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Rate theory of dislocation motion: Thermal activation and inertial effects
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A rate theory of dislocation motion is developed which incorporates both thermal activation and

inertial effects and that accounts for the enhanced plasticity in superconductors. The equations of
Brownian motion are applied to dislocations and are shown to describe viscous effects in therma1 ac-
tivation and thermal fluctuations during inertial effects. The viscosity reduces the activation rate
only for high values of the damping whereas inertial effects occur only at low values. For disloca-
tions the damping is in the range where inertial effects, and not a change in the frequency factor,
occur for pure samples in the superconducting state and for dilute alloys in both the normal and su-

perconducting state. The enhanced plasticity is therefore explained by an increase in the average
distance traveled by dislocations after thermal activation accounting for the dependence on both the
viscosity and the temperature.

I. INTRODUCTION

The discovery of an enhanced plasticity in supercon-
ductors has revealed an inadequacy in standard rate-
theory treatments of plastic flow. A purely mechanical
inertial model gives a fair account of the stress changes
which occur in normal to superconducting transitions,
but cannot account for the temperature dependence of
the flow stress observed in the superconducting state.
Evidently, a rate theory is needed which takes account of
inertial effects. It is the purpose of this paper to formu-
late such a theory. This is done by taking explicit notice
of the effect of thermal fluctuations and of a viscous drag
on both the thermally activated and the inertial overcom-
ing of obstacles by dislocations. The rate-limited velocity
is given by U =d I, where d is the average distance trav-
eled after each activation and I is the activation rate.
The enhanced plasticity is found to be an inertial effect
that depends on the viscosity through d and not I while
the temperature dependence is due to the familiar Ar-
rhenius factor I . This approach is generally applicable
to rate processes and is not restricted to dislocation
motion. However, dislocation motion provides a favor-
able and possibly unique system because the required pa-
rameters in the theory, e.g. , viscosity and normal fre-
quencies, can be measured with internal friction, thereby
providing a means for testing the theory. Furthermore,
viscosity becomes a controllable parameter by using su-
perconducting materials.

The rate of plastic flow and the internal friction of
solid solutions is normally determined by the mobility of
dislocations in the crystal. The average velocity of the
dislocations depends upon the applied stress and the tern-
perature and is limited by the largest force arising from
four mechanisms: (l) the interaction with obstacles such
as point defects and intersecting dislocations, (2) the in-
teraction with parallel dislocations, (3) the interaction
with a viscous medium, or (4) relativistic effects. The in-
teraction with parallel dislocations through their mutual
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FIG. 1. Schematic relationship between the average disloca-
tion velocity and the applied stress showing the mechanism that
limits the velocity in each stress range.

long-range stress fields is supposed to give rise to a back-
ground stress level which will be ignored here. The limits
imposed by each of the other three mechanisms are
sketched schematically in Fig. 1 for a crystal with obsta-
cles of equal strength.

For low temperatures and for stresses just below the
mechanical breakaway stress, the velocity depends
strongly on the temperature and on the stress because the
activation energy for overcoming the point obstacles is
stress dependent. For low enough stresses, thermal
backjumping over the obstacles occurs, and the net veloc-
ity becomes linear in the stress, given by an Einstein mo-
bility.

For sufficiently high stresses or high enough tempera-
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tures so that the dislocation-point defect interaction is
negligible, the velocity is limited by a viscous drag. The
scattering of electrons and phonons as well as the radia-
tion of elastic waves during acceleration provides an
effective viscous force on the dislocation. The velocity is
then linear with stress and the proportionality constant is
inversely proportional to the damping. Since the phonon
damping increases with temperature, the velocity in this
region decreases with increasing temperature.

At very high stresses relativistic e6'ects become impor-
tant. The dislocation velocity then reaches a limiting
value equal to the speed of sound in that medium. In this
paper we consider only those stress regions for which rel-
ativistic efkcts are negligible.

To account for the enhanced plasticity in superconduc-
tors, Kojima and Suzuki' first suggested that the efFect
occurred in the drag-limited regime since the component
of the viscosity 8 due to electron scattering would be ab-
sent in the superconducting state. However, that model
could not explain the strain-rate dependence of the
enhanced plasticity. In the rate-limited regime, other
workers have focused on changes in the dislocation ac-
tivation rate I . Alers, Buck, and Tittman proposed that
the activation energy might be changed during the super-
conducting transition. Hutchinson and McBnde sug-
gested that there might be a difterence in the local
eiT'ective temperature that depended on the superconduct-
ing state. Natsik, Estrin, and Suzuki each suggested
that the frequency factor might vary inversely with the
viscosity. All of these proposals have been decisively
ruled out by the observation that the superconducting
effect vanishes at a temperature below T, for pure sam-

ples but for dilute alloys vanishes sharply at T, .
The enhanced plasticity must therefore be due to

changes in the average distance d traveled by dislocations
after thermal breakaway. The inertial model " suggests
a simple mechanism for this effect. Underdamped dislo-
cations can overshoot an equilibrium position suSciently
to overcome an otherwise reAective potential barrier.
This process is sensitive to changes in the viscosity.
However, this is a purely mechanical model and does not
account for the temperature dependence. Landau' ' as-
sumed that a fraction g of obstacles could be overcome
athermally through inertial efFects whereas the remainder
would be overcome by therm. al activation. His expres-
sion for g was obtained by an empirical 6t to computer
simulation and was not based on physical principles.

In this paper the rate-limited velocity is derived from
basic principles. It is shown that I is not sensitive to the
viscosity for typical values for dislocations but that d is
strongly dependent on the viscosity due to inertial effects.
%e also show that a distribution of obstacle strengths is
both expected and necessary to explain the data. In a
subsequent paper, these results wil1 be applied to internal
friction experiments and experimental data on supercon-
ducting and normal lead will be interpreted in terms of
this model. A brief summary of this theory together with
a discussion of its application to plastic How and also to
internal friction has been presented elsewhere. ' ' On
the other hand, more specific discussion of some aspects
of the considerations given here can be found in Ref. 17.

II. DISI.OCATION MOTION THROUGH
AN ARRAY OF OBSTACI,KS

The motion of a dislocation through an array of obsta-
cles has been studied by computer simulations' or by
analytic techniques with many simplifying assump-
tions. Most of these studies are based on a geometri-
cal approach where stable dislocation configurations are
calculated for some array of obstacles. The breakaway
stress and the activation rate are then determined for
each configuration. By averaging over a large number of
random arrays of obstacles, an average dislocation veloci-
ty as a function of the stress is obtained.

In this paper dislocation motion is considered in terms
of the potential energy of the dislocation as it moves
through an array of obstacles. A similar approach has
been used in the Granato-Lucke model where only
segregated obstacles were considered. In principle, a
knowledge of the potential in which the dislocation
moves, of the viscous drag forces, and of the fluctuation
forces is suScient to determine the motion of a disloca-
tion.

The potential energy of a dislocation is multidimen-
sional with the number of dimensions N equal to the
number of degrees of freedom of the dislocation minus
the number of constraints on the dislocation. The motion
of a dislocation can be described in terms of a reaction
path in an X-dimensional configuration space that follows
the 1owest energy trajectory as the dislocation moves
through the array of obstacles. The potential along the
reaction path will have minima, corresponding to the
stable configurations, with saddle points between the
minima. The reaction path near each equilibrium posi-
tion will correspond to the lowest frequency normal
mode of the dislocation. The magnitude of the reaction
path coordinate corresponds to the average displacement
of the dislocation. The remaining normal modes of the
dislocation determine the entropy of the system. The
problem is then reduced to consideration of a system
moving in a one-dimensional potential together with a
determination of the normal modes of the system.

As a dislocation moves along the reaction path, its
motion is opposed by a viscous force arising from col-
lisions with electrons and phonons. These collisions also
produce a fluctuation force that tends to restore thermal
equilibrium. The motion of a dislocation along the reac-
tion path therefore corresponds to the Brownian motion
of a particle in an external force field.

The general equations of Brownian motion have been
developed by Kramers and by Chandrasekhar. They
begin with Langevin's equation which is the equation of
motion for a particle in an external force field and in
therma1 contact with the surrounding medium:

mx =F(x)+SU + 3 (t),
where x is the position of the particle, U is its velocity, n
is the mass, and F(x) is the external force. The influence
of the surrounding medium is separated into two parts: a
systematic part BU representing the viscous force and a
fluctuating part A (t). The function A (t) has only sta-
tistically defined properties so that the solution to Eq. (l)
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FIG. 2. Schematic of the potential energy along the reaction
path of a dislocation for attractive and repulsive obstacles.

must be in the form of a probability p(x, u, t) that the sys-
tem is at a position x with a velocity v at time t. The
differential equation governing the behavior of p becomes

ap ap l aU@ Bp kT Bp+u —— = p+ v +
at ax m ax av

= p au m

where P=B Im and OUI' = F(x—). For dislocations,
the mass m is replaced with the mass per unit length A,
the viscosity is the force per unit length Bv, and F(x} is
the force per unit length.

If the potential along the reaction path is known, then
the solution to Eq. (2) describes the probability distribu-
tion of a dislocation in phase space. For a random distri-
bution of obstacles in the glide plane of the dislocation, a
detailed calculation of the reaction path of the dislocation
and the potential energy along that path is exceedingly
complex. The problem becomes tractable if we assume
that the detailed form of the potential energy between the
positions of stable and unstable equilibria is of secondary
importance. The potential along the reaction path can
then be approximated as a series of quadratic potential
wells and barriers connected by a linear potential
representing the driving force on the dislocation. Such a
potential is shown in Fig. 2.

Since Kramers's equation given in Eq. (2}can be solved
for a linear and a quadratic potential, the problem of
dislocation motion can be solved by matching boundary
conditions at the edges of the linear and quadratic re-
gions. Solutions must be obtained for both the linear po-
tential and the quadratic potential.

(I) Linear. This is equivalent to an obstacle-free re-
gion. The steady-state solution is a Gaussian with a
mean value moving at a velocity v =btr/B with a veloci-
ty spread of 2kT Im, where b is the Burger's vector and o
is the resolved shear stress on the glide plane. If the ini-
tial velocity is much lower or higher than the steady-state
value, the equilibrium velocity will be attained in a time
constant P. If the potential barriers and wells are rela-
tively weak, this describes the average dislocation veloci-
ty and applies to the drag-limited regime.

(2) Potential well. Near a position of stable equilibrium
the potential has a quadratic dependence. The steady-
state solution is a stationary Gaussian of width kT/men„
where co& represents the curvature of the potential well.
There is a Snite probability that the system will attain

enough thermal energy to cross the potential barrier. If
the system is not in equilibrium, but is initially displaced
from equilibrium and is moving towards the equilibrium
position, two very different solutions are obtained. First,
the mean position of the probability distribution might
come to rest at the equilibrium position in a time con-
stant P either logarithmically or after a few oscillations.
The steady-state solution then applies to determine the
time before breakaway. Second, if the viscosity is
suSciently low, the mean position might overshoot the
equilibrium position so that it actually reaches the top of
the potential barrier. The dislocations that do reach the
top of the barrier never come to rest at the equilibrium
position in the potential well but cross the barrier and
move to the next linear region. This is inertial overshoot-
ing of the barrier.

A. Viscosity effects in thermal activation

I =vexp( —UlkT),

where
1/2

Np N

2 CO;

' 1/2

v= 2&co g

a =—+ +coP P'
2 4

(4)

U is the stress dependent activation energy, to„(toe) is
the lowest normal mode frequency of the dislocation in
the stable (unstable) equilibrium position, and the
unprimed (primed) co; refer to the N normal mode fre-
quencies in the stable (unstable) equilibrium position. If
the damping is well below a critical value B,=2Acoz,
Eq. (5) becomes the result obtained by the usual
transition-state method where (a —P)/a —l. If B »B,",
the transition-state result is decreased by a factor 2coc/P.
This decrease occurs when the potential barrier is rela-
tively flat and the strong interaction with the environ-
ment can lead to fluctuations that slow the forward
movement, thereby reducing the activation rate. If the
damping is small or the barrier is sharply peaked, this
effect is negligible.

Equation (4) is a general expression for the activation
rate across a potential barrier. It does not depend on the
form of the potential between the stable and unstable

To obtain an analytical solution for the rate-limited ve-
locity, we erst consider a dislocation at equilibrium in a
potential well to determine the rate at which dislocation
motion is initiated. The activation rate is obtained by
solving for the steady-state solution to Eq. (2) and calcu-
lating the rate at which the system crosses the barrier at
x =x, . This is given by

I = f up(x =x„v )du,

where we have assumed that the probability p is normal-
ized by the total number of particles in the system. Ex-
tending the solutions of Kramers and Chandrasekhar
to the case of dislocations by including the Vineyard en-
tropy factor, we obtain
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equilibrium positions. It is valid for all values of P except
for P&0.5 in which case the fluctuation forces are too
small to maintain thermal equilibrium near the potential
well. For a dislocation mass per unit length of 10
g/cm, this corresponds to a damping coefficient
B & 5X 10 ' dyn sec/cm . This is many orders of mag-
nitude below that expected for dislocations.

and substituting parameters applicable to dislocations, we
have

y t—r /o'
P =— 1 —erf

2 PC

8. Thermal Nuctuations during inertial eN'ects

' 1/2

K=
Uo

( 1 e 2w—D
)
—'1/2( 1+e wD')——1

After dislocation motion is initiated by thermal activa-
tion, the potential is approximately linear and the solu-
tion to Eq. (2) represents drag-limited motion until it en-
counters the next obstacle. This time of Sight is short
compared with the time required for thermal activation
111 thc rate-11mltcd rcglIIlc RIld call bc 1gIlolcd. EquatloI1
(2) must then be solved for a quadratic potential with the
initial condition of initial displacement from equilibrium
at xp and an initial velocity up. The solution for p is a
Gaussian in x and u with the mean value being the solu-
tion to the well known damped harmonic oscillator prob-
lem with T =0. For P& 2'„, the system is overdamped
and equilibrium is reached in a time constant P. For
P & 2'�„,the system will overshoot the equilibrium posi-
tion and has a finite probability of reaching the top of the
potential barrier at x =x, and crossing the barrier. This
can occur only at the first oscillation since subsequent os-
cillations will be smaller in magnitude. The time t,„
when the maximum overshoot occurs is the moment
when the mean velocity first goes to zero. As in the fa-
miliar harmonic oscillator, this is the first solution to the

uation

( 1 D 2) I /2

tan~max =
02 g xp ( 1 +Du p /ciP g xp )

This solution holds strictly only if the potential continues
to be parabolic beyond x, as shown in the dotted curve in

Fig. 2. To calculate the probability of crossing the bar-
rier, the potential is assumed to be parabolic and that the
probability of reaching x, is equivalent to the probabibty
of crossing the barrier. If the system overshoots the posi-
tion x, by a large amount the probability of crossing the
barrier is one and there is no efFect of having assumed a
parabolic potential. If the system does not reach x, then
a parabolic potential beyond x, is also not important.
Only for the case where the maximum displacement of a
system is near x, will the detailed shape of the potential
affect the solution. However, since the potential barrier
is sharply peaked, as is evidenced by the large values of
co& discussed below, this approximation is acceptable ex-
cept at high temperatures where the parabolic potential
assumed to exist beyond x, can cause reSections that do
not occur in reality. The value of the probability is there-
fore slightly underestimated but the essential dependence
on the applied stress and viscosity is retained.

The probability of the system traveling beyond x, is

Uo is the activation energy at zero stress,
D'=D(l D)—'/, D =B/B„and B, is the critical
damping for inertial overshoot given by 8, =23 co&. The
stress at which the potential well and barrier disappear is
the mechanical breakaway stress o . The value of y de-
pends on the initial velocity and the type of obstacle. For
attractive obstacles there is a brief acceleration as the
dislocation nears the obstacles. This is significant only
for low initial velocities. If we assume that

up &0.01(1+o /tr )c,
where c is the sound velocity, then

y =tanh(IrD'/2) . (12)

For high initial velocities and for repulsive obstacles at
any velocity, the expression is

(1+c—nD) —1 (13)

P 05—

O.25
l

Q75

The probability P is a thermally broadened step function
centered at tr=ytr . For o ~o there is no potential
barrier and I' is one; in this case, the assumption of a par-
abolic potential is not valid. The probability P is plotted
as a function of o/cr in Fig. 3 for various values of the
temperature and for a given value of underdamping.
This is the probability that a dislocation will overcome an
obstacle due to inertial overshooting of the equilibrium
position. As the damping increases, the curves move to
larger stresses until I' is a step function at o =o for the
overdamped case. For periodic potentials, a similar

I'= f f p(x, u, t =t,„)dx du .

Using the expression for p obtained by Uhlenbeck

FIG. 3. The probability I' of inertially overcoming an attrac-
tive obstacle of strength 0 as a function of o /o for D =0.35
and zero initial velocity at two difFerent temperatures.
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broadening effect due to thermal fluctuations has also
been discussed by Vollmer and Risken.

The expressions obtained by Granato, ' Suenaga and
Galligan, ' and by Kamada" for mechanical inertial
effects correspond to a probability P that is a true step
function at o =yo with y given by Eq. (13}. Their re-
sult therefore holds only for repulsive obstacles at zero
temperature. For attractive obstacles and low initial ve-
locities, the attractive part of the interaction must also be
included to obtain Eq. (9}.

The average distance a dislocation will travel is given
by the mean distance do between obstacles divided by the
probability of being trapped by an obstacle so that

d =do(1 P)— (14)

C. Viscosity efFects on the velocity

The frequencies co& and coc are important parameters
in this theory. They not only appear quantitatively in the
activation rate but represent critical criteria for two
viscosity effects. First, for B &B,=2Acoz the disloca-
tion is in the underdamped condition in the potential well
and inertial effects can occur. Second, B ~B,"=2A~&
the frequency factor is reduced by the viscosity.

These two normal mode frequencies can be calculated
as a function of the loop length by analyzing a dislocation
with evenly spaced pinnors. ' Each pinnor binds the
dislocation with a force constant f. Defining the disloca-
tion line tension as p and the loop as I, the equation of
motion for a dislocation can be solved for an equilibrium
value and oscillations about equilibrium. Two equilibri-
um positions are obtained: the stable equilibrium posi-
tion at the bottom of the potential well and the unstable
position at the top of the potential barrier. In each case,
N normal modes are obtained where N is the loop length
divided by the lattice constant. The value of co~ corre-
sponds to the lowest frequency in the stable equilibrium
case and is the first solution to the transcendental equa-
tion4'

As expected, if P =0 the dislocation is trapped at every
obstacle and d =do, and if P =1 the dislocation will
overcome every obstacle and d = Oo. In a real crystal the
maximum distance a dislocation can travel is limited by
the size of the crystal or by the interaction with other
dislocations. If the average maximum distance is d

&
then

Eq. (14) can be written as

d =do[r +(1—r}(1—P}]

where r =do/d &.

An imaginary solution exists only for those values of the
pinning constant where an unstable equilibrium is possi-
ble. The real solutions to Eq. (17) contribute to the entro-

py factor as shown in Eq. (5}.
Inserting typical values for dislocation parameters,

these solutions are used to evaluate the critical damping
criteria which are plotted in Fig. 4 as a function of the
loop length. Three distinct regions occur. For high
damping, the activation rate, but not the distance trav-
eled, depends on B. For intermediate damping, the veloc-
ity does not depend on B. For low damping, the distance
traveled, but not the activation rate, depends on B
through inertial effects.

The lowest damping a dislocation can have is limited
by radiation damping and is shown as the lower limit in
the bottom of Fig. 4. The phonon damping increases
linearly with temperature and even near the melting tem-
perature is well below B," as indicated by the upper
dashed line. From this figure it is clear that the activa-
tion rate will normally not depend on the damping for
dislocations. The inertial effect on the distance a disloca-
tion travels will occur only if the loop lengths are
suSciently short or if the damping is low enough.

III. DISTRIBUTION OF OBSTACLE STRENGTHS

A system of a large number of dislocations in a random
array of obstacles would be expected to exhibit a range of
activation energies rather than a single value as indicated
in Eq. (4}. The mechanical breakaway stress o depends
not only on the strength of the dislocation-point defect
interaction but also on the dislocation loop length and
the degree of collinearity. Internal friction measurements
clearly demonstrate such a range in the amplitude depen-
dence of the hysteresis loss. With increasing stress ampli-
tude, more dislocations with smaller loop lengths are bro-
ken away.

The experimental observation of enhanced plasticity in
the superconducting state also implies the existence of a
range of breakaway strengths. In the limit T~O disloca-
tion motion can be initiated only if o ~o, independent

hJ
E 10
O

tan8= — 0,2p
l

(16)

where 8=col/c. The value of co& corresponds to the
lowest frequency in the case of unstable equilibrium and
is the only imaginary value, corresponding to a potential
barrier rather than a well. Its magnitude is given by the
single imaginary solution to the transcendental equation

8 2pcot—= 0 .
2 I

IO

IO IO

l(cm)
10 10

FIG. 4. Diagram showing the three regimes of velocity
dependence on viscosity, depending on the value of the damping
coeScient and the dislocation loop length.
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of the damping. However, it is observed that plastic
strain occurs over a wide range of the applied stress be-
fore and after the superconducting transition even at very
low temperatures. It is therefore important to consider a
distribution of activation energies.

A distribution of dislocation breakaway strengths is
important in this theory in two di8erent places. First, the
rate at which dislocations are broken away must be
summed over all possible activation energies. If we define
the function N(a )do as the fraction of the mobile
dislocation density A which are in a stable configuration
having a mechanical breakaway stress between 0 and
o +1tr, then the rate of plastic strain is

e=Abu =Abd f NI"do (18)
0

O
D

U

0.5 2.0

d =d& r +(1 r)f (1 P)P—,(cr~ )dc—r (19)

The distribution N is a strong function of the applied
stress and of time as well as the concentration and type of
impurities. No dislocation can be found in a
configuration for which o. go so that N shifts to higher
values as the applied stress increases. Three factors
which influence the rate of change of N(cr ) are the rate
at which dislocations are unpinned from configurations of
strength o, the rate at which dislocations are repinned
by con5gurations of strength o, and the possible change
of 0 due to a shift in the internal stress arising from the
interactions with other dislocations. This distribution
function is complicated and is not known; no attempt will
be made to derive it here. To illustrate the effect of the
width of the distribution, a very crude approximation wiH

be made in this article in which N(o ) is characterized
by a mean value 0 and by a relative width q.

The second factor that depends on a distribution of
pinning strengths is the average distance traveled. The
relevant distribution function is P, (o )do which is the
probability that a potential barrier encountered by a
dislocation after breakaway has a mechanical breakaway
strength between o and o +do . The average dis-
tance traveled is then

FIG. 5. The average distance traveled by a dislocation as a
function of the applied stress for different values of the damping
parameter D and of the width q of the distribution of obstacle
strengths for r =0.1. 1¹D = 1.0, g=0.2; 1S: D =0.3, g=0.2;2¹D =1.0, g=0.02; 2S: D =0.3, q=0.02.

plied stress is constant„ then the integral in Eq. (18) is
zero since N(o) is zero for cr'go and I" is zero for
o' & o . However, if the stress is increased from cr+ do
in the time interval dt, then the strain rate becomes

e=Ab dN(o")d ' .

If the elastic strain is added to the plastic strain in Eq.
(20), then integration yields the stress-strain relation

@=aIG+ Ab f dN(cr')der', (21)
0

where 6 is the shear modulus. For tensile stresses a
resolved shear stress factor must also be included. Tak-
ing No(o ), the initial value of N(o ) at zero stress, and
P, (o ) to be a Gaussian function with a mean value oo
and a relative width rt, Eq. (21) is plotted in Fig. 6 for
both overdamped and underamped dislocations for
r = —,', . Equation (21) can be understood as the total num-

If P, (o ) is a 5 function we again obtain Eq. (15). The
function P, (cr ) is essentially independent of the apphed
stress since u depends only on the dislocation
configuration and the obstacle interaction energy. If P,
varies slowly near the breakaway stress, then thermal
broadening of the trapping probability P is effectively
canceled in the integral in Eq. (19). Although thermal
fluctuations can assist in the inertial overcoming of
stronger obstacles, they can also reduce the probabihty of
overcoming weaker obstacles. These two sects essential-
ly cancel and thermal broadening eN'ects can be ignored.
Equation (19) is plotted in Fig. 5 as a function of the
stress where 1 —P is taken to be a step function at
o.=yo. and I', is a Gaussian function with a mean value
0' and a width y.

The importance of ihe distribution of obstacle
strengths can be illustrated at very low temperatures
where I" can be taken to be a step function at 0.=0'
where 0 * is the thermal breakaway stress. ' If the ap-

FIG. 6. Calculated stress-strain curve for the normal and su-

perconducting states for two diferent widths q of the distribu-
tion of obstacle strengths. 1%: q=0.2, overdamped case; 1S:
q=0.2, underdamped case; 2N q=0.02, overdamped case; 2S:
q =0.02, underdamped case.
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ber of dislocations that break away as the stress is in-
creased from 0 to cr times the distance each dislocation
travels. Inertial effects are evident because of the impact
on the average distance traveled. Thermal effects are evi-
dent because the total number of dislocations broken
away is increased at higher temperatures.

IV. SUMMARY

Dislocation motion has traditionally been understood
as being either drag limited or rate limited. The observa-
tion of enhanced plasticity in superconductors provided
clear evidence that viscosity and thermal effects are both
important at the same time. Although this enhanced
plasticity has been described phenomenologically in
terms of the inertial model, there was no fundamental
derivation of both viscous and thermal effects. In this pa-
per the basic equations of Brownian motion were applied
to dislocation motion. Solutions to Kramers's equation
were shown to describe drag-limited motion, viscous
effects in thermally-activated rate-limited motion, and
thermal fluctuations in the viscosity-dependent inertial
effects. Three regimes of behavior were observed. For
high values of the damping the frequency factor is re-
duced, for low values inertial effects are important, and

for intermediate values there is no dependence on the
viscosity. For dislocations a "phase diagram" can be
drawn (see Fig. 4} showing the ranges of viscosity and
loop length for each type of behavior. For typical values
for dislocations, the dominant viscosity effect is the
change in the average distance traveled due to inertial
effects. The theory developed here is not restricted to
dislocation motion but applies generally to any system
subject to these types of viscous interactions. Dislocation
motion is a favorable system for studying motion in a
viscous medium since the damping is known and can be
changed in the case of superconducting materials. How-
ever, due to the large number of dislocations in a crystal,
statistical effects of a distribution of loop lengths and obs-
tacle strengths must be considered. Internal friction mea-
surements of dislocation motion have the additional
benefit of reproducibly and nondestructively probing the
nature of this motion. In a subsequent paper, internal
friction measurements in lead will be discussed in terms
of this theory.

ACKNOWLEDGMENT

This research was supported by the U.S. National Sci-
ence Foundation under Grant No. DMR-80-15707.

'Present address: IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598.

'H. Kojima and T. Suzuki, Phys. Rev. Lett. 21, 896 (1968).
G. A. Alers, O. Buck, and B.R. Tittmann, Phys. Rev. Lett. 23,

290 (1969).
T. S. Hutchinson and S. L. McBride, Can. J. Phys. 50, 906

(1972).
~V. D. Natsik, Zh. Eksp. Teor. Fiz. 61, 2540 (1971) [Sov.

Phys. —JETP 34, 1359 (1972)].
5Y. Z. Estrin, Phys. Status Solidi A 26, K161 (1974).
sT. Suzuki, in Rate Processes in Plastic Deformation (American

Society for Metals, Metals Park, Ohio, 1976).
R. D. Isaac, R. B. Schwarz, and A. V. Granato, Phys. Rev. B

is, 4143 (1978).
A. V. Granato, Phys. Rev. Lett. 27 660 (1971).
A. V. Granato, Phys. Rev. B 4, 2196 (1971).

' M. Suenaga and J. M. Galligan, Scripta Metall. 5, 829 (1971).
K. Kamada and I. Yoshizawa, J. Phys. Soc. Jpn. 31, 1056
(1971).
A. I ~ Landau, Phys. Status Solidi A 61, 55 (1980).

' A. I ~ Landau, Phys. Status Solidi A 65, 119 (1981).
' A. I. Landau, Phys. Status Solidi A 65, 415 (1981).
'sR. D. Isaac and A. V. Granato, in Proceedings of the Interna

tional Conference on Dislocation Modelling of Physical Sys-
terns, Oxford, 1980, edited by M. F. Ashby et al. (Pergamon,
Oxford, England, 1980), p. 425.

'6R. D. Isaac and A. V. Granato, in Proceedings of the Fifth In
ternational Conference Strength of Metals and Alloys, Oxford,
1979, edited by P. Haasen et al. (Pergamon, Oxford, Eng-
land, 1979), Vol. I, p. 493.

' R. D. Isaac, Ph. D. thesis, University of Illinois, 1977.
A. J. E. Foreman and M. J. Makin, Philos. Mag. 14, 911
(1966).
A. J. Frost and M. F. Ashby, J. Appl. Phys. 47, 5273 (1971).

2 T. Cadman and R. J. Arsenault, Scripts Metall. 6, 593 (1972).
'J. W. Morris, Jr. and D. H. Klahn, J. Appl. Phys. 44, 4882

(1973).
J. W. Morris, Jr. and D. H. Klahn, J. Appl. Phys. 45, 2027
(1974).
S. I. Zaitsev and E. M. Nadgornyi, Fiz. Tverd. Tela 15, 2669
(1973) [Sov. Phys. —Solid State 15, 1777 (1974)].
K. Hanson and J. W. Morris, Jr., J. Appl. Phys. 46, 983
(1975).
K. Hanson and J. W. Morris, Jr., J. Appl. Phys. 46, 2378
(1975)~

S. Altintas, K. Hanson, and J. W. Morris, Jr., Trans. ASME
Ser. H; J. Eng. Mater. Technol. 98, 86 (1976).
R. Labusch and R. B. Schwarz, Nucl. Metall. 20, 650 (1976).
R. L. Fleischer, J. Appl. Phys. 33, 3504 (1962).
J. Friedel, Dislocations (Addison-Wesley, Reading, Mas-
sachusetts, 1964), p. 224.
U. F. Kocks, Philos. Mag. 13, 541 (1966).

'U. F. Kocks, Can. J. Phys. 45, 737 (1967).
R. Labusch, Phys. Status Solidi 41, 659 (1970).
A. S. Argon, Philos. Mag. 25, 1053 (1972).
R. Schindlmayr and J. Schlipf, Philos. Mag. 31, 13 (1975).
J. Schlipf and R. Schindlmayr, Philos. Mag. 31, 25 (1975).
A. I. Landau, Phys. Status Solidi A 30, 659 (1975).

37B. M. Strunin, Fiz. Tverd. Tela 15, 3481 (1973) [Sov. Phys. —
Solid State 15, 2332 (1974)].

B.M. Strunin, Phys. Status Solidi A 35, 551 (1976).
B. M. Strunin and A. B. Popov, Phys. Status Solidi A 34, 761
(1976).

~A. V. Granato and K. Liicke, J. Appl. Phys. 27, 583 (1956).
4'A. V. Granato and K. Liicke, J. Appl. Phys. 27, 789 (1956).

L. J. Teutonico, A. V. Granato, and K. Liicke, J. Appl. Phys.
35, 220 (1963).
A. V. Granato, K. Liicke, J. Schlipf, and L. J. Teutonico, J.



37 RATE THEORY OF DISLOCATION MOTION: THERMAL. . .

Appl. Phys. 39, 5181 (1968).
~K. Liicke, A. V. Granato, and L. J. Teutonico, J. Appl. Phys.

39, 5181 {1968).
~5L. J. Teutonico, K. Lucke, F. %'. Heuser, and A. V. Granato,

J.Acoust. Soc. Am. 45, 1402 (1969).
46H. A. Kramers, Physica 7, 284 (1940).
47S. Chandrasekhar, Rev. Mod. Phys. 15, 1 {1943).

~~G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
49P. B.Visscher, Phys. Rev. B 14, 347 (1976).
~OG. E. Uhlenbeck and S. Goudsmit, Phys. Rev. 121, 145 (1929).
~~M. C. %ang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323

(1945).
52H. D. Vollmer and H. Risken, Z. Phys. 8 37, 343 (1980).

A. V. Granato and K. Lucke, J. Appl. Phys. 52, 7136 (1981).


