
PHYSICAL REVIEW B VOLUME 37, NUMBER 16

Spin-Hamiltonian parameters of S-state ions
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There are three alternative perturbation procedures which are equivalent when considering the
contribution of the spin-orbit (SO) mechanism to the spin-Hamiltonian parameters of S-state ions.
We show that the study of the uniaxial stress on the zero-field splitting is an efFective way of identi-

fying the most important contributor among the various mechanisms leading to the S-state split-

ting. Calculations are carried out for Mn + and Fe'+-doped MgO and CaO crystals, indicating the
SO mechanism to be predominant in the systems. The importance of utilizing the appropriate
crystal-field model is stressed, and the observed axial term D of Fe'+ and Mn + ions at the
tetrahedral and octahedral sites in several garnets are well explained by the SO mechanism, with the
aid of the superposition model of the crystal field. The superposition model of the spin Hamiltonian
proposed by Newman and Urban is shown to be capable of reaching results identical with those of
the SO and other microscopic mechanisms. Illustrations are given indicating that the investigation
of the intrinsic parameter and the power-law exponent of the superposition model is helpful in the
identification of the dominant one among the mechanisms.

I. INTRODUCTION

During the past few decades, theoretical studies on the
spin-Hamiltonian parameters of d ions have become the
subject of a considerable amount of work. The lack of or-
bital angular momentum in the S ground state leads to
considerable difficulty in explaining the observed effects
of the crystal fields. Various mechanisms have been sug-
gested to contribute to the ground-state splitting of the
magnetic ions interacting with the lattices.

The Hamiltonian of a d ion can be written as

H =Ho+ V+H .0. +Hs. s

where

V=V, +- V (3)

Because of the weakness of H. . . important effects are ex-
pected due to the spin-orbit interaction. This effect may
be thus called a spin-orbit (SO) mechanism. A study on it
was published by Blume and Orbach (BO), ' who treated
the calculation within the ground d configuration and
took the spin-orbit coupling H, and the low-symmetry
component V& of the crystal field as perturbation terms.
The BO perturbation technique has been extended to
tetragonal, rhombic, and trigonal symmetries ' and

is the crystal field, Ho the free-ion Hamiltonian; H, , and
H, , are the spin-orbit and the spin-spin couplings, re-
spectively. As usual, the crystal field V can be written as
the sum of a cubic part V, and a low-symmetry one VI

found to be able to account for the observed spin-
Hamiltonian parameters of some systems. This pro-
cedure, however, is not the only way of calculating the
spin-orbit coupling effect in a d configuration. One may
treat the total crystal field V as one of the perturbation
terms together with the spin-orbit interaction H. .. or
make the calculation in the strong-field scheme as done
by Macfarlane for F-state ions. The spin-orbit coupling
effect on the ground-state splitting can also arise from the
mixing of the excited electronic configurations into the
ground 31. The contribution due to this mixing has
been considered by Orbach, Das, and Shartnal (ODS)
(Ref. 6) and is known to be negligible for most of the
cases involving Mn + and Fe + ions. ' ' Perturbation
involving the spin-spin interaction is called the spin-spin
(SS) mechanism, which contribute values to the spin-
Hamiltonian parameters much smaller in magnitude than
those due to the SO mechanism. ' '

Both the SO and the SS mechanisms are manifestations
of the crystal-field effect. If we take into account the rel-
ativistic correlation crystal field in the Hamiltonian we
have the so-called relativistic mechanism (RE). ' '" This
mechanism has been shown to matter in 4f ions' and
was claimed to be of importance in 3d ions. " When
considering the effect of the overlap and covalency be-
tween the orbitals of the magnetic ions and those of
ligands we get the covalency and overlap mechanism
(CO). ' The importance of this mechanism was stressed
in some literatures.

All the mechanisms have been suggested, and one thus
wishes satisfactory interpretations for the observed spin-
Hamiltonian parameters would be obtained by taking
them into account. However it is not the case. Almost
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all of the works reaching results in satisfactory agreement
with the experimental data omitted one or more mecha-
nisms which may be important in other systems. It thus
becomes necessary to reexamine the calculation models
suggested for the mechanisms and before having done
this, identifying the most important one among the vari-
ous mechanisms is helpful.

The main aims of the present work are (i) to reexamine
the calculation models suggested for the SO mechanism,
(ii) to establish a theory of the spin-lattice coupling for
31 ions in 0& coordinations, on which the most impor-
tant mechanism is expected to be identified, and (iii) to in-
vestigate the superposition model of the spin Hamiltoni-
an of S-state ions suggested by Newman and Urban'3 on
the basis of microscopic theory.

We will distinguish three alternative perturbation pro-
cedures for the SO mechanism and show them to be
equivalently correct. As a calculation of the crystal field

plays a crucial role in evaluations for this mechanism, we
expect the superposition model of the crystal field'4

which has been shown to be successful in interpreting the
crystal-field sphttings of 4f" and some 3d" ions to be
applicable instead of the lattice-summation technique
based on the point multipole model used in literatures.
With the aid of this model the relationships will be estab-
lished between the spin-Hamiltonian parameters and the
crystalhne ones. This will be given in Sec. II together
with clarification of some confusions in literatures.

Section III shows a study on the spin-lattice coupling
coeScients 6» and G~ of Fe + and Mn + ions substi-
tuted in MgO and CaO crystals, using the various mecha-
nisms. The signs and the relative magnitude of 6» and
G~ are found to serve as an indication that the SO mech-
anism is predominant. It seems that the study on the uni-
axial stress el'ect is an effective way of identifying the
most important mechanism.

In Sec. IV we will perform a SO mechanism calculation
for Fe + and Mn + ions in several garnets with the use of
the superposition model of crystal field. The results are
satisfactory. The importance of taking parameters which
fit the optical data is stressed.

Based on the microscopic theories, a discussion is
made in Sec. V on the superposition model of the spin
Hamiltonian of S-state ions which has been suggested by
Newman and Urban'i and employed extensively in recent
years. We will show that the hypothesis on which this
model is established seems to be unreliable but, to one' s
surprise, the results are always correct in the cases where
the distortions are slight from cubic. Comparing the re-
sults given by this model and those by the SO mechanism
leads to relaflonshlps be'tweeil tlie pal'aiiletel's (5 i aild

A4, Tz and r4) of the two superposition models for the
spin Hamiltonian and for the crystal field. The power-
law exponent Tz of the superposition model of the spin
Hamiltonian changes its value according to the relative
importance of the various mechanisms. It is allowed
greater than 10 in theory and is found, for example, to be
19 for Mn + at the dodecahedral site (D2) of lutetium
gallium garnet (LuGaG). The study of the magnitude of
T2 and the sign of bz is helpful for identifying the most
important mechanism operating in a given system.

H, = g S,D;JSJ +rank-4 terms (i,j =x,y, z)

arises from the combined eFect of the crystal-5eld and
the spin-orbit interaction within the ground 3d
configuration. For axial symmetries only a splitting pa-
rameter D (or b 2 ) survives which is defined by

D =bi =D ——,'(D +Dye ) . (5)

When the symmetry is rhombic, an additional term E (or
bz) arises,

There may be three alternative perturbation procedures
approaching the contribution of the SO mechanism. Be-
fore investigating them, let us examine the formalism of
crystal fields having low symmetries.

A. Formalism of crystal Selds

Correctly identifying the cubic component from the to-
tal crystal field V of low symmetry is of importance in the
calculation for SO mechanism. We consider three cases,
rhombic, tetragonal, and trigonal symmetries.

The crystal fields of rhombic point-group symmetries
(Dz, D2&, and C2„) can be considered as distorted from
cubic fields (0& and Td) along the cubic axes [100] and
[010], or along [110]and [110]. The crystal field can be
written as

~ = ~C+ ~rheum

V, =8„[*v'14/5C,"'+(C,'"+C",')],
I'.h. =8zo~o" +8zz«z" +~"

z )+8~o~o"

+842(C2" +C'"2)

84o 8+4ov——' l4/58~ .

The upper signs apply to the coordination system (denot-
ed by I hereafter) in which the principle axes X, F, and Z
are parallel to [100], [010],and [001], respectively, while
the lower ones to that (denoted by II hereafter) in which
the X, Y; and Z are along [110],[110],and [001], respec-
tively. By letting 822 ——842 ——0 the expressions hold for
tetragonal point-group symmetries (D2d, C4„, D4, and

D4& ). The cubic-field parameter Dq in all the symmetries
relates to the components 84o and 844 by

Dq = —,', (84ok&14/58~) .

Similarly, the trigonal point-group symmetries (D3d
and Cz„) can be considered as distorted from cubic along
[111].Choosing X~~[111]one has

II. SO MKCHAMSM

As mentioned in Sec. I, the dominant contribution of
the spin-orbit (SO) mechanism to the spin-Hamiltonian
parameters of 5-state ions de6ned by
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V= V, + V,„,
V, =B43[+&7/10C(') '+(C~3 ' —C' ~3 )],
V,„.=B2oCo +B4oCo

where

B~=B40++7/10B43 .

(10)

The upper signs correlate to the lower ones by a 60' rota-
tion of X and Y axes around the C3 axis. In this case,

E/D(SO-I) = —2&2/5B42/B40 (14)

where g is the spin-orbit coupling constant and P, P &,
and P ~ are defined in the original paper. The authors
have used a D parameter which is defined by
H, =D [3$,—$($+1)]and is therefore just —,

' of that we

use; Bk in the present paper relate Bg by

B40 ———B40(r ), B20 ———B ~(r ),
and

Dq = —,', (B4—0+&7/10B~,) . (12) Bk2 ———Bk(r"), k =2,4 .

In trigonal symmetry the formula becomes

B. Three alternative perturbation procedures

C. SO-I procedure

This procedure has been applied to rhombic and
tetragonal symmetries in the lowest- (third-) order treat-
ment. ' In rhombic symmetry it has been found by
Sharma, Orbach, and Das (for correction see Ref. 7) that

D(SO-I) = —(&5/12)g (2P Pp)P rB40—(13)

We have mentioned that the effect of the SO mecha-
nism can be considered by three perturbation procedures.
One method has been suggested by Blume and Orbach. '

It treats the spin-orbit coupling H„and the low-
symmetry components of crystal field V& as perturbation
terms. This widely-used procedure is called the BO
mechanism in literatures and is expected to be able to ap-
proximate the contribution fairly well as a result of usual
weakness of V&. For convenience we denote it by SO-I.

Another procedure is on the basis of treating the total
crystal field V and the spin-orbit interaction H, , as per-
turbations. At first glance one may possibly think the
convergence of the perturbation series questionable, as
the perturbation term V includes a strong part V„ the cu-
bic component of crystal field. However, it does con-
verge rapidly in a wide range of Dq, as will be shown
below. This procedure will be called SO-II in this paper.

Besides these two methods, which are considered in the
weak-field scheme, one may make the perturbation calcu-
lation in the strong-field scheme by taking the cubic field
V, and the diagonal part of free-ion Hamiltonian Ho as
an unperturbed Hamiltonian and leaving the perturba-
tions as the spin-orbit coupling H. .. the low-symmetry
field V&, and the off-diagonal part of Ho. This technique
was proposed by Mcfarlane in calculating the spin-
Hamiltonian parameters of F-state ions and is expected to
obtain good results for the cases with

~
Dq

~

&B. We
expect it applies well to S-state ions, where the strong-
field scheme is known to work quite well in the interpre-
tation of the crystal-field splittings of the excited states.

In what follows we will recall briefly the main aspects
of the published works on SO-I and SO-II, then establish
the theory on SO-III, and finally make a comparison
among them. Several interesting things will be found and
some confusions suffered in literatures will be pointed
out.

D(S Ol)=(& 5/63)g (7P +4P p)P ~B40

—(3&5/14)( P pP rB20 . (15)

It must be pointed out that the expression (14), which
was derived in the basis functions of coordination system
I, is valid only in the coordinate system I. In the coordi-
nate system II, in which the component B~ has an oppo-
site sign to that in I due to a 45' rotation of X and Y axes
around the Z axis, the basis functions of irreducible rep-
resentations are different from those of I. This can be
readily seen from the relative directions of the C3, or
[111],axis with respect to the principle axes X and Y in
the different coordinate systems. The basis functions can
be constructed from available tables of Grimth' and the
consequent result of D is found to be the same in form as
(13). The formula of E, however, becomes

E/D(SO-I) =' &2/5—B4~/B~ (14')

D. SO-II procedure

This procedure is able to avoid the complication of
choosing a coordinate system. The rank-2 spin-
Hamiltonian parameters have been written in a general

instead of (14).
It is not surprising that both coordinate systems I and

II have the same expression of axial term D. In fact, they
have identical Z axes. When I turns to II by 45' rotation,
B~ remains unchanged whereas B44 changes its sign; the
unbalanced term B4o stays unaltered from the definition
(8) and similar expressions of D in the different systems
are therefore expected.

Attention must be paid to the appropriate choice of
coordinate system and to the correct application of the
formulas (14) and (14') in the calculation of the E term
for rhombic symmetry. In addition, crystal-field parame-
ters should be evaluated in the same system. For in-
stance, the crystals MnF2 and ZnF2 are distorted from Oz
symmetry along [110]and [110],and therefore system II
and correspondingly formula (14') are appropriate. In
view of these we feel the results of E calculated by Shar-
ma, Orbach, and Das ' for Mn + ions in MnF2 and ZnF2
doubtful, because they are obtained by using the formula
(14). We think correct results should be half of those the
authors listed, although this will lead to a greater
discrepancy in comparison with the experiments.
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form for arbitrary symmetry in lowest- (fourth-) order
consideration. ' A next (sixth-) order calculation has
been carried out for trigonal symmetry. ' In a rhombic
symmetry, one has, ' '
D' (SO II)= ( 820 —21/820+2822)

70P D

+ ( —5840 48—
~2 + 14844 ), (16)

638 6
E'"'(SO-11)= (28„—21')8„

70P D

where

(3&108 +2&78 )8, (17)
63P26

P=78+7C, 6=108+5C, D=178+5C, (18)

8 and C being the Racah parameters. Similarly in trigo-
nal symmetry, ' '

and can be shortened as

D'"(SO-II) = ~ (56I P—)Dq'8'
63 p262p

by omitting terms in 8&084™0 (n +m )2), where
I"=228 +7C. Similarly for tetragonal symmetry, we
have

2

D' '(SO-II) = — (4/P + 1/F)Dq 840
3 PZG2

K. SO-III procedure

Let us now apply the SO-III perturbation procedure to
establish relationships between D, E, and crystal-field pa-
rameters in rhombic symmetry. According to Macfar-
lane and by using the coupling coefBcients tabulated by
Sugano, Tanabe, and Kamimura, ~ we find, in the lowest
(third) order

D (SO-II ) = ( —Bio —21/8 2o )
i4&

70I' D

+
126P 6 ( —1084c+7843 ) .

D(SO-III) = —( —,', )g 840(1/Ei —1/E2 ),
E/D(SO-III) = —2&2/58q2/B~

(19} where

(25)

Unlike the procedure in SO-I, SO-II predicts rank-two
crystal 6eld Bzq to contribute to the spin-Hamiltonian
parameters in the lowest-order treatment for rhombic
symmetry. However these contributions as well as those
of 8~2 to D are usually negligible for small distortions.
Omitting these, the formula (16}reduces to

D' '(SO-II) = — 840Dq
3P 6 (20)

for both the coordinate systems I and II, whereas (17)
reduces to

E' '/D' '(SO-II) = —2&2/5842/840

E' '/D' '(SO-II)= —&2/58~2/840

(21)

(21')

for the coordinate systems I and II, respectively. The re-
lationships (21}and (21') are identical with (14}and (14'),
predicted by SO-I, respectively. This is not surprising.
Due to the perturbation treatment, the procedure SO-II
should be appropriate in weak-6eld cases. It is still
correct even when the low-symmetry components are
comparable with the cubic part. On the other hand, SG-I
operates only in small-distortion cases; it is still valid
even when the cubic field is very strong. In small-
distortion cases, SO-I should include results of SO-II and
the agreements between (14) and (21) and between (14')
and (21') are, therefore, expected.

%'e have seen that in the weak-distortion cases, SG-II
give the same relationship between E and D of rhombic
symmetry as SO-I predicts. The relationships break
down when the low-symmetry components of the crystal
6eld are comparable in magnitude with the cubic part.

For strong fields the contribution arising from the next
order must be taken into account. In trigonal symmetry
the next- (sixth-) order expression has been published'

E)
——108 +6C —10Dq,

E2 ——108 +6C+1QDq .

(26)

(27)

The obtained formulas hold only for the coordinate
system I and for strong crystal field with slight distor-
tions. It is seen that the relation between E and D, (25), is
in agreement with (14) and (21), obtained by SO-I and
SO-II, respectively. The formulas appropriate for the
coordinate system II may be derived in a similar way.
We expect an identical result to (14') or (21') in this sys-
tem.

F. Comparison

The three perturbation procedures correlate the spin-
Hamiltonian parameters with the crystal-field ones in
di8'erent ways. They are all approximate calculations and
their results apply to difFerent situations. Numerical re-
sults of dependence of D on the cubic field strength Dq
are listed in Table I for tetragonal symmetry and in Table
II for trigonal one. The tables show that the procedures
are equivalently correct in accounting for the dominant
contribution of the SO mechanism.

%e now need an accurate calculation for comparison.
Such a calculation is diagonalizing the full-energy ma-
trices including the spin-orbit interaction. It is consider-
ably tedious and diScult. One will meet rather large en-
ergy matrices. Another problem arises more from the in-
dependent spin-Hamiltonian parameters than from the
two independent energy-level separations of the ground
S due to the Kramers degeneracy. Even for axial sym-

metry there exist two rank-4 splitting parameters a and I"

and one rank-2 term D; these three parameters cannot be
identified from the two energy separations. Therefore an
approximation has to be made.

It follows from the above discussions on the three pro-
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TABLE I. Dq dependence of the axial-field splitting parameter D of Mn + ion in tetragonal symme-

try, calculated by assuming B40=1000, Bzo ——0, B=911,C=3273, a=65, P= —131, and /=337 cm
(Dqisincm 'andDin10 cm ').

Dq

—88 —109 —131 —156
SO-I

—183 —214

1100

—250

1200

—291

1300

—339

D(4)
D(6)

D
(total)

—82
—5

—87

—78

—98
—8

—106

—96

—114
—13

—127

—116

—131
—19

—150

—137

SO-II
—147
—28

—175

SO-III
—161

—163
—39

—202

—188

—180
—51

—231

—218

—196
—70

—266

—253

—212
—89

—301

—294

—88 —108 —130 —153
Accurate
—180 —210 —245 —285 —332

cedures that the rank-2 spin-Hamiltonian parameters D,"
result from the interaction between the ground S state
and the excited quartets in their lowest-order treatments.
This implies that the contribution of doublets is of little
importance. On the other hand, the cubic field-splitting
parameter a has been shown to arise predominantly from
the excited states with doublets. ' A similar situation
may presumably take place for other rank-4 spin-
Hamiltonian parameters. Therefore, for the purpose of
deducing the rank-two parameters D;, one may neglect
the doublets in diagonalizing the full-energy matrices and
at the same time, neglect the effect of the rank-4 terms in
the spin Hamiltonian (4}.

Based on this idea we derive the full-energy matrices
including 0, , in tetrahedral symmetry. The consequent
results are given in the last line of Table I for comparison
with the perturbation calculations.

Tables I and II are calculated by assuming very small
low-symmetry components of crystal fields for which
both SO-I and SO-III are available. It is seen from Table
I that each of the procedures gives results consistent with
those calculated by diagonalization. Although the cubic
fields are treated as perturbations, the SO-II has a good
convergence for both the symmetries. Especially in the
cases

i Dq
i
(1000 cm ', the sixth order contributes a

value less than 4 of the lowest order's. This thus clears
up the suspicion on the correctness of this procedure

40Dq (4F +P)/PGF
(tetragonal)

40Dq (56F P)/63PGF—
( trigonal )

(29)

consistent with (28}. This expression determines the
suitability of SO-II for practical problems and reflects the
fact that SO-II is applicable only for weak-field causes.

G. Crystal-Seld parameters

Reasonable calculation of crystal-field parameters is of
importance in the evaluation of the SO mechanism. In

made by Baur and Sharma and by Zhou and Zhao,
who argued that the use of the cubic field as one of the
perturbation terms would lead to a divergent series. The
correctoess of SO-II can be observed from the fact that
only even orders affect D; in this procedure, unlike in
others. As a consequence of this fact, it can be estimated

D /D (SO-II)—(( V) /E) —(10Dq/P) (28)

From this a convergence can be seen when
i
10Dq

i
(—,'P.

For a given crystal, the relative importance of D' ' and
D' ' can be observed from (19), (20), (22) and (23). We
have

TABLE II. The Dq dependence of the axial-field splitting parameter D of Mn + ion in trigonal sym-
metry, calculated by assuming B+&——1000, Bzo ———1000, B=911, C=3273, a=65, P= —131, and
/=337 cm ' (Dq is in cm ' and D in 10 ~ cm ').

Dq 500 600 700 800 1000 1100 1200 1300

75 91 108
SO —I

130 152 180 214 252

D(4)
D(6)

D (total)

66
2

68

77
4

81

88
5

93

99
8

107

SO —II
111

12
123

122
16

138

133
21

154

144
27

171

155
34

189
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principle, the crystal-field parameters 8k can be deter-
mined from available spectroscopic data. However a
diSculty arises due to the weak and broad optical bands
observed in a d system. For most of the crystals the
splittings induced by the low-syrnrnetry components of
the crystal 6eld are dif5cult to observe even in low tem-
peratures, although the cubic parameter Dq can be deter-
mined quite easily. The problem becomes considerably
complicated in the cases where the distortion is so slight
that the low-symmetry components sre comparable with
the spin-orbit interaction. An available crystal-field mod-
el is thus helpful in the calculation.

Such a model must be justified by comparing the ob-
tained crystal-field parameters of which the cubic one Dq
is most important with the optical data. In the works of
Sharma and Sharma et al. , 'z' ' an ionic crystalline po-
tential was assumed, and the lattice-summation technique
wss employed. This model has been used by a large num-
ber of consequent works, in which both good and bad re-
sults have been published. For instance, it was reported
that this model leads SO-I to give values of D an order of
magnitude smaller than and of the opposite sign to the
experimental results of Mnz+ ion on the three indepen-
dent sites in yttrium aluminum garnet (YA1G). ' This
casts doubt on the procedure SO-I. But the theory of
Sharma et al. on SO-I is correct doubtlessly, as shown
above. The lattice-summation model is unreasonable.

This assertion is made because this model gives the
wrong crystal-field parameters. For instance, it gives
Dq =300 cm ' for MnF2 and ZnF2:Mn + from the cal-
culation of Sharma, Orbsch, and Dss snd Dq=100
cm ' for Mnz+ in the three sites in YA16 according to
Hodgcs, Dormann, and Makrsm. The deduced Dq
values are rather far from the observed results [e.g. ,
Dq=830 cm-1 for Mnp and 920 cm-1 for Mn2+ ZDF
(Ref. 26}].

As the D term depends on 840 a measuring of the rela-
tive value of 840 and 844 (or 843}, rather than 840 and

844 (or 84& }, fortuitously good results could be reached
in some situations —it is possible to get available 8 al-
though the obtained 840 and 844 (or 84& ) are separately
wrong.

So far the microscopic origin of crystal field is not well
understood yet. However, it is known that the main can-
tribution comes from the ligands around the magnetic
ions.

%e expect the superposition model of crystal Seld sug-
gested by Newman' is available for 3d systems. This
model has been shown to be quite successful in explaining
the crystal-field splittings of 4f" iona by considerable
works. More recently, this model has been employed to
deal with some 3d" ions [e.g., Cr +:AlzO& (Ref. 27) and
Fe + in garnets (Ref. 28)], and the results are satisfactory.

As an empirical theory, thc superposition model
expresses crystal-field parameters as'

TABLE III. Expressions of Kq, {8,$}[Ek,——( —I PEk*, ]

3 cos20 —&

—
z

v 6 sin28 exp{ i—P }

z
v 6 slI1 8 exp{ —l2$}

35cos 6I—30cos 8+3
—2v 5 sin8(7 cos'8 —cos8}exp( i—p }
v'10 sin'8(7 cos'8 —I }exp( i—2$ }
—2V 35 sin'Hcos8 exp{ —i3$}
-'V70sin Hexp{ i'—}

given by the power law'

Ak(R ) = Ak(RO)(RO/8 )
' . (31)

For regular octahedral and tetragonal coordinations, A4
correlates Dq, respectively, by

3Dq/4 for Oi,
A4 ——

27Dq/1—6 for T& . (32)

Similarly we have, from (9) and (12), that

—', 3&[4(3Scos 8—30cos 8+3)
—28(1 —cos 8) ] for Dzz

—
—,', A4[(35cos 8 30co—s 8+3)

—7v 2cos8slll 8] for Dzd

(32')

D(SO-I)=(&5/63)A~/ (2P —P~)P rE(8;Dzq),

(33)

D(SO-II) = — 640
1

10240(4F +P) A—z

1P26 729PGP

Xg A 4E(8;Dzd),

D(SO-III) = —( —,', )A4g (1/Ei —1/Ez)E(8;Dzd ),
(35)

for tetrahedral Dzd and octahedral D3d, respectively.
Through the superposition model it is easy to express

the spin-Hamiltonian parameters in terms of crystalline
ones. Such expressions can be simplified by neglecting
the quadratic terms in low-symmctry field components.
For instance, we have for tetrahedral Dzz coordination

8k' = X AI «J )Eaq(8J 0, »
& (8;Dzd ) =49rl 42' 114'} + 112—z}—

(30)
with

(36)

the summation being taken over all ligands. Thc expres-
sions of K„are given in Table III, and A„(R) may be

q=3 cos 8—1 .

Similarly for octahedral D3d one has
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D(SO-II) 20$ ~ 2 1+ 640(56F P—}~ 2

21P~G 567PGF

XK(8;Did ), (37)

Hamiltonian parameters and consequently different
values of 6&, and 644. The study of the uniaxial-stress
effect is therefore helpful in identification of the most im-
portant mechanism.

where

K (8;D3~ ) =49' —70' —367) +56' . (38)

The fourth and the sixth orders are included in the ex-
pressions (34}and (37}of SO-II.

The obtained expressions enable one to calculate the
spin-Hamiltonian parameters from crystalline data.
However, we would like to point out that the parameters
such as B, C, Dq, and g should be those which fit the opti-
cal data so as to make the SO mechanism calculation
reasonable.

H. Conclusions

We make conclusions on the SO mechanism as follows.
(i) The three perturbation procedures are equivalently

correct as approximate calculation methods. Of them the
procedure SO-I is the best one in view to give a good ap-
proach in the lowest-order treatment for an accurate cal-
culation, although all of them arrive at identical results
when the perturbation orders are taken high enough.

(ii) In rhombic fields with small distortions, the three
procedures predict an identical relationship between D
and E, i.e., E/D being proportional to B4z/B40. Atten-
tion must be paid to the coordinate system in this symme-
try.

(iii) Correct evaluation of crystal-field parameters is of
importance. The ionic model for the crystalline potential
based on the lattice summation seems doubtful. On the
other hand, the superposition model of crystal field sug-
gested by Newman is expected to result in reasonable re-
lationships between the spin-Hamiltonian parameters and
crystalline-structure ones.

III. Mn2+ AND Fe3+ IONS IN STRESS-DISTORTED
O„COORDINATIONS

We now focus our attention on the uniaxial-stress
effect on the spin-Hamiltonian parameters of Mn + and
Fe + ions substituted into the MgO and CaO crystals.
The effect is described by the spin-lattice coupling
coefficients 6» and 644. We try to employ various
mechanisms to explain the observed results, and the main
aim is to determine which of the mechanisms is most im-
portant. The basic idea is that if one mechanism is the
most important at a stress state, it is still important at all
stress states so that it predominates the spin-lattice cou-
pling coefficients.

It has been shown that the so-called Watanabe and the
ODS processes contribute nothing to the spin-lattice cou-
pling coefficients of a S-state ion in 0& symmetry. It
remains thus four mechanisms to be considered: SS, CO,
RE, and SO discussed in Sec. II. The mechanisms pre-
dict different crystal-structure dependencies of the spin-

A. Contribution of the SO mechanism

Let us first investigate the SO mechanism. In Sec. II
the superposition model of the crystal field has been em-

ployed to establish the relationships between the spin-
Hamiltonian parameters and the crystalline-structure
ones through SO-I, SO-II, or SO-III perturbation pro-
cedure. With the application of external stress, the crys-
tals are distorted from cubic and the spin-lattice coupling
coefficients 6» and G~ are readily calculated following
Blume and Orbach' (for a correction on the expressions
of Gii and 644, see Ref. 29}. We obtain, in the lowest or-
ders,

Gi, (SO-I)= —(2v 5/3)t4$ Dq(2P P tt)P —r,
(39

6~(SO-I)=(~5/7)g [14DqP~~

+(8Dq+18A2)P tt]P „,
Gii(SO-II)=80t4( Dq /3P 6,
6~(SO-II)= 40( Dq /—P G,
6» (SO-III) =(—2)t4$ Dq (1/Ei —1/E, ),

(40)

G~(SO-III}=—( —,')Dqg [2(1/E, —1/Ez )

(41)

where

+3(1/EiE3 —I/E2Ei )],

E,=19B+7C .

In the derivation of the second expression of (41), terms
in A2 have been omitted. It follows from (39)—(41) that

644 is independent of the power-law exponent and that
6„ is proportional to t4. In the point-charge limitation,
t4 ——5 and the results (39) and (40) are deduced to those
given by Yu and Zhao recently.

It has been noted that the parameters, such as B, C,
Dq, 32, and t4, needed in the calculation should be taken
fitting another experimental data. B, C, and Dq can be
readily determined from optical data. However the spin-
orbit coupling constant g is difficult to be obtained in this
way because of the broad optical bands and the Jahn-
Teller effect on the excited orbital degeneracy states. For
3d"(n&5) ions a possible way of getting g exists in the
analysis of the EPR g factors. But this method is ap-
parently useless for 3d ions as the observed g factors
have minute differences from the free-ion value 2.0023.
An effective way is to deduce from the observed cubic
zero-field splitting parameter a, which is very sensitive to
g(a-g ). After obtaining the values of B, C, and Dq
from optical spectrum, one may get the g value by fitting
the observed a by using the energy matrices including the
spin-orbit interaction. ' In this way, we find B=800,
C=3000, Dq=1200, and (=280 cm ' for Mn +:MgO,
and B=480, C=3380, Dq=1340, and (=430 cm ' for
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Fe +:MgO from the published experimental data.
For CaO crystal, we assume it has identical values of 8,
C, and g to MgO due to their similar crystalline struc-
tures. Fitting the observed a (Ref. 34) requires Dq=850
cm ' and 1050 cm ' for Mn +:CaO and Fe +:CaO, re-
spectively.

The remaining parameters t~ and A2 cannot be ob-
tained in the same way; they are observable only in the
experiments at external stress. The observed variation of
a with hydrostatic pressure has shown an ionic crystalline
potential at Mn2+ and Fe + sites in MgO lattice. This
implies t4 ——5. As no optical experiment at uniaxial stress
has been published, we take Az ——5000 and 4000 cm
for MgO and CaO, respectively, for both Mn + and Fe +

ions. These values are comparable with 6300+800 cm
of Fe + in pyrope-almandine garnets (i.e., magnesium
and/or iron aluminum garnets) and 5500 cm ' of Co +

in CdClz. Since A z afFects only 644 and since

~ P„~ y~
~

I'
p ~, changes in the value of Ai in the

range 5000%5000 cm ' does not significantly inhuence
the final results.

The calculated results are displayed in Table IV. The
agreement between the theoretical and experimental
values ' is excellently good, especially those in SO-I,
not only for the numbers of G„and G~ but for their
proportion ratio 6„/644.

It is mentioned that SO-II predicts a constant of
6»/G~, —2t4/3, in the lowest-order treatment. This
value corresponds to weak-Seld situations. The correc-
tion of the variation of 6„/G~ on the crystal field

strength Dq arises from higher orders. On the other
hand, SO-I reaches more satisfactory values of 6» and

G~ and their ratio 6» /G~ for all the cases studied even
in the lowest-order consideration. From Table IV one
can see a tendency that the stronger the crystal field is,
the larger the ratio 6» /G~ becomes.

The values ' obtained by the lattice-summation model
for Fei+ and Mn2+ ions in MgO lattice are also listed in
Table IV for comparison. It is seen that they are not so
good as the results obtained by the superposition model
in this work, especially for Fe +:MgO the lattice-

summation model gives a 6» value 1 order of magnitude
less than those observed experimentally. The calcula-
tions by Sharma, Orbach, and Das and Sharma for
these systems have indicated that the SS and the CO
mechanisms are of little importance. This, together with
the negligibility of the RE mechanism, will be con6rmed
by the following analysis of the ratio 6» /644.

8. Contributions from other mechanisms

D~ ——3@d(RJ)8 ~8@ (a„P=x,y, z;a&P),
J

where 8„, 8», , and 8„are directional cosines of the jth
ligand. By using self-consistent-field radical wave func-
tions of free ions the R dependence of d(R) has been cal-
culated for Mn + and Fe + surrounded by 0 and F'
ions. For Mn2+-0 and Fe +-Oi pairs, the results
may be expressed approximately as '

d (R)=0.378/R, d (R)=2.289/R
0

(in units of A cm ') respectively.
This theory enables us to yield

Gii(CO) = —( —,
' )6~(CO) = —( ~3)d (R) .

(43)

(44)

Let us now turn to investigate the contributions due to
other mechanisms. We focus our attention on the ratio

The CO mechanism has been discussed considerably
since 1962. A brief review on the works in this problem
has been made by Novik and Veltrusky. In their paper
they developed the work of Sharma, Orbach, and Dashes

and pointed out some unreasonable assumptions made by
some workers. A general formula of the spin-
Hamiltonian parameters in arbitrary symmetry has been
suggested as

D = g d (RJ )(38' —1),
J

E = ( —,
' ) g d (R, )(8„—8', ),

TABLE IV. The spin-lattice coupling constants 6» and G~ (in units of cm ' per unit strain) of Mn + and Fe + ions in MgO and
CaO crystals.

MgO CaO CaO MgQ CaO Reference

SO-I

SO-II
SO-III.
Expt.

SO-I

SO-II
SQ-III
Expt.

0.44
1.52
0.92
1.38
1.50(5)

0.45
5.58
2.79
5.50
5.5(2)

0.59
0.46
0.54
0.48(6)

2.40
1.63
2.53
1.5(2)

—0.22
—0.27
—0.28
—0.34
—0.31(1)

—0.46
—0.75
—0.84
—1.33
—0.83{3)

Fe'+

—0.13
—0.14
—0.14
—0.10(2)

—0.49
—0.49
—0.64
—0.45(4)

—2.0
—5.6
—3.3
—4.1

—4.8

—1.0
—7.4
—3.3

—6.6

—4.5
—3.3
—3.9
—4.8

—4.9
—3.3
—4.0
—3.3

7
This work
This work
This work

35,36

8
This work
This work
This work

35,36
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The result shows (i) negative G» and positive 644 of op-
posite sign to the experimental findings, and (ii)

G~~ /644 ———( —', ) = —1.7 being a constant for all the crys-
tals, a number which is far from the observed values (see
Table IV). In addition the contributions are one order of
magnitude less than the observed results (e.g.,
G» ———0.12 for MgO:Mn +). This provides an indica-
tion that the contribution due to the CO mechanism is
negligible in the systems under study. The conclusion is
in support of Sharma, Orbach, and Das and Sharma.

We have seen that according to the work of Novak and
Veltrusky, opposite contribution to 6» and 6~ is ob-
tained. A similar case is thus expected to occur in static
situations. In fact it has been revealed that the CO mech-
anism leads to an opposite contribution to the axial term
in Mn + ions doped into KzZnF4 (Ref. 37), KzMgF~ (Ref.
37), and CaCO& (Ref. 41) crystals, which have axial sym-
metries. This perhaps can be considered as an indication
that this mechanism is not the most important for most
of the cases, although it is not negligible in some systems
especially in those with F' ions as ligands.

As far as the RE mechanism is concerned, the spin-
Hamiltonian parameters b) are proportional to
B2q.

' " Assuming the crystalline potential at the
magnetic ions is primarily ionic, one has

Gii/6~(RE)= —1 . (45)

A similar situation occurs in the SS mechanism. The ra-
tio 6&&/644 ———1 is far from the observed values, and
one therefore may conclude these mechanisms to be
negligible in the cases studied.

A large number of works have been published which
show the SS mechanism contributes rather small values
to the spin-Hamiltonian parameters in comparison with
the SO mechanism. ' ' ' ' On the other hand, how-
ever, the importance of the RE mechanism was stressed
in some literatures. ' ' Most of the works were based
on the lattice-summation model calculating the relativis-
tic correlation crystal fields. As pointed out in Sec. II
this model seems to be questionable in evaluation of crys-
tal fields since it leads to results that dramatically
disagree with the observed values. It thus also should be
questioned using this model in the calculation of relativis-
tic correlation crystal fields. Furthermore, the evaluation
of the most important parameter (bz(11)) of the RE
mechanism by the free-ion wave functions" seems
to be doubtful. In general, the wave functions of a mag-
netic ion in a solid state differ from those in a free-ion
state. There has been a good evidence that the 3d orbit-
als expand dramatically in a solid state, ' but detailed
behavior of the Dirac wave functions is not well known
when the magnetic ion is located in a lattice. The RE
mechanism was first suggested to explain the S-state
splittings of 4f ions' and applied to a 3d system by
other workers. " However, it should be pointed out
that the rare-earth ions have an essentially different
feature from the iron-group ions. For a rare-earth ion,
the open 4f shell is inner orbitals shielded by 5s orbitals,
whereas for an iron-group ion the open 3d shell is the
outermost one and is subject to much stronger interac-

tion with the surrounding ions than the rare-earth ions
when they are in a lattice. Because of this, the 4f orbitals
of a rare-earth ion in a solid state are expected to be well
localized but the 3d orbitals of an iron-group ion does ex-
pand dramatically due to the interaction with the lattice.
One should consider this effect in the evaluation of the
RE mechanism for 3d ions.

C. Conclusions

The behaviors of 6» and 644 of S-state ions predicted
by the SO, CO, and RE mechanisms are summarized in
Table V. We conclude as follows.

(i) The SO mechanism is the most important for Mnz+

and Fe + ions substituted into MgO and CaO crystals,
because it gives correct amplitudes of 6» and 6~ and
explains the ratio 6» /644 very well.

(ii) The CO and the RE mechanisms fail in explaining
the observed 6»/G~; in particular the CO mechanism
leads to wrong signs of 6» and 644. Both mechanisms
are negligible in the cases under investigation.

The situation is quite similar to Mn +:CaCO&. Yu and
Zhao ' have found one of the spin-lattice coupling con-
stants Gz proportional to the axial term D for a S-state
ion in D3d symmetry. With the aid of the superposition
model of a crystal field they found Gz /D = —(2t&/3) in
the lowest-order treatment of SO-II. By taking t4 ——7,
Gz =3.55X10 cm ' and 6„'/D = —4.7 were obtained
which are in good agreement with 6„' =3.41&10
cm ' and 6„'/D = —4.51 observed experimentally in
Mn +:CaCO3. The CO and RE mechanisms were
found to reach values —1.67 and —1 of 6„'/D, respec-
tively, and therefore are negligible in this system.

IV. Mn + AND Fe + IONS AT THE TETRAHEDRAL
AND OCTAHEDRAL SITES IN GARNETS

In this section we carry out a calculation of SO mecha-
nism for Mn + and Fe + ions as impurities at the
tetrahedral (Dzd ) and the octahedral (D3d ) sites in gar-
nets YA1G, LuAIG, LuGaG, yttrium gallium garnet
(YGaG), and yttrium iron garnet (YFeG or YIG). A su-
perposition model analysis in Sec. V will show this mech-
anism is most important.

The calculation may be performed by applying Eqs.
(33)—(38), and the results are nearly identical for the
three alternative perturbation procedures. For simplicity
we utilize the SO-II, for which the simple expressions (34)
and (37) are very conveniently applied.

SO
CO
RE
Expt. '
'References 35 and 36.

& 3.33
1.67
1

& 3.3

TABLE V. The signs and the relative magnitudes of 6» and

G~ of a S-state ion in 01, symmetry.

Mechamsm
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The garnets have isomorphous crystalline structures
and thus have presumably identical values of 8, C, and (
when Mn + and Fe + ions are substituted. Knowing the
parameters 8, C, and Dq, the intrinsic parameter A4 may
be deduced from (32'), and the spin-orbit coupling
coeScient g can be obtained by analyzing the cubic zero-
field splitting parameter a as did in Sec. III. However
this method of justifying g is available only for the octa-
hedral sites. Crystals without inversion symmetry pos-
sess odd-parity crystal 6elds, and the induced e6ect on
the cubic zero-field splitting is not well known up to now.
In fact the simple crystal-6eld theory omitting the odd-
parity crystal-field efFect fails in explaining the observed a
of crystals without the inversion symmetry. For the
tetrahedral sites of garnets we take g as an adjustable pa-
rameter.

A. Octahedral sites

Only the optical spectra of Fe + doped into YGaG and
YFeo have been published to our knowledge. It has
been reported that 8=530, C=3100, and Dq=1310
cm ' for YGaG:Fe + and 8=530, C= 3220, and
Dq=1300 cm ' for YFeG. Analysis of the observed
a=0.0189 cm ' (Ref. 50) of YGaG:Fe + by one of our
recent works yields (=395 cm ' (calculated a=0.190
cm '). The spin-Hamiltonian parameters may be calcu-
lated by assuming all other garnets have identical values
of 8, C, and g to YGaG or to YFeG. Although the
values of C are diferent from each other for YGaG and
YFeG, the deduced spin-Hamiltonian parameters are al-
most identical, as displayed in Table VI. The sixth-order
contributions, measured by the second term in the square
bracket of (37), are around 15% of the lowest order for
all the cases. In the calculation, the ionic limitation

T

8 = —(20$ /21P G)A 1+2

where K(e;D3d ) is given in (38) and we regard Bz as a
whole as an adjustable parameter. Owing to the expect-
edly small contribution of the sixth order we have ap-
proximately Bz cc A 2~. Taking 82(1.995 A)= —55&&10
cm ', we calculate the spin-Hamiltonian parameters list-
ed in Table VI. As one can see, the results obtained by
this simple model are excellently good in comparison
with the experimental values. 2

8. Tetahedral sites

Similarly to (46), we have from (34)

D =Bid(8;Dzd),

8 = —(640$ /1701P G)A 1+2=

.(47)

for the tetrahedral sites. The calculated results are listed
in Table VII for comparison with the experimental
values. ' One also sees a good agreement. In the cal-
culation 8=744, C= 2560, and Dq = -654 cm ' of
YGaG:Fe +, and /=250 cm ' have been used for the
Fe + ions. For the Mn + ions Bz (1.995 A)= —20
X 10 cm ' has been taken as an adjustable parameter.

t4 ——5 has been taken.
For Mn + in the octahedral sites no optical experi-

ments have been reported to our knowledge. For our
purpose, we rewrite (37) as

D =Bid(8;D3d ),

TABLE VI. The axial spin-Hamiltonian parameter D of Mn2+ and Fe'+ ions in the octahedral (D3$ )

sites in garnets. All are in units of 10 cm

YFeG {YIG)

R (A)'
8 {deg)'

1.937
52.4

1.939
51.6

1.987
49.8

1.995
S0.6

2.019
50.3

model I
D model II'

expt.

—956
—97S

—1053

—1218
—1244
—935

—1311
—1334
—1290

—1107
—1140
—1320

—1024
—1041
-1356

D (calc.)
D (expt. )'

[Bz(1.995 A)= —SSX10 cm ']
—S62 —621
—565 —648

—526
—511

'Reference 48.
Calculated by assuming that all the garnets have the same values 530 cm ' of 8, 3100 cm ' of C, and

395 cm ' of g as YGaG and by deducing A4 from Dq= 1310cm ' of YGaG according to (31) and (32')
with ~4

——5.
'Calculated by assuming that all the garnets have the same values 530 cm ' of 8, 3220 cm ' of C, and
395 cm ' of g as YFeG and by deducing A4 from Dq =1300 cm ' of YFeG according to (31) and (32')
with t4=5.
Reference SO.

'Reference 25.



9264 YU WAN-LUN AND ZHAO MIN-GUANG 37

R (A)'
0(deg)'

YA1G

1.761
49.95

LuA1G

1.760
49.69

LuGaG

1.852
48.90

YGaG

1.849
49.45

TABLE VII. The axial spin-Hamiltonian parameter D (in

units of 10 cm ') of Fe'+ and Mn + ions at the tetrahedral

(D2d ) sites in garnets.

may be one of the reasons why the simple SO model of
taking B2 in (46) and (47) as an adjustable parameter
achieves satisfactory agreement between theoretical and
experimental values for Mn + in both sites. This also in-
dicates the importance of taking such parameters as g
and Dq which fit other spectroscopic data in the calcula-
tion of SO mechanism.

D (calc.) —1331
D (expt. ) —1028

Fe'+
—1384
—1249

—815
—1131

—738
—880

Mn + [Bz(1.995 A)= —20X10 cm ']
D (calc.) —651 —677 —442 —400
D (expt. )' —512 —920 —626 —320

'Reference 48.
Reference 50.

'Reference 25.

C. Discussion

In the calculations, the assumption has been made that
the crystalline structure in the vicinity of magnetic ions is
unchanged from those of the host lattices. However this
is not the case, as is well known. To know the crystalline
structure changes owing to the presence of magnetic im-
purities is of importance and has become a common
problem in the study of the zero-field splitting of S-state
ions. Actually almost all the published theories concern-
ing various mechanisms relate the spin-Hamiltonian pa-
rameters with the crystalline ones, and according to the
theories the changes in crystalline structure parameters
will result in significant changes in the spin-Hamiltonian
parameters.

It has been shown that the structure parameters of a
host crystal substituted with a magnetic ion are between
those of the host crystal and those of the corresponding
complex crystal. ' If this holds as a general conse-
quence, one could expect, for instance, a larger R value of
LuA1G:Fe + than 1.939 A of the host crystal LuA10,
comparing it with 2.033 A of lutetium iron garnet
(LaFeG or LuIG), at the D3d site. This implies a smaller
value of A4 than the deduced 1118 cm ' as A4~R
The calculation of a confirms this argument. By the de-
duced A z

——1118 cm ' (or Dq = 1490 cm ') we reach
a=0.0451 cm ', which is much greater than the experi-
mental value 0 0292 cm '. A best fit requires
A4 ——1050 cm ' (or Dq= 1400 cm ') which corresponds
to D = —1083& 10 cm ', a better result than
—1218X10 cm ' given in Table VI in comparison
with the experimental va1ue of —935&10 cm

It is noted that the CO, RE, and SS mechanisms con-
tribute to D in proportional to g=3 cos 0—1 for D2d and
D3d symmetries. In the case where the distortions are
slight from cubic, ri && 1 and the terms in g" (n & 2) have
little importance in the SO mechanism [see (33)—(38)). In
these cases D (SO} is approximately proportional to g.
Thus calculated results based on the SO mechanism by
treating g or Dq as an adjustable parameter actually in-
clude part of the contribution of other mechanisms. This

V. ON THE SUPERPOSITION MODEL

In 1975, Newman and Urban suggested a superposition
model of the spin Hamiltonian for S(f )-state ions. '2

This model was proposed to be applicable to S(d )-state
ions and has been widely adopted in analyzing the
spin-Hamiltonian parameters of Mn + and Fe + ions as
an empirical model since then. In the present sec-
tion we try to justify this model on the basis of micro-
scopic theory.

The basic hypothesis of the superposition model is that
the spin-Hamiltonian parameters are the superposition of
contributions of ligands for crystals with axial symme-
try. ' Accordingly the axial term D can be expressed as

D = gb~(R )—,'(3cos 8J —1),

where the intrinsic parameter b2(R) may be written in
the power law

b2(RJ)=bq(RO}(RO/R )
' . (49)

TABLE VIII. Contributions of various mechanisms to the
intrinsic parameter b2 and the power-law exponent T2 of super-
position model of the spin Hamiltonian.

SO
CO
RE

Octahedral coordinations
b~= —(160/~/9P G)A 4

b2 ——2d
b2 ——( —eq)(6((bz(11) )/125R 'P)

T, )2t4
T, =5
T2=3

SO
RE

Tetrahedral coordinations
b2 ———5(4/3)'g' A ~~/P2G

bz ——( eq)(6((b2(1—1) ) /125R'P)
T, )2t4
T2 =3

We have denoted the power-law exponent by T2 for dis-
tinguishment from t„of the superposition model of a
crystal Geld.

Apparently, the hypothesis and the resultant expres-
sions for bg of the superposition model can be thought to
be correct if the spin-Hamiltonian parameters bg predict-
ed by all the microscopic mechanisms can be expressed as
linear to the crystal-field components Bkq As a fact,. the
CO, RE, and SS mechanisms do contribute to b) in the
way b)ccB2q. The corresponding contributions to the
superposition model parameters b2 and T2 are displayed
in Table VIII. However, the SO mechanism results in b)
mainly by the quadratic processes of B4, as shown in
Sec. II. This implies that the contributions of ligands to
the spin-Hamiltonian parameters are not superposition-
able in the framework of SO mechanism. As described in
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Sec. II, the D term can only be expressed as
D = f—(Dq)g B~, where f (Dq) is a complex function of
crystal field strength Dq and 840 is a linear combination
of 840 and 844 (or 843 ). The hypothesis of the superposi-
tion model of the spin Hamiltonian is correct only in the
cases where the SO mechanism is negligible compared
with others.

However, as shown by considerable workers (e.g. , Refs.
53—57), the superposition model is able to describe suc-
cessfully the observed spin-Hamiltonian parameters of
S-state ions in a large number of crystals, Even in the

stressed MgO and CaO lattices doped with Fe + and
Mn + ions, where we have shown in Sec. III the SO
mechanism to be dominant, the superposition model has
been shown to be able to explain the observed efkcts
quite well. It thus seems to be quite surprising why
such a simple theory is so useful.

Let us pay attention to the results the superposition
model gives rather than the hypothesis on which it was
set up. We consider two simple situations: tetrahedral
D2& and octahedral D3d coordinations. The superposi-
tion model gives

2bz(R)rl (for Dzd )
D= (50)

3hz(R)g (for Did )

with rt=3cosze —1. Comparing the expressions with
(33)-(38), we find that the results (50) of the superposi-
tion model are identical with those of SO mechanism on
the condition that the terms in rl" (n &2) are negligible
compared with the linear terms. This condition is
satisfied in the case of small distortion, where i) g~ 1. The
intrinsic parameter bz(R) arising from the SO mecha-
nism can be deduced by comparing (50) with (33)-(38)
and by omitting the terms in rt" with n & 2, but a power
law (49) cannot be found for general cases. However, in

the cases where the crystal field is so weak that the
lowest-order treatment of SO-II works well one obtains a
power law with Tz ——Zt4 and correspondingly bz ~ A ~.
In strong-field cases one may take Tz larger than 2t4 so
as to include part of contributions of higher orders.

The effect of the SO mechanism on the superposition
model parameters bz and Tz can also be considered by
studying the uniaxial-stress e8'ect on the zero-field split-
ting of cubic coordination systems. For instance, in OI,
symmetry, one has

Gii ———( —', )Tzbz(R),

G~ —4hz(8—)
(51)

in the superposition model. It is seen that both the spin-
lattice coupling constants are proportional to bz and that
G44 does not relate with Tz. Comparing (51) with (39)
and (41) that work even in strong fields, one fails in get-
ting bz and Tz definitely except that one considers Tz de-
pending on Dq or A4. However, in the weak-fields cases
w"ere

I Pnu I
»

I Pap I Tz relates to t4 and bz to Dq.
One has

bz (v 5/2)g ——DqP P

=(&5/3)2$ /14P P

T2 =214
(52)

= —(160$ /9P G)A 4,
(53)

in SO-I. This result is consistent with that obtained from
(40) of SO-II, i.e.,

bz ———(10'/PzG)Dq

TABLE IX. Superposition model analysis of the axial spin-Hamiltonian parameter D {in units of
10 cm ') of Fe'+ and Mn'+ ions in garnets.

YFeo (YIa)

D (calc.)

D (expt. )'

Octahedral sites (D3d )

Fe +, b2(1.965 A)= —0.2223 cm ' and T2=6
—849 —1137 —1559 —1270

—1053 —935 —1290 —1320

—1305
—1356

D (calc.)

D {expt.)

Mn ~, b2(1.965 A)= —0.0996 cm ' and T, =14
—427 —567 —639 —504
—418 —563 —648 —511

D (calc.)

D (expt. )'
—1136
—1028

Tetrahedral sites (D2d )
Fe'+, bz(1.8 A)= —0.2058 cm ' and T2 ——6

—1203 —1028 —938
—1249 —1131 —880

D (calc.)

D (expt. )

'Reference 50.
Reference 25.

—702
—512

—552
—318

Mn2+, b2(1.8 A)= —0.1244 cm ' and T2 ——7
—743 —604
—920 —626
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TABLE X. Superposition model analysis of the spin-
Hamiltonian parameters of Mn + ions in D2 sites of garnets, D
and E are in 10 cm

LuAlG YAlG LuGaG

Experimental'

b~(2.35 A), in
units of 10 cm
T2

Theoretical

Theoretical'

D
E

D

D
E

—382.2
—127.4
—170

14
—382.4
—127.4
—369
—158

—307.5
—167.8
—220

5
—302
—171
—345
—131

—335.4
—101.3
—166

19
—336.8
—100.5
—296
—142

'Reference 25.
Calculated by b& and T2 listed.

'Calculated by b2(2.35 A)= —200)&10 cm ' and T2 ——10 for
all the crystals.

(P P r is proportional to Dq in the range Dq ~800
cm '}. The formulas (53) are self-consistent. In fact, be-
cause bz depends quadratically on A4 which relate R in
the way A4 ~ R t4, T2 —2t4 is——apparent from (49). Evi-
dently, in strong-field cases Tz as an adjustable parameter
is allowed larger than 2t4 when assuming bz ~ A 4.

It has been shown in Sec. III that the spin-lattice cou-
pling effect in MgO and CaO lattices doped with Mn +

and Fe + ions can be well understood by the SO mecha-
nism with t4 ——5. From the above discussions we expect
Tz ) 10. This is comparable with Tz ——14+2, 14+4,
20+2, and 10+2 of Mn +:MgO, Mn + CaO, Fe + MgO,
and Fe +:CaO, respectively, which are deduced from the
experimental data (Table IV) by employing (51). It is not-
ed that Fe +:MgO has a stronger field (Dq=1340 cm ')
and consequently a greater value of Tz.

From the above discussion we have seen that the super-
position model is able to give reasonable results in the
cases where the crystals are disturbed slightly from cubic,
although the hypothesis on which this model is estab-
lished is unreliable due to the importance of the SO
mechanism. This conclusion is made from the analysis of
several special situations but actually holds as a general
consequence for coordinations of interest. For most of
the cases the superposition model is applicable. Howev-
er, when bz and Tz are treated as adjustable parameters,
the deduced results have involved dominant contribu-
tions of all the microscopic mechanisms.

It is interesting to notice the signs and the numbers of
T~ coming from the various mechanisms (Table VIII).
Analyzing the observed data by the superposition model
is helpful in identifying the most important mechanism.
The Mn + and Fe + ions at the tetrahedral and the octa-
hedral sites in garnets provides a circumstance. The re-
sults listed in Table IX are obtained by the best fitting of
the experimental data. The obtained negative bz is con-

sistent in sign with those predicted from the SO and RE
mechanisms. Thus either SO or RE may be the most im-
portant one. On the other hand, Tz is found to be 6 for
Fe + at Dzd and D3d, 7 for Mn + at Dzd, and 14 for
Mn + at D3d. Comparing these values with Tz) 10,
Tz ——5, and Tz ——3 of SO, CO, and RE, respectively, leads
to conclusion that the SO mechanism is the most impor-
tant one. Following calculation of the intrinsic parame-
ter bz may serve as a support for this conclusion. As an

example, for Fe + at the octahedral sites we have
bz ———0.2835 crn ' theoretically, which is comparable
with the fitted value of —0.2223 cm '. In fact, the good
agreement between the calculated and the observed
values obtained in Sec. IV is in strong support of the con-
clusion made here.

In lattices having axial symmetries, where only one (D}
of the spin-Hamiltonian parameters exists, the bz and Tz
cannot be determined uniquely. Some works deduced bz
by keeping T2 ——7 unchanged (e.g., Refs. 54 and 57). The
values of bz obtained in this way are not more physically
interesting, except for in their sign. As has been indicat-
ed, Tz could change its number dramatically, according
to the relative importance of the mechanisms; different
values of Tz lead to different values of bz, leaving the sign
of bz unchanged, however. The bz and Tz can be ob-
tained uniquely only in the cases where more than one
spin-Hamiltonian parameter survives. For example, the
dodecahedral sites in garnets have Dz symmetry and D
and E have been observed for Mn + in LuA1G, YA1G,
and LuGaG. ' From the obseryed values we deduce
bz and Tz for each of the crystals, as listed in Table X. It
is seen that the intrinsic parameters are negative and are
close in magnitude for all the cases and that the values of
Tz are 14, 5, and 19 for LuA1G, YA1G, and LuGaG, re-
spectively. This perhaps may be regarded as an indica-
tion that stronger distortion occurs in YA1G than in oth-
ers when the Mn + ions are substituted. Calculated
values by bz ——0.02 cm ' and Tz ——10 for all the crystals
are listed in Table X for comparison. A good agreement
is seen, and the SO mechanism being the most important
can be concluded.

In conclusion, using the superposition model of the
spin Hamiltonian suggested by Newman and Urban we
are able to reach identical results with those predicted by
the SO model and other mechanisms in the cases where
the crystals are slightly distorted from cubic, although
the hypothesis on which this model rests is unreliable in
general. The investigation of bz and Tz is helpful in iden-
tifying the most important among the various mecha-
nisrns.
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