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%e present results of a systematic investigation of EPR in the Cd-based family of diluted magnet-
ic semiconductors (Cd& „Mn„S,Cd& „Mn„Se, and Cd& „Mn„Te) over a wide rang~f temperature
and Mn concentration. The dependence of the EPR hnewidth on the anion of the host lattice is es-

tablished. Speci5cally, we Snd that, at a Sxed temperature and Mn concentration, the linewidth in-

creases in the order of sulMe, selenide, and telluride. This trend holds over a wide range of sample
composition and temperature. We also demonstrate that the general EPR behavior in all three al-

loys is identical: namely, the absorption line shape is Lorentzian in the paramagnetic region of the
phase diagram, and broadens with increasing x and decreasing T. The Lorentzian-regime line shape
is analyzed using the exchange-narrowing picture. The observed dependence of the EPR linewidth

on the anion cannot be explained by dipolar broadening alone. %'e argue that the dominant aniso-

tropic spin-spin interaction must be the anisotropic part of the exchange interaction, and speculate
that the Dzyaloshinski-Moriya interaction may play a role. The exchange-narrowing theory is also
used to examine the variation of the hnewidth with sample composition and temperature. At very
low temperatures, as the spin-glass transition is approached, the line shape deviates from Lorentzian
behavior and the resonance appears to shift to lower fields. These non-Lorentzian line shapes are
discussed with reference to similar behavior in other spin-glasses.

I. INxNODUCxION

The term "diluted magnetic semiconductors" (DMS's)
commonly refers to alloys which are formed by randomly
distributing magnetic ions (usually, Mn + ) on the cation
sites of a II-VI semiconductor such as CdTe. ' In this pa-
per, we focus on the Cd-based subset of this system,
which consists of the wide-gap alloys Cd, ,Mn, Te,
Cd, „Mn, Se, and Cd& „Mn, S. One of the fundamental
problems in the study of DMS's is to understand the
mechanism underlying the Mn +-Mn + interaction, and
the speciSc aim of the present paper is to investigate this
problem by studying the dynamics of the Mnz+ spin sys-
tem via electron paramagnetic resonance (EPR).

EPR in wide-gap DMS's is a phenomenon character-
ized by very pronounced and yet remarkably simple
dependence on temperature and sample composition. In
principle, an investigation of the spin dynamics gives ac-
cess to information about the nature of the spin-spin in-
teractions, about the distribution of internal fields, and
about spin-spin correlations. These properties are espe-
cially important in order to understand the different mag-
netic phases' (paramagnetic, spin-glass, antiferromagnet-
ic cluster) that the materials display. Apart from provid-
ing insights into the fundamental physics involved, the
dynamical magnetic properties are also vital in determin-
ing the switching time of potential DMS-based devices
which depend on the ability of the magnetization to
respond to a driving 5eld.

Earlier investigations of EPR in Cd& „Mn„Te and
Cd, „Mn„Se have estabhshed the following systematic
behavior:

(i) the EPR line broadens dramatically as the tempera-

ture is lowered and as the Mn concentration is in-
creased.

(ii) The EPR line shape is Lorentzian except in samples
with a high Mn concentration at low temperatures, where
there is a deviation from Lorentzian behavior accom-
panied by a shift of the resonance position to lower
fields.

(iii) At a fixed temperature, for samples with a Mn con-
centration of around 10%%uo, the EPR linewidth shows a
clear dependence on the anion in the system: namely,
given a Sxed cation (e.g., Cd +), the linewidth increases
with increasing anion size (i.e., in the order, Cd, „Mn„S,
Cd, „Mn, „Se,Cd, „Mn„Te).7

Despite the reproducibility and apparent simphcity of the
phenomena described above, there has been little pro-
gress in developing a theoretical understanding of the
problem. Given the germinal stage of the problem, the
most profitable path to take is to exploit the striking
universality of the behavior of EPR in different DMS's in
the hope of identifying common trends. Bearing this aim
in mind, we present a comparative study of EPR in the
three systems Cd, „Mn„Te, Cd& „Mn„Se, and
Cd, „Mn„S, in which the cation is common and the
anion is the "variable. "

So far, the only theoretical picture of EPR line shape
in DMS's is a phenomenological model proposed by
Sayad and Bhagat, where the Lorentzian nature of the
EPR linc shape is attributed to inhomogeneous broaden-
ing by a Lorentzian distribution of random local magnet-
ic Selds. Though this model is consistent with the ob-
served phenomena and provides a useful way of empiri-
cally systematizing the data, it does not explicitly involve
any microscopic parameters, such as the exchange con-
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stants characterizing interactions between Mn + spins.
We believe that the EPR data are more profitably exam-
ined within the context of the well-known exchange-
narrowing model of EPR, as developed by Anderson and
Weiss, Kubo and Tomita, and Mori and Kawasaki. '

There are two compelling reasons to view the EPR as
being exchange narrowed: first, the line shape is
Lorentzian and, second, the isotropic exchange between a
pair of Mn + ions is very large (J is around 10 K). We
will use the theory of exchange narrowing to examine the
dependence of the EPR linewidth on the anion, on the
Mn concentration, and on temperature. The anion
dependence allows us to address an important issue: can
the EPR linewidths in DMS's be attributed to the ex-
change narrowing of a dipolar-broadened resonance [as
in MnO and MnS (Ref. 11), and in Eu„Sr, „S(Ref. 12)],
or is there some other form of anisotropic pair interac-
tion that dominates over the magnetic dipole-dipole in-
teraction? This issue has never been addressed in DMS's,
and we shall show that the EPR data cannot be explained
by dipolar broadening. Finally, we shall briefly discuss
how the exchange-narrowing model can serve as a start-
ing point for understanding the low-temperature EPR
line shape.

II. EXPERIMENTAL PROCEDURE

Of
—— (a, )' (X'+ —X' ),

4c
(la)

ef —— (~))'~'(X'+ —X" ),
4c

(lb)

Where co is the microwave frequency in rad/sec, d is the
sample thickness (in the case of a powder, the effective
sample thickness) and ~, is the dielectric constant of the
sample. 7+ and 7 refer to the dynamic magnetic sus-
ceptibility for opposite circular polarizations, with the

Since the EPR line in DMS's becomes extremely broad
at low temperatures, standard cavity techniques can pro-
vide reliable data only over a limited temperature range.
For instance, the full width at half maximum (FWHM) of
the resonance in Cd06Mn04Te is already about 6 kG at
100 K, and continues to broaden as the temperature is
further decreased. This difhculty was surmounted by us-
ing a novel 35-GHz microwave transmission spectrome-
ter developed by Kremer and Furdyna. In this method,
a polarized microwave beam is passed through a sample
which completely fills the cross section of a circular
waveguide. In our case, the samples were in powdered
form. We then measure the Faraday rotation and ellipti-
city of the transmitted wave as a function of an external
magnetic field which is applied along the direction of
propagation of the microwaves. The technique is espe-
cially suited for the measurements of very broad reso-
nances, and can in fact be used to obtain the dynamic
magnetic susceptibility under the extreme condition
when the linewidth exceeds the value of the field at which
the resonance occurs. Details of this method may be
found elsewhere. ' We can selectively measure either the
Faraday rotation ef or the Faraday ellipticity ef, which
are given by

prime and double prime indicating the real and imagi-
nary parts, respectively. The spectrometer can also be
used to study narrow resonances by simply recording the
transmission of a microwave beam which is polarized in
the resonance-active ("+") sense. When using circular
polarization, the transmitted microwave power is given
by

y =yoexp ——(a.
&

)' X'+d (2)

All the above expressions assume single passage of the
microwaves through the sample. Both the Faraday
rotation-ellipticity approach and the circular polarization
method were used because of the immense range of
linewidths encountered (from around 150 G to around 20
kG). The circular polarization method was typically em-
ployed for resonances with FWHM less than 700 G. The
analysis of the data is described in the next section.

The sample holder section of the spectrometer was
mounted inside a Janis Supervaritemp Dewar. The tem-
perature of the sample could be varied between 1.3 and
around 250 K, and was measured using a calibrated sil-
icon diode. For measurements above 4.2 K, stability to
within a degree Kelvin was achieved using a Lake Shore
Cryotronics capacitance bridge controller. Measure-
ments below 4.2 K were made by immersing the sample
directly in liquid helium and pumping on the helium
bath.

The composition of the various samples was obtained
by exploiting the linear dependence of the lattice parame-
ter on Mn concentration for the various DMS's (Vegard's
Law). ' Lattice parameter measurements were obtained
using x-ray powder diffraction patterns from a Siemens
diffractometer, and a standard lattice parameter
refinement program was used to calculate the best fit to
the data. The typical accuracy of the lattice parameter
measurements was about +0.001 A; in Cd& „Mn„Te, for
instance, this corresponds to an error or around +0.006
in the value of the Mn concentration x. The quality of
the diffraction patterns and the standard deviation in the
calculated values of the lattice parameters also gave some
indication about the homogeneity of the samples used.

We attempted to cover as wide a range of Mn concen-
tration as possible in each of the three materials. The
upper limit on Mn concentration for which it is possible
to grow single-phase, homogeneous samples varies from
system to system: the maximum possible value of x for
Cd& „Mn„Te is =0.75 while for Cd& „Mn„Se it is
x =0.50. All the Cd& Mn„Te and Cd& „Mn„Se sam-
ples were grown as single crystals by the Bridgman pro-
cess. In both case, x-ray powder diffraction measure-
ments indicated good homogeneity. The third material,
Cd& Mn„S, is still fairly new and it is dificult to obtain
good quality single crystals, particularly for x&0.15.
The samples of Cd& Mn S used in the present study
were either prepared by sintering or as polycrystalline
materials. X-ray diffraction measurements showed some
inhomogeneity for both methods of preparation. For ex-
ample, in the samples which yielded diffraction patterns
of good enough quality for lattice parameter measure-
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ments, the standard deviation in the values of x was
about +0.01.

In order to extract meaningful parameters from the
EPR data, we need a niodel for 'tile dynamic nlaglletic
susceptibihty which appears in Eqs. (1) and (2). This is
provided by the well-known Bloch equations of motion,
modified to take into account the short relaxation times
associated with broad resonance lines: '

M =yMxH—

Here, y is the gyromagnetic ratio (ge/2rnc), ~ is the re-
laxatioil tiiile aild H is the total illagiletic field Ho+Hi
where Ho is the dc field applied along the z direction and

H, is the microwave field. Note that the magnetization
M relaxes to the instantaneous value XoH(r} rather than
to the steady-state value goHo as in the standard Bloch
equations. The above equations yield the following form
of the dynamic magnetic susceptibility:

1+~o(~oV ~)H

1+(No T-c0) r
II N1'

X+ Xo
1+(o)o+r0) r

(4a)

(4b}

where coo and r0 are the Larmor precession and mi-
crowave frequencies, respectively. Two points are worth
noting about the form of the dynamic magnetic suscepti-
bility obtained from the modified Bloch equations. First,
the resonance described by the I'+ itself is I.orentzian,
and, second, this resonance shows absorption at zero &kid
This absorption is negligible when the resonance is nar-
row, but increases in importance as the resonance
broadens, as in the case at hand. The FWHM of this
Lorentzian absorption hne shape is given by 2/y~ and the
peak is centered at a resonance field given by oi/y. Note,
however, that the line shapes observed in Faraday rota-
tion and/or ellipticity experiments are combinations of
the sort X'+ —X" and X'+ —X' and hence are not
Lorentzian in shape themselves. Thus when we describe
an experimental line shape as being Lorentzian, we only
refer to the absorptive part of the dynamic susceptibihty
I+ +

Expressions for the Faraday rotation and ellipticity are
obtained by combining Eqs. (1) and (4). The experimental
line shapes are fitted to these expressions using as param-
eters the g factor, the relaxation time r, and the static
susceptibility Xo. The first two parameters, g and r, are
the most important since they can be determined with lit-
tle ambiguity. Further, these two parameters are related
to the conventional EPR measurables of resonance posi-
tion and linewidth. The last parameter, Xo, is determined
only to within a multiphcative constant because we do
not have a precise way of calculating the efFective thick-
ness d of a powdered sample. In this paper, we concen-
trate on the parameters g and ~. The static susceptibility
will be lumped along arit the rest of the constants into a

multiplicative parameter C given by cod (a.go)' /4c.
Although the experiment should in principle yield

purely the Faraday rotation or the Faraday ellipticity, a
close examination of the data show that we actually ob-
serve a mixture of the two; a similar mixture of 7+ and
g'+ occurs in the circular polarization data. For example,
when we set up the experiment to measure the Faraday
ellipticity ef, we actually obtain the admixture of+f8f,
where f is a mixing fraction that is typically about 0.1

but has been found to take values anywhere between 0
and +0.7. This adniixture of dispersive and absorptive
effects is due to several reasons, such as multiple passage
of the microwaves through the sample, arising from
reflections either at sample boundaries or at regions of
the waveguide external to the sample; another possibility
is that we do not see "pure" effects because of distortions
in the waveguide which lead to imperfect polarization.
To a first approximation, both of these systematic errors
can be accounted for in the following way:

8(observed)= (vari)' [(X'+—I' )+f(X'+ —X" )]

8f+f+f '

A more detailed discussion of this may be found else-
where. ' The best justification for using the assumption
of such a mixture is the excellent quality of fits to the
data, as we shall show later.

Thus, in the analysis which follows, four fitting param-
eters have been used: the g factor, the relaxation time r,
the mixing fraction f, and a multiplicative factor C de-
scribed earlier. Of these, g is very close to 2 (except at
low temperatures, as will be clarified later); C affects the
amplitude, but not the line shape. The principal quanti-
ties which alect the line shape are then r and f.

n. RESUIZS +NO DISCUSSIOx

A. Survey of data

The EPR behavior in all the compounds is qualitative-
ly identical; a representative set of the data is shown in
Fig. 1. The solid lines are fits to the modified Bloch mod-
el, as discussed earlier, and the parameters used for these
fits are given in Table I. For the sample shown, we ob-
tain excellent fits for T& 20 K, indicating that the reso-
nance is Lorentzian over a wide range of temperatures.
In this Lorentzian regime, the resonance occurs around
12.5 kG, corresponding to a g factor of 2.0+0.01. Fur-
ther, the resonance broadens dramatically as the temper-
ature is lowered, without any noticeable resonance shift.
The variation of the linewidth with x, T, and the anion is
shown in Fig. 2 for the Lorentzian regime. In order to
provide a better feel for the linewidths involved, we have
converted the inverse relaxation times into F%'HM in kG
in the Sgure. The parameter w—and consequently the
hnewidths —are determined to an accuracy of +5%%uo.

The qualitative trends in the Lorentzian regime are
clear. First, there is the dramatic broadening of the reso-
nance as T decreases or as x increases. Second, there is a
systematic dependence of the linewidth on the nature of
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FIG. 1. Variation of EPR line shape with temperature, shown through Faraday ellipticity behavior in a Cd& „Mn„Te sample with

x=0.32. The trends shown here are typical of all the Cd-based alloys studied. The solid lines are best fits to the modified Bloch mod-

el, and the fitting parameters are given in Table I.
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FIG. 2. The dependence of the FWHM of the Lorentzian absorption line shape on temperature and Mn concentration in the al-

loys Cd& „Mn„Te, Cd& „Mn Se, and Cd& Mn„S. This figure also clearly shows the dependence of the linewidth on the anion.
Data for other values of x agree with the curves shown (e.g., hH for x=0.25 would lie between x=0.3 and x=0.2 data), but is omit-
ted for clarity.
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TABLE I. Parameters employed in 6tting line shapes shown

in Fig. 1.

6
10
30
50

100
150

4.5
3.5
4.1

3.8
3.2
2.4

2.4
2.2
2.0
2.0
2.0
2.0

(10 " sec)

0.47
0.67
1.43
4.35
4.70
6.50

—0.50
—0.40
—0.28
—0.33
—0.25
—0.30

the anion, i.e., for a given x and T, the linewidth in-
creases in the order Cd& „Mn„S, Cd i „Mn, Se,
Cd, „Mn„Te. Note that the trend in the anion depen-
dence holds over a wide range of x and T, confirming the
predictions of Kremer and Furdyna.

At very low temperatures, we find that the fits to the
modified Bloch model gradually get worse, as can be sur-
mised from Fig. 1, indicating a departure from Lorentzi-
an behavior. Since the Faraday efFect data consist of
combinations of X'+, X', X'+, and X", it is not possible to
draw ready conclusions about the low-temperature line
shape —such as whether the absorption X'+ is symmetric
or not. We have found, however, that the data cannot be
fitted to a simple model for X'+, such as a Lorentzian or
Gaussian. If we force a fit to a Lorentzian model, as in
the lowest-temperature data in Fig. 1, the maximum of
the Lorentzian has to be positioned at fields lower than
12.5 Kg, indicating a resonance shift at low temperatures.
The resonance shift can be modeled either by adjusting
the g factor or by using an internal field as an extra pa-
rameter. Since neither method provides very good fits,
we have arbitrarily chosen the former option in Table I.

All of the above results confirm earlier work in

Cd, ,Mn„Te (Refs. 3-5) and Cd, „Mn, Se (Ref. 6), and
also show that essentially the same behavior is found in
Cd, „Mn„S. In the discussion that follows, we systema-
tize the dependence of hH on the anion, on T, and on x,
and examine these trends from the vantage point of ex-
change narrowing. Finally, we examine the implications
of the non-Lorentzian line shapes at low temperatures.

8. The Loremtxian regime

where cud and u, are measures of the anisotropic and iso-
tropic spin-spin interactions, respectively, and can be ob-
tained from moment method calculations. ' The function

In general, the exchange-narrowed EPR line shape is
Lorentzian, and, at a temperature T, the FWHM (bH)
can be written as (see the Appendix for comments)'

&H =(&H)„(TXo) 'I'(T, x),
~here go is the static susceptibility. The infinite tempera-
ture linewidth (hH) „is given by

I (T,x) depends on dynamic spin-spin correlations.
While we do not have an analytic form for I (T,x}, it is
reasonable to assume that the function w111 be tempera-
ture independent when Tg&T~, where Tg is the spin-
glass transition temperature in a DMS. When this is so,
the Curie-Weiss behavior of the high-temperature suscep-
tibility' in the DMS should result in a linewidth which
has the following temperature dependence:

bH =(EH)„(1+or),

where 8 is the Curie-Weiss temperature. Thus a compar-
ison between theory and experiment can be made by ex-
trapolating a plot of hH versus 1/T to obtain the experi-
mental value of (hH) „.

An alternative way to compare theory and experiment
is to assume that (hH) is a universal function of the re-
duced temperature T'=kT/J, i.e.,

bH =(bH)„g[T',x] .

At high temperatures, the above ansatz is equivalent to
the temperature dependence in Eqs. (6) and (8), since
I (T,x) is temperature dependent and 8 is proportional
to J in a mean-Seld approach. The ratio of linewidths in
two difFerent systems with the same Mn concentration x
at the same reduced temperature T' can then be directly
compared to the theoretical ratio at infinite temperature.

l. The anion dependence of the lineloidth

In order to focus on the anion as the variable, the dis-
cussion here is restricted to three of the samples shown in
Fig. 2 which have approximately the same Mii concentra-
tion (around x =0.33). Table II lists the relevant parame-
ters required for the analysis. The nearest-neighbor ex-
change constants are obtained from high-field magnetiza-
tion measurements.

We begin by assuming that the anisotropic pair in-
teraction is the magnetic dipole-dipole interaction. Using
the moment method' and the Anderson-Weiss ap-
proach, we have calculated the exchange-narrowed,
dipolar-broadened linewidth at infinite temperature for a
diluted magnetic fcc lattice, assuming nearest-neighbor
interactions only and an isotropic sample. The nearest-
neighbor approximation renders the calculation applic-
able to a hcp lattice as well. [The systems we are study-
ing are either zinc blende (Cd& „Mn„Te) or wurtzite
(Cd& „Mn„Se and Cd& „Mn„S), in which the Mn + ions

occupy fcc and hcp sublattices, respectively. ] We also in-
clude the so-called "—', " e8'ect due to nonsecular contri-
butions, because of the strong isotropic exchange. The
FTHM at in6nite temperature is then given by'

(b,H}„= (10)
y .' J &x+0.07

'

where r is the nearest Mn +-Mn + neighbor distance in a
fully occupied lattice, J is the nearest-neighbor Mn +-
Mn + exchange constant, x is the concentration of Mn +
ions, and y is the gyromagnetic ratio.

We now use the ansatz given in Eq. (9). Figure 3 shows
the linewidth in the three samples of interest as a func-
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TABLE II. Comparison of experimental and theoretical linewidths in Cdp 68Mnp 32Te,

Cdp a7Mnp»Se, and Cdp a7Mnp 33S at the same reduced temPerature T'=kT/J; f,„~„fa;~, and fnM are

the experimental, dipolar and D-M linewidths, respectively, normalized to the corresponding linewidth

in the telluride.

Sample

Cdp. 68Mnp 32Te

Cd() 67Mnp 33Se

Cdp 67Mnp 33S

0

~NN

4.555
4.255
4.088

J (K)

6.3
7.9

10.6

A. (eV)

0.37
0.16
0.025

expt

1.00
0.43
0.06

fa,
1.00
1.20
1.14

foM

1.00
0.24
0.008

0

0 Cd068MnO 32TI

0.6T
Cd Mn S

0.67 033

tion of the reduced temperature T'=T/J. The validity
of Eq. (9} at high temperatures is clear —to a good ap-
proximation, b,H is a universal function of T' for T' & 10.
In Fig. 3, f,„,is the ratio (bH), /(bH)z of experimental-
ly measured linewidths in two samples at the same value
of T, where we arbitrarily choose the telluride linewidth
for normalizing the others, i.e., subscript "2"corresponds
to Cdo ssMno 3QTe. The parameter f,„~, has values of 1,
0.43, and 0.06 for the telluride, selenide, and sulfide, re-
spectively. Theory predicts that, assuming dipolar
broadening, the ratio of linewidths in two different ma-
terials at the same values of x and T' should be given by
[see Eq. (10)]

(hH), r2 J~

(EH)2 r, J,
The results of the analysis using Eq. (11) are shown in
Table II, where we once again have normalized to the tel-
luride linewidth; f,„,is the corresponding experimental-
ly observed ratio used in Fig. 3. Table II clearly demon-
strates that dipolar broadening cannot even explain the
qualitatiue variation of the linewidth as the anion is

'2
10.5 A, J x

y U A Vx+01 (12)

changed. Thus the dominant anisotropy which governs
the behavior of the EPR linewidth cannot be dipolar in
origin. The only other possible source of line broadening
is the anisotropic part of the exchange interaction,
for which we will propose a plausible —though
speculative —form.

Theoretical work by Larson et al. ' indicates that the
main contribution to the Mn +-Mn + exchange interac-
tion is from superexchange. It is known that, when there
is lack of inversion symmetry, a perturbation due to
spin-orbit coupling within a superexchange mechanism
can lead to an anisotropic exchange term known as the
Dzyaloshinski-Moriya (D-M) interaction. The D-M in-
teraction is of the form D; (S;)&S ) and has a strength
given by D-AJ/U, where A, is the relevant spin-orbit
coupling constant of the problem, and U is an effective
energy scale ' that enters into the superexchange mecha-
nism. The restricted symmetry condition is clearly
satisfied by the zinc-blende and wurtzite structures of the
DMS's. Having excluded the dipole interaction as the
dominant anisotropy, the D-M interaction offers a
promising alternative to explain the EPR data. (This
form of anisotropic exchange was also suggested by
Keffer~a in the case of P-MnS, which, like the DMS's,
occurs in wurtzite and zinc-blende forms).

By repeating the moment method calculation using the
D-M interaction instead of the dipole interaction, we ob-
tain the FWHM at infinite temperature in the form'

CO

x
Cl

CL

Ol

The whole D-M Hamiltonian (secular and nonsecular
parts) was employed in arriving at the above result, and
we have used the same approximations as earlier.
Theoretically, the ratio of linewidths should now be given
by

(13)

0
IO I5

I

20
I

25 50

FIG. 3. The temperature variation of the linewidth in

Cdp agMnp 32Te Cdp $7Mnp 33Se, and Cdp 67Mnp 33S, showing that
the temperature dependence follows a scale T/J. Here f,„~, is a
normalizing factor, which takes values of 1, 0.43, and 0.06 for
the telluride, selenide, and sulfide, respectively.

The value of U is expected to be similar for all Mn-based
DMS's, and hence, to a first approximation, the variation
of U with the anion is ignored. In the absence of a
theoretical formulation for the D-M interaction in
DMS's, we have to guess at the required spin-orbit cou-
pling. The strong anion dependence of the linewidth, in
conjunction with the major role played by the anions in
mediating the superexchange interaction, suggests that
we use the spin-orbit coupling due to the anion. (The
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spin-orbit coupling from the Mn + iona should be negli-
gible because they are in an S state. ) We can then obtain
the relevant spin-orbit coupling from the renormalized
spin-orbit sphttings 5 for the anion in a crystal environ-
ment. s In Table II, we have assumed that A, =h/3 (Ref.
25). While the absolute values may be a httle uncertain,
me believe that the above numbers are a good re6ection
of the relative variation of A, . The drastic change in A,

from one anion to another implies that the variation of
b,H with the anion is mainly determined by the spin-orbit
coupling, and not by the exchange constant.

The results of the comparison are shown in Table II via
the ratio fDM. As before, we have normalized by the
linewidth of the telluride. Although the quantitative
agreement is not very good, clearly the gross trends are
correctly predicted by Eq. (13). This is encouraging,
given the speculation about the values of U and A, . The
large discrepancy in the case of Cd& „Mn„S might arise
because of the very small spin-orbit coupling for the
sulfur ion. It is conceivable that, because of the smallness
of )t,, the dipolar forces are in this case either comparable
to—or even larger than —the D-M interaction, leading
to a broader line than might result solely from D-M
broadening. This view can be strengthed by making an
infinite temperature extrapolation.

A plot of hH versus 1/T at high temperatures yields
approximate infinite temperature limits of 40, 350, and
500 G for Cdo s7Mn~ &&S, Cdo s7Mno 33Se, and
Cdo ssMno 32Te, respectively (see Figs. 4-6). The results
should be used with caution because the lack of data at
sufficiently high temperatures leads to some uncertainty
in the extrapolation. However, the infinite temperature

/
/

/
/'

oa- ~

~~ {hH )~ ~ 3506
I

08
8xT

FIG. 5. Linear extrapolation of line width data in

Cdo 67Mno 33Se to obtain an estimate of hH in the infinite tem-
perature limit.

linewidths predicted for dipolar broadening by Eq. (10)
are around 10 G for all three cases, and we can safely
conclude that the telluride and selenide linewidths are far
too broad to be consistent with this theoretical result.
Given the uncertainty in the linear approximation, the
role of dipolar broadening in the case of the sulfide can-
not be ruled out. The uncertainty in the absolute values
of A, and U renders a similar comparison with the D-M
linewidths difflcult. Rough hnewidths may be obtained
by using the values of A, in Table II in conjunction with

l.6-

l4 gl MnoliT

I2—

X
Cl

I.o-

/
0.6-/

( {hei} ~ $00 G

CO

~aeP

X
Cl J'

C'

(hH) ~ 40 Q

067~~03y

04OO I

I.O I.5
I

2.0

FIG. 4. Linear extrapolation of line width data in
CdQ 6gMBQ 3QTe to obtain an estimate of hH in the infinite tem-
perature limit.

FIG. 6. Linear extrapolation of line width data in
Cdo 67Mn0 qiS to obtain an estimate of hH in the infinite temper-
ature limit.
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the estimate by Larson et al. ' that U is around 6 eV in
Cd& „Mn„Te. The infinite-temperature D-M linewidths
for the telluride, selenide, and sulfide are then around
900, 200, and 7 6, respectively. The numbers are at least
in the correct range required by the approximate extrapo-
lation of the experimental data, and reinforce the case for
the D-M interaction. The calculation also produces com-
parable D-M and dipolar contributions in the sulfide, and
a detailed moment calculation which includes both in-
teractions may yield better results.

In summary, we rule out the role of dipolar broadening
by two arguments: first, by comparing the ratios between
linewidths in the different materials at a finite tempera-
ture to the theoretically predicted ratios at T = ~, and,
second, by comparing the theoretically calculated magni-
tudes of (b,H) „with an estimate obtained by extrapolat-
ing finite temperature data to the infinite temperature
limit. Further, the relative variation of the linewidth
with the anion is consistent with the Dzyaloshinski-
Moriya interaction, and the extrapolated estimates of
(EH)„are in the correct range required by the theoreti-
cal estimates using the D-M interaction.

0.8—

Cd, „Mn„Se
T= 250K

0.6—

0.4—

0.2—

0.00.0
I

0.05
I

0.10
2

X

I

0.15
I

0.20

FIG. 8. Inverse relaxation time ~ ' (proportional to hH) at
T=250 K in Cd& „Mn„Se as a function of x .

2. Variation of linewidth with Mn~+ concentration

We now consider the dependence of the linewidth on
Mn concentration x. Figures 7—9 show the linewidth as
a function of x in all the Cd-based DMS's at the highest
temperatures in this study. While a detailed fit to the x
dependence is unwarranted at this stage, it is clear that
the concentration dependence is not linear, and may be
viewed approximately as obeying an x law.

The x dependence predicted by Eq. (8), on the other

hand, is approximately x ', since there is a &x term
contribution from (b,H)„and a term linear in x from
8—in DMS s, the Curie-Weiss temperature is approxi-
mately linear in x, i.e., e=eox (Ref. 18). More experi-
mental work is required to proceed further. In particu-
lar, better estimates of (b,H)„need to be obtained from
EPR data taken at higher temperatures (say, 250—400 K)

, Mn„S
T= 150K

3
I

Cd, „Nh„Te
T= 250K

ii

iC

il

A

0.2—

0.1—

00.0
I

O.l
I

0.2
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I

0.3
I

0.4
0.0

0.0
I

0.04
I

0.08
2

X

I

0.12
I

0.16

FIG. 7. Inverse relaxation time ~ ' (proportional to hH) at
T=250 K in Cd& „Mn„Te as a function of x .

FIG. 9. Inverse relaxation time ~ ' (proportional to hH) at
T= 150 K in Cd& „Mn„Sas a function of x .
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and then examined for the concentration dependence pre-
dicted by exchange narrowing theory at T = ao.

9. The temperature dependence of the lineuldth

hH =(EH)„g T
(14)

where To 18 a pbenomenological scaling temperature
dependent on x, and (~)„is characteristic of the anion
of the host lattice. [Clearly, this representation is
equivalent to the ansatz in Eq. (9), except that the x
dependence is now absorbed into To. ] The validity of
Eq. (14) is shown in Fig. 10, where we have plotted the
inverse relaxation time ~ ' —proportional to dEP —as a
function of TlTO. The linewidths have been scaled by a
multiplicative parameter A to collapse all the points onto

a. Empirical temperature dependence of hH. A first

step towards understanding the temperature variation of
4H would be to establish any universal behavior charac-

terizing the phenomenon, regardless of the material and
the Mn concentration. Although we have found no way
of doing this for the dilute samples, our data indicate
that, for samples with a high Mn concentration
(x &0.20—above the percolation threshold for nearest-
neighbor interactions), the temperature dependence is
empirically given by a universal function of scaled tem-
perature:

a common curve, showing that the functional form is
indeed universal. The values of To and A employed in
the plot are given in Table III. This result suggests a
common mechanism underlying the broadening of the
resonance with decreasing temperature in all DMS's.

The behavior of the scahng temperature To as a func-
tion of x is shown in Figs. 11-13. For comparison, the
corresponding values of the spin-glass transition tempera-
ture Tg are plotted on the same graphs. Note that each
set of To can be multiplied by a constant and still serve as
a valid scale. Each set has been chosen so as to make a
comparison with the corresponding set of spin-glass tem-
peratures. Although we cannot immediately identify To
with T since they are related by an undetermined con-
stant, there is an intriguing correspondence between the
two. This is reminiscent of the critical scaling found in
other spin-glasses. However, it is surprising that this
scaling works for temperatures well above Ts. A similar
result was obtained in the course of an early study of
EPR in Cd& „Mn„Te and Cd& „Mn„Se, but was treat-
ed as an artiSce of the empirical formula employed to fit
the temperature dependence of b,H.

Temperttture dependence of 4H using the exchange
narrowing model Ap. art from such an empirical ap-

proach, we can also examine the temperature variation of
bH using the exchange-narrowing model [Eq. (6)]. While

it is diflicult to obtain an analytical form for the function
I"(T,x) from theory, we can use our experimental data to
extract its qualitative behavior, by plotting XoT(bH)
versus T. In other words„

I (T,x)= XoT
hH(T)

Although we do not have susceptibility data for the sam-

ples used in this studythe , high-temperature behavior of

Eh
TABLE III. Samples and parameters used in Fig. 10.

I

IO~ IO Y P'$~ Q b,

Alloy

Cd& „Mn„Te 1.0 0.175
0.20
0.23
0.32
0.42
0.50
0.61
0.67

To(x) K

0.8
1.2
2.0
6.5

13.0
21.0
27.0
32.0

20
I

60 IOO

FIG. 10. This figure shows that the inverse relaxation time
'—or equivalently the linewidth —in all the Cd-based DMS

alloys, for x ~0.20, msy be regarded as a universal function of
scaled temperature. The data shown here are taken from Fig. 1,
and the scaling parameters used in this plot are given in Table
III. %e have not provided a key to the figure since the aim is to
simply illustrate that all the points can be scaled onto s com-

IQon curve.

Cdl —x Mnx S

2.9

15.0

0.19
0.27
0.33
0.355
0.46

0.25
0.33
0.35
0.42

3.0
7.0

10.0
12.0
15.0

6.0
10.0
14.0
17.0
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FIG. 13. Comparison between the scaling temperature Tp
and the spin-glass temperature Tg for Cd& „Mn„S. The values
of Tg are taken from Ref. 34.

FIG. 11. Comparison between the scaling temperature Tp
and the spin-glass temperature Tg for Cd& „Mn„Te. The trian-
gles are from Ref. 31 and the crosses from Ref. 32.

Xc in the Curie-Weiss regime is systematic enough that
we can borrow results from elsewhere. ' The resulting
form of P T,x) is shown for Cd, „Mn„Te in Fig. 14.
The figure shows that, in the Curie-Weiss regime, the
temperature variation of the dynamic spin-spin correla-
tions is relatively slow, and that the dependence of hH on
temperature largely reflects the temperature variation of
the static susceptibility. For example, a comparison with
Fig. 2 shows that, for the x=0.32 sample, the linewidth
changes by over 400% over the temperature range
shown, while the contribution from the dynamic spin-

Cd)-x Mnx S

spin correlations changes by only 40%. However, it can
be expected that as the spin-glass temperature is ap-
proached the linewidth variation will be dominated by
the spin dynamics. We are not in a position to make this
analysis because, at such low temperatures, the suscepti-
bility deviates from the systematic Curie-Weiss behavior.
Also, the line shape becomes non-I orentzian, and the
linewidth is no longer well defined.

C. The low-temperature line shape

The low-temperature line shape presents difBculties be-
cause of several factors. First, the resonances become so
broad (FWHM&20 kG) that the associated Faraday

dI -XMnX~
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FIG. 12. Comparison between the scaling temperature Tp
and the spin-glass temperature Tg for Cd, „Mn„S. The trian-
gles are from Ref. 33 and the crosses from Ref. 32.

OO
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IOO l50
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FIG. 14. Temperature dependence of the dynamic spin-spin
correlations, represented by I (T,x) in Eq. (6). The parameterI" is equal to (EH) T+p.
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efFect is extremely small, making it diScult to obtain reli-
able data. Next, in many samples it is diScult to separate
any authentic changes in line shape from other spurious
efFects, such as the emergence of a narrow resonance su-
perimposed on the main resonance. Finally, since the
Faraday line shapes are combinations of the real and
imaginary parts of the dynamic susceptibility, we need a
speci6c model to St the line shapes in order to extract any
useful information. All we can conclude from our data is
that the resonance gradually deviates from Lorentzian
behavior and seems to shift to lower fields.

1. Shifted Lorentzian model

Owing to the absence of a theoretical model for a non-
Lorentzian line shape, earlier studies have treated the
low-temperature EPR line sha~e as a shifted Lorentzian,
modeled by a variable g factor or by an internal field
along a preferred direction. Both approaches were used
in the analysis of our data, and it was found that neither
method produces significantly better results. Hence, we
arbitrarily chose to fit the data shown in Fig. 1 by assum-
ing a variable g factor. Figure 1 shows that, although the
phenomenological model of a shifted Lorentzian is not
bad, there is a clear deviation from Lorentzian behavior
which warrants investigation.

2. The gubo-Toyabe model

Superficially, the low-temperature EPR behavior de-
scribed above is reminiscent of that observed in more
conventional spin-glass alloys such as CuMn, AgMn (Ref.
26}, and amorphous Fe-Ni-P (Ref. 27), where, as the
spin-glass transition is approached, the broadening of the
EPR is accompanied by a lineshift. Hou et al. 2 also
pointed out that there is a deviation from the Lorentzian
exchange-narrowed line shape, accompanied by the de-
velopment of a jinite absorption at zero field, which
heralds important changes in the spin dynamics. This
was explained using a modified version of the Kubo-
Toyabe model where the EPR line shape is character-
ized using two parameters: 6, which is the width of a
Gaussian distribution of local fields, and v, which is the
rate of exponential decay of correlations between local
6elds.

The Kubo-Toyabe model is the only existing theory
which seems to predict, even qualitatively, the low-
temperature features that we observe in DMS's, viz. , both
a lineshift and a non-Lorentzian line shape with zero-6eld
absorption. However, the theory in its present form
seems to be inapplicable to EPR in DMS's: the non-
I.orentzian line shapes we obtain cannot be fitted very
well using any combination of 5 and v.

The failure of this model indicates that some of the as-
sumptions in the theory may be violated in our case—
either the spin-spin correlations do not decay exponen-
tially or the local-field distribution is not simply a Gauss-
ian. However, recent psr experiments in Cd& „Mn„Te
suggest that the spin-spin correlations always show ex-
ponential relaxation —even at temperatures where .the
EPR line shape has ceased to be Lorentzian. This
leaves the possibility that the second hypothesis does not

apply, and that the distribution of local 6elds may be de-
viating from a Gaussian. Another possibility is that the
local-6eld distribution moves away from zero mean —this
amounts to assuming an internal field in a preferred
direction. However, we find that the introduction of an
internal field as a phenomenological modification to the
Kubo-Toyabe model still does not satisfactorily account
for the observed line shapes.

These results indicate fundamental difFerences between
the spin dynamics in DMS s and that in other spin-
glasses. At this stage, the only reasonable conclusion we
can draw is that the changes in line shape in DMS's are
not simply dependent on the spin dynamics. Rather, they
may signal significant changes in the distribution of local
fields.

V. CONCLUSIONS

%e have argued that the anion dependence of the EPR
linewidth in DMS's ofFers vital clues about the magne-
tism in these materials. While there is ample systematic
experimental data available, the theoretical interpretation
of this data remains a challenge. The most likely resolu-
tion of the problem lies in the theory of exchange narrow-
ing which allows the consideration of two fundamental
questions: what is the dominant anisotropic pair interac-
tion and how do the dynamic spin-spin correlations
evolve with lowering temperature?

In response to the former inquiry, we have shown that
the dontinant anisotropy cannot be dipolar and may stem
from anisotropic exchange. The exact nature of this an-

isotropy is still an open question, but we speculate that
the solution lies in the Dzyaloshinski-Moriya interaction.
A theoretical formulation of anisotropic exchange in
DMS's is needed in order to substantiate the viability of
this hypothesis.

The variation of the EPR linewidth and line shape with
temperature bears directly on the evolution of the spin-
spin correlations and the freezing of spins at low temper-
atures. %'e 6nd that, in the paramagnetic region, the
dramatic broadening of the EPR with decreasing temper-
ature is largely due to the temperature variation of the
static susceptibility. As the spin-glass region is ap-
proached, the variation of the dynamic spin-spin correla-
tions becomes more important. Unfortunately, it is pre-
cisely in this region of interest that EPR becomes more
dif6cult to interpret. %'e emphasize the importance of
analyzing the EPR line shape in this region, because any
theoretical attempts to interpret the low-temperature
EPR must account for the gradual deviation of the line
shape from a I.orentzian. Once again, there is need for
more theoretical work in order to proceed further.

Note added in proof. We were informed, recently, of a
theoretical calculation by I.arson con6rming the impor-
tance of the 0-M interaction in DMS and its role in
determining EPR linewidths. Our conclusions regarding
the 0-M interaction are in qualitative agreement with the
results of Larson*s detailed calculations.



9238 N. SAMARTH AND J. K. FURDYNA 37

ACKNOWLEDGMENTS Tr([H„[H„,S, ]] }

R Tr(S„}
(A5)

We are grateful to C. Henley for providing the impetus
for these ideas and would like to thank K. C. Hass, D. L.
Huber, J. Kossut, B. Larson, M. B. Salamon
and M. Butler for helpful suggestions and discussions.
This work was supported by National Science
Foundation Grant No. DMR 85-20866. H, = —2 g JJS;.SJ, (A6)

In the above expression, S„ is the x component of the to-
tal spin, H, is the isotropic Heisenberg exchange Hamil-
tonian, specifically

APPENDIX: COMMENTS REGARDING
THE CALCULATION

OF EXCHANGE-NARROWED LINEWIDTHS

Huber's formulation of the Mori-Kawasaki treatment
of exchange narrowing shows that the linewidth of the
Lorentzian exchange-narrowed line shape is'

bH =(TXo) 'Re g As f e '"'iS(q, t)
i
dt, (Al)

q

hH =(hH) „(TXo) 'I ( T,x), (A2)

where the spin-spin correlations and the sum over q are
absorbed into a function I'(T,x), where x is the concen-
tration of Mn ions. All that can be reasonably assumed
at this stage is that I ( T,x} is temperature independent at
temperatures far above the spin-glass transition. While
some insights into the qualitative behavior of I'(T,x) can
be drawn from the EPR data, further progress will have
to await more information on S(q, t) from, say, inelastic
neutron scattering measurements.

In order to calculate the infinite temperature linewidth
(bH)„, we use the well-known result of Anderson and
Weiss and Van Vleck. )7

where A is a coeScient which depends on the nature of
the anisotropic spin-spin interactions and on the lattice
structure. The factor S(q, t) depends on dynamic spin-
spin correlations. Since we do not have any specific in-
formation about S(q, t) in DMS s, it is diScult to simplify
Eq. (Al) into any useful analytic form. Consequently, we
choose to formulate the linewidth as

(A7)

The linewidth b,H is then calculated using Eqs.
(A3)-(A5). We begin with the expressions for Mz and

M4 derived by Van Vleck, ' and then perform the calcu-
lations by assuming a randomly diluted magnetic fcc lat-
tice. The algebra is considerably simplified by restricting
exchange interactions to nearest neighbors and by
averaging angular factors over the unit sphere. The
latter simplification is certainly valid for a powdered sam-
ple as in the present case. The random dilution of the fcc
lattice is accounted for by assigning a probability x to a
lattice site being occupied by a Mn ion —this enters the
calculation when carrying out the sums over lattice sites
and finally leads to the x dependence in Eq. (10). We
should remark that the expressions borrowed from Van
Vleck are for the secular (or diagonal) part of the dipolar
Hamiltonian only. However, because of the strong iso-
tropic exchange in these materials, we need to take into
account the nonsecular or off-diagonal terms too, and this
is accomplished by multiplying the final result by a factor
of "—"," (Ref. 17).

For the case of the D-M interaction, we take H„ to
have the following form:

Hq ——HDst ———2 g D; .(S;&(S ), (AS)

and 0„is the relevant anisotropic exchange term.
If we consider dipolar broadening, H„has the usual

form:

H„=H„=yeti g [S, S, —3(S;.r;, )(S, r,j)]( ,r, }

(2m )'i (M2)

y (M )1/2

where M2 and M4 are given by

Tr([H„,S,] )
M2 ———

trr Tr(S„)

(A3)

(A4)

where D; is antisymmetric in i and j. Here, the
linewidth is calculated from first principles using Eqs.
(A3}-(A5). We use the same approximations as in the di-
polar case, and carry out the calculation for the full D-M
Hamiltonian to obtain the final result in Eq. (12).
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