-
tation it seems mare natural to consider 6=0 and O=m
as the 6 values for bosons and fermions. The spectrum of
the angular momentum operator A4 is then correct (for
A >0), as compared with the relative angular momentum
of a two-particle system in the plane.

The presence of an undetermined parameter 6
represents the ambiguity which in principle is always
present in the quantization of a classical theory. Often
this ambiguity is reduced, or eliminated, by requiring cer-
tain symmetries to survive the quantization. As already
noticed the canonical quantization rule (4) is more re-
strictive than (7), which we have used for the quantiza-
tion. However, since the point x =y =0 is a singular
point already at the classical level, there seems to be no
reason to respect translational invariance in the quantiza-
tion. This is done by the commutation relation (4), while
(7) only respects the rotational symmetry in the (x,y)
plane. Let us also point out that there are other ways to
quantize the system, in its x-space representation, than
the one we have used here. In Ref. 1 intermediate types
of statistics were introduced by the boundary condition

dv

K;u‘l/ for x =0,
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where p is an interpolating parameter characteristic for
the system. If we had adopted this rule here, and as-
sumed A =0, this would have given a different way of in-
terpolating the spectrum of A4 between the boson and fer-
mion cases. The reason for ruling out this quantization
scheme here is that it does not respect the rotational sym-
metry in the (x,y) plane. This symmetry is present at the
classical level, and there seems to be no good reason why
the quantization should break it.

However, the question of what is the correct quantum
description of the vortex motion for a physical superfluid
film, like He*, cannot be decided at the level where the
vortices are treated as pointlike objects. At this level, for
example, the value of 8 is completely undetermined. To
determine the physical value of 6, or more generally to
determine what is really the correct quantum description
of the vortex system, one should consider the lower
“microscopic” level, where the atomic structure of the
superfluid is taken into account. This is the approach
taken by Haldane and Wu.> Our conclusions agree with
much of the general discussion in their paper, including
the point that the statistics parameter 6 cannot be deter-
mined from the long distance (‘‘classical”) properties of
the theory. But the way they relate the statistics parame-
ter to the Berry phase® of the localized vortex states we
do not find totally convincing. Let us point to the fact
that the Berry phase has significance for the dynamics of
the system only when the system is constrained to move
in the submanifold of states for which the Berry phase is
calculated. For adiabatic motion this is obtained when
the motion is slow on the time scale set by the energy
splitting of the states of the manifold. In the present case
the vortex motion cannot be considered as slow in this
respect, since the motion is induced by the same term in
the Hamiltonian which lifts the energy degeneracy of the
localized vortex states. Adiabatic motion, therefore, has
to be induced by some external potential, which controls
the motion of the vortices. But then the connection to
the statistics parameter which is associated with the free
vortex motion is no langer so clear.

In our opinion the core effects discussed in Ref. 5
mainly have to do with corrections to the vortex-vortex
interaction. Such corrections can be included in the ex-
pression for the Hamiltonian, and they do not necessarily
have to make the 6 parameter (which appears only impli-
citly through the spectrum of r2) ill defined. However,
since the 6 dependence in the Hamiltonian (1) is
equivalent, for large r, to the presence of a 6-dependent
1/r? potential, such other corrections may very well
dominate the O effect, and make it difficult to see it as a
real observable effect. Let us therefore finally suggest
that a further examination of the microscopic basis for
the quantized vortex motion would be of interest, in or-
der to see if it really is possible to ascribe a well-defined
value to the statistics parameter 6 of the vortex system.
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