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Theoretical estimation of static charge Suctuation in amorphous silicon
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A quantum-chemical method has been developed to determine charge Auctuations in finite

aperiodic clusters of amorphous silicon. Calculated atomic net charges are in a close linear rela-

tionship to bond-angle distortions involving first and second neighbors. Applying this relationship

to a continuous-random-netverk model of 216 silicon atoms proposed by %ooten et a1. , ee ob-

tained 0.021 electron units for the rms deviation from charge neutrality.

Fluctuation of charge density in amorphous silicon (a-
Si) has been the subject of several theoretical and experi-
mental studies. ' Since atomic net charges are not ob-
servable, experimental determination of their fluctuations
from high-resolution Si 2p core-level spectra2 or integrat-
ed infrared absorptivity may be ambiguous. On the oth-
er hand, theoretical calculations are more or less approxi-
mate;'" therefore it is rather diflicult to compare results
obtained by diferent methodologies.

Recently, we elaborated on a quantum-chemical
method for the determination of charge fluctuation in
various a-Si models. ' The sample is modeled by Snite
clusters in which the geometry of atoms can be construct-
ed using, e.g., the coordinates of the continuous-random-
network (CRN) model of Wooten et al. A cluster of
bulk silicon atoms is described by a valence-electron
effective Hamiltonian written down in a hybridized atom-
ic basis. The sp -like hybrids are directed along the cor-
responding Si—Si bond axis, and subsequently orthogo-
nalized on each atom. This orthogonalization is efFective
only if the geometry of the cluster is different from the di-
amondlike one and it may result in a deviation of the ac-
tual form of hybrids (s characters) from the standard sp
types. Accordingly, geometry distortions in a-Si are
re6ected by hybridization changes.

The wave function of the cluster is constructed in
terms of molecular orbitals P, which are constrained to
be localized on one Si—Si bond i spanned by two hybrids
h, and h~ ..
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model is capable of describing interbond electrostatics
(inductive effects}.

To eliminate end effects as much as possible, we put
special pseudoatoms (Si') at the boundary modeling the
bulk. These pseudosilicon atoms possess one or two
neighbors only and they are described by one (or two) hy-
brids, their effective core charges (Z;) being l (or 2).

P; =c, h, +c„hb -30"

with c, +c& ——1. %ithin this constraint the Hartree-
t t

Fock problem is solved for the cluster; that is, the c,
coeScients are optimized variationally. The matrix ele-
ments of the Hamiltonian are parametrized according to
the complete neglect of differential overlap (CNDO/2}
scheme. '

The Hartree-Fock problems for different bonds are
coupled due to interbond Coulomb integrals; thus the

FIG. 1. Comparison of silicon atomic net charges calculated
quantum chemically (crosses) and by Eq. (4) (solid line).

EQ = ( —0.69%0.024)X, where X denotes the quantity in

parentheses in Eq. (4); EQ is in 10 electrons, X is in degrees.
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This permits us to deal with a closed-shell neutral and
6nite cluster without imposing periodic boundary condi-
tions or introducing arti6cially heteroatoms at the sur-
face.

Since all parameters of the Hamiltonian are the same
for Si and Si* atoms, we obtain exact electroneutrality
within each bond in a diamondlike cluster and, as a
consequence, our method is free from the spurious accu-
mulation of charges inside the cluster and on the bound-
ary observed if using the conventional formalism. '

Pseudoatom effects at the boundary were tested on the
following way: A cluster containing 38 atoms was chosen
and one, two, or three atoms were added to the surface of
it. On the five central silicon atoms there was no change
of net atomic charge. The net charge on atom A in our
model is defined by

EQA =ZA —g CA (2)

where the sum is extended over the four bonds in which
the atom in question takes place, and Zz is the effective
nuclear core charge (4 for Si). Similar methods based on
localized wave functions have long been utilized to calcu-
late atomic charges and other properties in an effective
manner.

TABLE I. Charge fluctuations (rms, in millielectrons) as ob-

tained by difFerent authors.

Author

6 12

angst ——gq;=A 2 g d8; —g d8J (4)

where 8; =XMY and 8J =MXZ (X and Yare bonded
to M, Z to X or Y).

We compared net charges, calculated by Eq. (4), to
those obtained by our quantum-chemical Inethod summa-
rized in Eqs. (1) and (2). We constructed models, as de
scribed above, and used the geometry proposed for tt-Si

by Wooten et al. s Each cluster consisted of at least 17
ordinary and more than 25 pseudosilicon atoms, and only
the five central silicon atoms were included in the com-
parison. As a whole, we calculated net charges for 79
different sihcon atoms and obtained a fair linear correla-
tion for Eq. (4) with A = —0.69+0.024, and the correla-
tion coefficient is r = —0.965 (cf. Fig. 1). The rms charge
fluctuation, as obtained from the quantum-chemical cal-
culations and from Eq. (4) are 0.0195 and 0.0188 elec-

Using our method for diamondlike clusters, containing
35 ordinary and 36 pseudosilicon atoms (Si-Si and Si-Si
distances were set equal to 235 pm) and displacing the
central atom by 30 pm in various directions, we found
that charges accumulating on atoIns separated by more
than two bonds from this central atom are less than 10
electron units. From this we concluded that charge fluc-
tuation in amorphous silicon is a three-atom effect and
can be traced back to bond-angle distortions, which are
rejected by changes in hybridization effect. In a triad of
silicon atoms E, L, and M, forming two bonds EM and
LM with a KML angle of 8, one may assume that the
atomic charge depends approximately linearly on the de-
viation of the bond angle from the ideal tetrahedral value,
d8=8 —109.47'. Accordingly, the charges may be es-
timated from the following equations:

qst ——2A d8,

qs ——qL
———A d8.

Applying Eq. (3) on a CRN model of a-Si clusters for
the net charge of atom M, we get a single-parameter
equation,
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FIG. 2. Charge distributions in a-Si models. Thin solid line, Ref. 4; thick solid, present work.
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trons, respectively. The good agreement justi6es applica-
tion of Eq. (4} to other systems, too.

Our equation is analogous, though not equivalent to
that proposed by Guttman et al. ' In their function to
calculate the net charge on atom i, they used a term de-
pending on the deviation of the distance to the four
neighbors of i,dr;, from the ideal value, ro, instead of this
first term in Eq. (4):

(5)

Guttman et al. stated that Eq. (5) has a considerable
physical basis because, among other arguments, c is close
to zero. However, in an ideal diamondlike structure
where r, =ro, c must have a nonzero value; otherwise,
identical charges of the same sign on all atoms would ap-
pear and a spurious nonzero gross charge would accumu-
late in the system. Our method yields exactly zero atom-
ic net charges for systems where all bond angles are ideal-
ly tetrahedral, regardless of the actual bond distances;
furthermore, the sum of charges is zero for any geometric
structures. This is why the standard error of A in Eq. (4)
is considerably smaller than that of b in Eq. (5)
(b =0.174+0.022, 0.164%0.022, and 0.16220.022 for
three independent models' ).

To estimate charge fiuctuations in a-Si, we used a mod-
el proposed by Wooten et aL This seems to be the best

at present since it reproduces the experimental one-
dimensional radial distribution function within the inter-
val 0—800 pm excellently. Using Eq. (4) for all 216 atoms
of the model cluster, we obtain 0.021 electron for the rms
charge fluctuation. This is compared with values from
other studies in Table I. As can be seen, our estimate is
considerably smaller than those from experimental stud-
ies. %e feel that our value is realistic since, as is known,
CNDO/2 net charges reproduce absolute values of exper-
imental dipole moments within a reasonable error. The
discrepancy with the core-level-spectroscopic estimate of
Ley et a/. may be explained on the basis of intra-atomic
charge transfers, 5 while the infrared spectroscopic es-
timation is subject to considerable simpli6cations as dis-
cussed by the authors themselves.

Figure 2 depicts histograms of our calculated charge
distributions in the CRN model as compared to the re-
sults of Kramer et al. Our curve indicates a pro-
nounced maximum near 0.030 electron. Whether this is
only an artifact due to the small number of atoms in our
model or has a physical meaning, needs further studies.

We are indebted to Professor F. Wooten (Lawrence
Livermore National Laboratory) for providing us the
coordinates for a-Si, and to Professor B. Vasvari (Techni-
cal University of Budapest) for his interest in this work.
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