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The electronic structure and optical properties of GaP/AlP superlattices are investigated
theoretically to clarify the general features of the zone-folding and the band-mixing elects in the
superlattice composed of indirect-band-gap semiconductors. The degeneracy of the minimum en-

ergies of the conduction band at the X points in the zinc-blende-type bulk materials cannot be lift-
ed by the zone-folding e8'ect alone. The band-mixing efFect through the interfaces between two
constituent materials plays an important role in determining the overall band lineup throughout
the entire Brillouin zone. Thus the electronic structure of the superlattice over the entire Brillouin
zone is calculated for the 6rst time in order to determine whether the superlattice is an indirect- or
direct-band-gap material. In these calculations, the sp s tight-binding method is employed which
is known to yield a sufBciently accurate conduction band and to give its minimum position
correctly. The electron1c structure of the superlattlce turns out to be quite sensitive to the corn-

bination of the well and barrier layer thickness. This sensitivity suggests the possibility of design-

ing suitable band structures for device application. Oscillator strength in the superlattice is also
estimated and is found to be larger for shorter-period superlattices in general. Because the value

of the band discontinuity is quite uncertain at present, three previously reported values are applied
in the calculations. The electronic structure and the optical properties are revealed for the 6rst
time to be very sensitive to the band discontinuity. To explore the possibility of designing the
band structure further, the elect of applying pressure is also investigated. Applied pressure in-

duces the changes En the electron transfer-matrix elements primarily through changes of intera-
tomic distances and consequently modi6es the electronic band structure. It is found that by apply-
ing pressure parallel to the superlattice layer, a transition can be induced from an indirect-band-

gap to direct-band-gap material and thus the optical activity is enhanced. These properties sug-

gest that the superlattice composed of indirect-band-gap semiconductors offers great potential for
application to optical devices.

I. INTRODUCTION

Recently, the electronic structure of Ga As/AlAs
(GaAs/Al„Ga, „As) superlattices having direct-band-

gap well layers has been investigated intensively, and the
transition from a direct-band-gap material to an
indirect-band-gap material (direct-to-indirect transition)
has been found when the unit period of the superlattice
is reduced. However, the electronic structure of
these direct-band-gap superlattices has been found to
difkr only slightly from that of the mixed crystal com-
posed of the same constituent materials. In contrast to
these superlattices, those which have indirect-band-gap
materials as well layers can be expected to show very
different properties from those of the constituent materi-
als or their mixed crystals. This is due to the zone-
folding efFect which arises from the synthetic structure
and the band-mixing e8'ect through the interfaces be-
tween the constituent materials. These efFects can in-
duce a transltlon from an lndlrect-band-gap material to a
direct-band-gap material (indirect-to-direct transition).
Due to the k-selection rule, an interband optical transi-
tion ls generally not allowed ln 1ndlrect-band-gap materl-

als without the assistance of phonon scattering or impur-
ity scattering. In the superlattice, the required k vector
is supplied from the superlattice structure itself due to
the zone-folding effect, and the optical transition be-
comes allowed without the assistance of phonon scatter-
1ng.

Gnutzmann and Clausecker reported the 5rst investi-
gation of the possibility of optical transition in struc-
tured materials consisting of indirect-band-gap materials.
In their work, however, the actual energy gap of the ma-
terial, which plays a signi6cant role in optical device ap-
plications, was not estimated. Furthermore, the electro-
static potential for electrons arising from the superlattice
structure was not given explicitly, although this is neces-
sary to estimate the probability of optical transitions
quantitatively. Recently, Kim and Madhukar examined
the electronic structure of GaP/A1P superlattices which
consisted of indirect-band-gap materials in both the well
and barrier layers. Their analysis of the electronic struc-
ture was limited to the I -Z direction and to the J points
in the Brillouin zone. However, as will be shown later,
it is crucially important to examine the band structure
over the entire Brillouin zone in determining whether
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the superlattice is a direct- or indirect-band-gap materi-
al. In zinc-blende-type bulk materials, the conduction
band has six equivalent minima at the X points in the x
y, and z directions. The zone-folding e8'ect in the super-
lattice growth direction {zdirection) brings the X, points
{Xpoints in the z direction) to the I' point but leaves the
X and X points unchanged in the case of appropriate
layer-thickness combinations. Thus when the zone-
folding efFect alone is taken into account, the conduction
band of the superlattice has five degenerate minima: one
at the I point and the others at the M points. The
band-mixing effect through the interface of two constitu-
ent materials lifts the degeneracy between these points.
Thus the problem of determining the position of the
conduction-band minimum is quite delicate and requires
highly accurate calculation. Kim and Madhukar em-
ployed the conventional sp tight-binding method in-
cluding the second-nearest-neighbor interactions. This
method is well known as a simple and convenient way of
obtaining an approximate band structure and has been
used successfully for calculating the structure of the
valence band. However, it is well recognized that the
method does not yield a reliable conduction-band struc-
ture. Thus in order to determine whether the superlat-
tice is a direct- or an indirect-band-gap material, we em-

ployed the sp s~ tight-binding method which is capable
of yielding a more-accurate conduction-band structure.
The most remarkable advantage of this method is the
feasibility of band-structure calculation for large period
superlattices which would make it possible to determine
rather easily the layer-number combinations of the con-
stituent materials which yield a direct optical transition.
On the other hand, in an usual ab initio calculation, this
determination requires a formidable amount of computa-
tion time and is actually impracticable. Therefore, the
tight-binding method is very quick and emcient way to
survey the general features in both qualitative and quan-
titative senses.

Furthermore, Kim and Madhukar's analysis was re-
stricted to superlattices in which the well and barrier
layers were of the same thickness. However, in our pre-
liminary study, the band structure of the GaP/A1P su-
perlattice has been found to be very sensitive to the com-
bination of the well and barrier layer thicknesses.
Therefore, this paper attempts to clarify the applicability
of the superlattices to optical devices by presenting a
more thorough study of the optical properties as well as
electronic structure of the GaP/AlP superlattice. Com-
blnatlons of tllc well and barrier laycl tlllckllcsscs wlllcll
yield direct optical transitions are also determined.
Based on these results, the feasibility of designing the
band structure in superlattices composed of indirect-
band-gap semiconductors is discussed, and the
si.gni6cant potential of this synthetic material for appli-
cation to optical devices is suggested for the 6rst time.

The value of the band discontinuity between GaP and
A1P is quite uncertain at present. %"e calculate the elec-
tronic structure and optical properties of the superlattice
using three previously reported values and revealed for
the first time the effect of the band discontinuity on
these properties. In order to further explore the possi-

bility of designing the band structure, the effect of apply-
ing pressure on the optical properties and electronic
structure is also investigated. The application of pres-
sure induces the changes in the electron transfer-matrix
elements primarily through changes in interatomic dis-
tances, and consequently modi6es the electronic band
structure. It is found that by applying pressure parallel
to the superlattice layer, a transition can be induced
from an indirect-band-gap material to a direct-band-gap
material thus enhancing the optical activity. The band-
gap energy is very sensitive to the applied pressure, and
the pressure is very useful in designing the band struc-
ture.

The paper is organized as follows. In Sec. II the elec-
tronic structure of the GaP/AlP superlattice is present-
ed. In Sec. III the optical properties of the superlattice
are discussed, and the oscillator strength of the optical
transition at the folded I point is calculated. In Sec. IV
the features of the indirect-to-direct transition are
clarified with respect to the combination of the well and
barrier layer thicknesses. In Sec. V the efFect of pressure
on the GaP/A1P superlattice is presented, and the
features of the indirect-to-direct transition are investigat-
ed precisely. Three cases are considered according to
the direction of the applied pressure. One is hydrostatic
pressure, and the others are uniaxial pressure applied
perpendicular and parallel to the superlattice layer. Sec-
tion VI is devoted to a summary of the results and con-
clusions.

II. ELECTRONIC STRUCTURE
OF THE SUPERLAa-a ICE

In calculating the energy band structure and electron-
ic wave functions, it is necessary to choose an appropri-
ate method which yields a precise conduction band, be-
cause in indirect well superlattices, the features of the
conduction band play a large role in determinin~ the del-
icate indirect-to-direct transition. Here, the sp s tight-
binding scheme is employed. In this method, the excited
s-like state s' is added to the conventional sp bases in
order to yield the precise conduction band. This method
was first proposed by Yogi et al. ,

' and was extended to
include second-nearest-neighbor interactions by Newman
and Dow. " Furthermore, the tight-binding parameters
were corrected by Yamaguchi. ' In these calculations,
however, dispersionless bands appear along the direction
between the X point and the 8' point regardless of the
kind of material. In the case of a monolayer superlat-
tice, for example, these bands play a crucial role in
determining the electronic structure, because they are
folded into the direction between the I point and M
point. Thus, the second-nearesi-neighbor interactions
between two p orbitals are introduced to reproduce the
reference band structure precisely. Details on the calcu-
lation are given in Appendix A.

The structure of a superlattice having X, sublayers of
A-compound semiconductor and Sb sublayers of 8-
compound semiconductor in a unit period is shown
schematically in Fig. 1 using a case of Gap/A1P super-
lattice as an example. Here, N is the sum of N and Xb.
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FIG. 1. Schematic diagram of the GaP/A1P superlattice.

In the following, the calculation is carried out for all
combinations of N, and Nb under the condition that
N &20. The tight-binding parameters for the bulk ma-
terials are derived from the bulk band data. ' ' The
reference values used here and the calculated values are
shown in Table I. The second-nearest-neighbor interac-
tions considered here ( U'p and U' ) are the interac-
tions between two p; orbitals separated by
(d/2)(ke, kek), where i, j, and k are cychc permuta-
tions of x, y, and z, and e is a unit vector in the jth
direction. Here, d is the lattice constant of the material,
alld the suffixe c alld 0 llldlcate the catloll alld allioll, re-
spectively. These interactions are included to reproduce
the dispersion between the bulk X and W point, ' and
adjusted to yield the proper band shape. As for the X
and I points, the energy values can be fitted exactly,
whereas those at the L points cannot be fitted perfectly.
The CNect of the second-nearest-neighbor interactions
mainly appears in the band energy near the L points, as
shown in Table I. Larger values of the interactions U p
and Uz~ result in L-point energies closer to the refer-
ence values; however, they yield unpractically heavy car-
rier mass and unreallstlc b'and shape.

For calculating the superlattice band structure, the
first- and second-nearest-neighbor interactions between
A- and 8-compound semiconductors are applied here.

Upp (Upp ) stands for the second-nearest-neighbor in-
teractions between two cations c and c' (anions a and a')
lying in A- and 8-compound semiconductors, respective-
ly. In principle, these can be determined empirically by
fitting the calculated band to the reference band of the
superlattice. However, for the sake of simplicity, we
have taken the mean value of the two bulk parameters,
I.C.,

I I

Upp n
= l ( Upps + Uppw )

(2.1)

Upp~ = l ( Uppn + Uppe )

%ith respect to the first-nearest-neighbor interaction be-
tween cations and anions lying across the interface,
tight-binding parameters corresponding to C- and 8-
compound semiconductors are applied, which are made
of cation-anion pairs e -a' and e'-a, respectively.

The GaP/A1P superlattice is chosen as the most real-
istic example for the investigation of the superlattice
made of indirect materials. The GaP/A1P superlattice is
the nearly-lattice-matched superlattice and, if necessary,
a perfectly-lattice-matched supcrlattice can be obtained
simply by using a slight amount of As-contained mixed-
crystal GaAsP instead of GaP. As for the valence-band
discontinuity AE„ofthe GaP/AIP interface, a con-
clusive value has not been estabhshed experimentally. In
this calculation, b,E„is treated as an unknown parame-
ter, and the following values are employed for numerical
evaluation.

Case (1): b,EO ———0.00 eV (Refs. 7 and 10).
Case (2): hE = —0. 10 eV (Refs. 7 and 10).
Case (3): &E„=—0.46 eV (Ref. 16).

Here, cases (1) and (2) correspond to a type-I superlat-
tice, while case (3) corresponds to a type-II superlattice.
Figure 2 shows the Brillouin zone for a monolayer su-
perlattice (N, =Nb ——1). Hereafter, the symmetry points
are denoted by the same symbols as those in the figure,
and the direction perpendicular to the superlattice layers
is denoted by "z" and the two orthogonal directions
parallel to the superlattice layers by "x" and "y". The
bulk X point in the z direction is folded into the I point
in the superlattice band, the bulk X point in the x or y
direction corresponds to the M point, and the bulk I.
point corresponds to the 8 point, respectively.

The calculated band structure of the GaP/AlP mono-
1aycr superlattice is presented in Fig. 3. The superlattice
bands including the second-nearest-neighbor interactions
are represented by the solid curves, and the dashed
curve presents thc low'cst conduction band ncglcctlng thc

TABLE I. Reference values and calculated values of symmetry point energies in GaP and AlP bulk crystals (in eV).

x"
5 L c

GaP (ref.)

GaP (calc.)
A1P (ref. )

A1P t,'calc. )

—13.19
—13,19
—12.70
—12.70

2.88
2.88
3.60
3.60

5.24
5.24
5.60
5.60

—9.46
—9.46
—9.80
—9.80

—7.07
—7.07
—5.40
—5.40

—2.73
—2.73
—2.26
—2.26

2.35
2.35
2.50
2.50

2.90
2.90
3.00
3.00

—1.10
—1.21

—1.08

2.79
2.61

2.95
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FIG. 2. Brillouin zone for the monolayer superlaitice. The
Brillouin zone is also shown for zinc-blende crystal by the thin
line. The familiar nomenclature of symmetry points is em-

ployed and the arrows correspond to the band structure in Fig.
3.
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second-nearest-neighbor interactions. The results are
presented for the cases of (a) b,E„=0.00 and (b)
EE, = —0.46 eV. Including the second-nearest-neighbor
interaction in the calculation raises the R-point energy,
rejecting the fact that the interaction makes the bulk
L-point energy higher. In the case of AE, =O.OO eV
[Fig. 3(a)], it can be seen that the superlattice is a
direct-band-gap material while the original materials are
both indirect-band-gap materials. A similar feature is
obtained for the case of hE„=—0. 10 eV. In the case of
b,E„=—0.46 eV [Fig. 3(b)], however, the monolayer su-
perlattice remains an indirect-band-gap material.

These features can be explained by the zone-folding
eN'ect. Figure 4 is a conceptual diagram of this effect.
In the case of N =2, the Brillouin zone is reduced to
half of the original Brillouin zone, and consequently the
bulk X point is folded into the I point. The same situa-
tion holds for even numbers of X. GaP and AlP are
indirect-band-gap materials having their conduction-
band minimum at the X point, but the superlattice be-
comes a direct-band-gap material due to the zone-folding
efFect. It should be noted that it cannot be determined
only by the zone-folding argument whether the
conduction-band minimum of superlattice is at the I or
M point, because conduction-band minima also exist at
the M point vrhich corresponds to the original bulk X
points in the x and y directions.

On the other hand, the Brillouin zone for X =3 is re-
duced to —,

' of the original Brillouin zone, and conse-

quently the bulk X point in the z direction is not folded
into the I point but into the z-directional edge of the
Brillouin zone. The same generally holds for odd num-
bers of X. Therefore, the superlattice remains an
indirect-band-gap material having its conduction-band
minimum at the z-directional edge of the Brillouin zone.
The zone-folding effect is not the only factor which
causes the indirect-to-direct transition in the superlat-
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FIG. 3. Calculated band structure of GaP/A1P monolayer
superlattice. Calculation includes the second-nearest-neighbor
interactions. The valence-band discontinuity is assumed to be
(a) hE, =0.00 eV, (b) AE, = —0.46 eV. The dotted line
represents the lowest conduction band calculated without con-
sidering second-nearest-neighbor interactions. It is found that
bE, = —0. 10 eV yields a direct-band-gap material and the
qualitative feature is similar to the case in IIa).

FIG. 4. Conceptual description of the indirect-to-direct
transition due to the zone-folding effect. Typical cases are
shown for (a) %=2 and (b) %=3. The former becomes a
direct-band-gap material, while the latter remains an indirect-
band-gap material. N is the number of sublayers in a superlat-
tice period.
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The results are presented for all combinations of numbers of Gap sublayers (N, ) and Alp sublayers (NI, ) in a period under the con-
ditions of N =4 (0), 8 (A), 14 (o ), and 20 (6 ). The feature in the case of ibE„=—0. 10 eV is similar to the case in (a).

tice. Further discussion on this point will be given later.
The calculated energy gap at the I' point is shown in

Fig. 5 as a function of the A1P sublayer number Nb
when N =4, 8, 14 and N =20 for two cases of (a)
EE„=O.OO and (b) —0.46 eV. For the monolayer super-
lattice (N, =Nb ——1), the calculated energy gap is 2.360
and 2.271 eV corresponding to cases (a) and (b), respec-
tively. It can be seen from Fig. 5(a) that the energy gap
increases monotonically as Nb increases for every value
of N. However, case (b) is deSnitely diFerent from case
(a). In Fig. 5(b), although the energy gap increases the
value of Nb increases in the case of N =4, in larger
period superlattices (N =6,8, 10, 12, . . . ), the energy gap
takes a minimum at some Nb(&i) This can be ex-
plained as follows. In larger period superlattices, the su-
perlattice having small Nb/N, is virtually GaP bulk
crystal, and the energy gap takes a value close to that of
GaP (Eg =2.35 eV). On the other hand, the superlattice
having large Nb/Xg ls virtually AIP (Eg =2.50 eV) Be-.
tween those two limiting situations, the energy difference
between the bottom of the A1P conduction band and. the
top of the GaP valence band acts as a quasienergy gap
(Eq" '=2.04 eV). Thus, new materials can be syn-
thesized, whose energy gaps can be tailored by changing
the thickness of the constituent materials.

III. (OPTICS. PROPERTIES
QF THE SUPERKATTICK

The optical transition is not always allowed even in a
direct-band-gap material. It is necessary to estimate the

optical properties as well as the electronic structure of
the superlattice to evaluate the optical activity of the
material. In this section the oscillator strength at the I"
point is calculated in order to evaluate the optical prop-
erties of the superlattice. The oscillator strength at the
I point is calculated by using the formula'

(3.1)

where M =exp(iK r)p, A'boo is the gap energy at the I
point, K is the photon wave vector, m is the free-
electron mass, and p is the momentum operator. For the
numerical evaluation of the formula, the atomic radial
wave function obtained by a Herman and Skillman'
type program is employed. Details of the calculation are
given in Appendix B. The calculated values of oscillator
strength are shown in Figs. 6(a) and 6(b) for even num-
bers of the superlattice period X under the condition of
%&20 corresponding to AE, =0.00 and —0.46 eV, re-
spectively. Even numbers of X are employed because
the I -point energy of the superlattice would otherwise
always be higher than the M-point energy. Only the
maximum (0 ) and the minimum (6 ) values of the oscil-
lator strength are plotted as a function of the superlat-
tice period N, when (N„Nb) combinations are varied.
The oscillator strength of the transition between I „and
I &5„ in bulk Gap is 0.89. A larger oscillator strength is
obtained in superlattices having shorter periods for all
three values of AE, . Furthermore, the ratio of
maximum-to-minimum values of oscillator strength gives
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V+ V

L

(3.2)

a measure of the permissible level for the layer-thickness
fluctuation in fabricating an optical device. The ratio is
about 10 to 100 in the case of EE„=O.OO eV, while it
takes on an extremely large value in the case of
b,E„=—0.46 eV. It can also be seen that the maximum
oscillator strength is larger in the case of hE, = —0.46
eV than the other two LEE„values. The features in the
ease of hE„=—0. 10 eV are quite similar to those of
EE„=O.OO eV. The Xb dependence of oscillator
strength is presented in Figs. 7(a) and 7(b) for N =20,
corresponding to LE„=O.OO and —0.46 eV, respectively.
It can be seen from the figure that the oscillator strength
is generally larger in (odd, odd) combinations of (N„N» )

than in (even, even) combinations. Two groups of points
can be seen in each figure, corresponding to the
(odd, odd) and (even, even) combinations. A much larger
difference between two groups is obtained for the case of
hE„=—0.46 eV than for the case of bE„=O.OO eV. In
this respect also, the features in the case of hE„=—0.10
eV are similar to those of hE, =0.00 eV.

Simple perturbation theory can explain these results
qualitatively. The momentum needed in the indirect op-
tical transition is supplied from the superlattice potential
through a scattering process. Two possible paths of in-
direct optical transitions, denoted by (i) and (ii), are
shown in Fig. 8. In the case of an ideal square-well-
shaped potential of a superlattice having an even number
of sublayers in a unit period, the oscillator strength is
calculated as

with

(4V~o'/Nm )sin(nNb /2) if N is even,

0 1f X 18 odd, (3.3)

where„V'+' ( V' ) is the potential height for an electron
(hole), and 6+ (b, ) is the conduction- (valence-) band
energy difference between the I and X points of the well
layer material. The first term of Eq. (3.2) corresponds to
path (i), and the second term to path (ii). Equation (3.2)
shows that the oscillator strength is zero when the su-
perlattice has an odd number of sublayers in a unit
period. It can be also seen that the oscillator strength
increases as the superlattice period N decreases. These
results confirm the trend seen in Fig. 6. Furthermore,
Eq. (3.3) implies that the oscillator strength is always
zero for (even, even) combinations of (N„NI,). This is a
consequence of assuming an ideal square-well-shaped po-
tential. Actually, the shape of the superlattice potential
deviates from the ideal square-well shape, so that the os-
cillator strength takes on a f1nite value. This tendency is
reilected in Fig. 7 by the fact that the (odd, odd) com-
binations have a larger oscillator strength than the
(even, even) combinations. The difference between Figs.
7(a) and 7(b) can also be explained in terms of the shape
and amplitude of the superlattice potential. It can be
easily seen from Eqs. (3.2) and (3.3) that a larger super-
lattice potential height yields a larger oscillator strength.
The conduction-band discontinuity hE, is 0.15 eV for
the case of hE, =0.00 eV, while hE, is —0.31 eV for
the case of hE, = —0.46 eV. The potential heights V'+'

and V' ' are both larger in the case of hE, = —0.46 eV
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than in the case of AE„=O.OO eV, and the potential can
have a sharply formed interface leading to a larger value
of maximum oscillator strength and a larger maximum-
to-nunimum ratio which explain the features in Fig. 6.
However, the shape of the potential is not so simple.
Especially in the shorter-period superlattice, this efFect

plays an even more significant role exceeding the limits
of simple perturbation theory.

When designing materials, it is important to know the
(N„Xb) combination which yields the maximum oscilla-
tor strength for a given N. For the case of %=20, for
example, such combinations are (1,19) and (19,1) for
AE„=O.OO and. —0,46 eV, respectively. This feature
csn be explained qualitatively in terms of the spatial dis-
tribution of the wave function. In the following, we con-
sider mainly superlattices having a larger period because

I

t

I

I
I
I

) vk'

FIG. 8. Schematic diagram of the indirect optical transition
based on the perturbation theoretical viewpoint. ~ck ) and

~

Uk') denote the Bloch states of the conduction and valence
bands, respectively.

the qualitative interpretation becomes easier. In the in-
direct optical transition, the w'ave vector must be sup-
plied through potential scattering at the interface, snd
thus the carrier distribution afFects the scattering rate
and the resulting oscillator strength. Since the carriers
are scattered at the interface in the indirect optical tran-
sition, it is advantageous for the carriers to localize near
the interface. It is reasonable to expect that a thinner
mell layer yields s larger oscillator strength because the
carriers tend to localize st the well layer and are scat-
tered more strongly at the interface. In Fig. 7(a), except
for very small N„it seems that AlP-rich superlattice
yields larger oscillator strength in the case of AE, =0.00
eV, and a similar feature is obtained in the case of
AE, = —0. 10 eV. This is a consequence of the fact that
GaP is the well layer for both electrons and holes„ in the
case of EE„=O.OO and —0.10 eV. However, GaP is the
well layer for holes and AIP is the well layer for elec-
trons in the case of EE, = —0.46 eV. Consequently, the

X& dependence is not so simple in this case. It can thus
be expected that a larger oscillator strength will be ob-
tained in both the AlP-rich snd GaP-rich cases, which
yield thin well layers for holes and electrons, respective-
ly.

To clarify these features, the distribution of the wave
function in the superlattice is investigated. First, results
for the case of AE„=—0.46 eV are presented in Fig. 9.
Figure 9(a) represents the distribution of wave function
(squared modulus of the envelope function) at the bot-
tom of the conduction band for the superlattice having
19 GaP sublayers and one AlP sublsyer in a period, snd
Fig. 9(b) represents the distribution at the top of the
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valence band. It can be seen that electrons tend to local-
ize at the AlP layer while holes tend to localize at the
middle of the GaP layer. Figures 9(c) and 9(d) show
similar results for a superlattice having one GaP sub-
layer and 19 AlP sublayers in a period. In this case, the
situation is reversed. These localization features are the
6nal results of the potential scattering of the carriers
caused by the superlsttice structure. It can be seen that
the sharply localized wave function exhibits s marked
inQuence of the superlattice potential. In this sense,
both cases are thought to yield large oscillator strength,
and this can be confirmed in Fig. 7(b). In the case where
X, and Xb are both larger, the inhuence of the interfaces
is thought to be weak, because electrons and holes are
both widely spread in GaP and A1P layers. This is
rejected in the small oscillator strength for the cases
where E, =XI, in Fig. 7(b). Figure 10 shows the results
for the case of bE„=O.OO eV. Figure 10(a) represents
the distribution of the wave function at the bottom of
the conduction band for the same superlattice as in Figs.
9(a) and 9(b), and Fig. 10(b) represents that at the top of
the valence band. In this case, however, the localization
feature of the wave function is not so clear. Especially,
the wave function at the top of the valence band is al-

most completely delocalized in both the GaP and A1P
layers. This is reasonable because there is no potential
barrier with respect to the valence band. However, the
behavior of the wave function at the bottom of the con-
duction band is quite strange because it is not as strong-
ly localized in the GaP layer as expected. This behavior
is somewhat peculiar to the (N„Nb ) = (19,1) combina-
tion, because in other GaP-rich cases (e.g., X, =18,
N& ——2), the wave functions are apparently localized in
the GaP layer. This is thought to be the reason for the
strange behavior of the oscillator strength of the
(X„Nb)=(19,1) superlattice in Fig. 7(a). Figures 10(c)
and 10(d) correspond to a superlattice having one GaP
sublsyer and l9 AlP sublayers in a period. In this case,
the situation is easy to interpret. The features of valence
band in Fig. 10(d) are very similar to those in Fig. 10(b),
but the features of conduction band in Fig. 10(c) are
much different from those in Fig. 10(a) and the wave
function is strongly localized near the GaP layer which
is the well layer for the electron. For shorter-period su-
perlattices (e.g., N =2,4, . . . ) these interpretations can-
not be applied because the carrier localization and the
scattering effect at the interfaces are not related to each
other in a simple manner.



KUMAGAI, TAKAGAHARA, AND HANAMURA

O.M

I '
I

* l I
' l ' I' I

' I' I *I I I '
I I I

'
l

Q s -orbital

a -orbital

Q p -orbital

0.20

0.15

(c) P a —orbital

s -orbital

Q p -orbital

I I I I I I 'I I*I 'I* I'I I' I I'I I I I

0.10

Q&QQQQQQQQQ Q QQQ
i. IBI4 IISI . Ital() Ilbl6ilht5I'Itbld'lblllblhl414

Qo Qa Qa Qo Qa 64 Qa Qa Qa Ca Qa Qa Qa Qa Qa Ca Qa Qa Ga Al
P P P P P P P P P P P P P P P P P P P P

Atomic site

0.05-
8

k, p(
K'0 ~ IAPLU~ ~ ~. I . I . I .~ ~~RL 01 ~ I ~ I

0
Qa Al Al AI Al Al Al AI Al Al Al Al Al Al AI Al Al AI Al Al

P P P P P P P P P P P P P P P P P P P P

Atomic site

'
I

'
I

' I' I 'I'I ' I I 'I '
I 'I'I 'I ' I

'
I 'I 'I 'I '

I
0.25 '

I
'

I
'

I
' I

'
I

'
I

'
I

'
I

' I '
I

'
I

'
I ' I '

I
' I ' I '

I
'

I
'

I

0.20 p- or bltal 0.20 p -or b ital

0.15 0.15

0.10 0.10

0.05 0.05

nnn . .I-I I.I.I.I. I .I.i. I. l. l. l. l. I. I. I.l.t
Ca Qo Cc Qa Ca Qa Qa Qa C Ca Qa C Ca Ca Ca Ca Qa Qa Qa Al

P P P P P P P P P P P P P P P P P P P P

Atomic site

FIG. 10. Squared modulus of the envelope function in the GaP/Alp
the same as in Fig. 9.

„,'A'VAwwwww'. A~~www
Qe Al AI AI Al Al Al AI Al AI Al Al Al AI Al Al AI Al Al Al

P P P P P P P P P P P P P P P P P P P P

Atomic site

superlattice for the case of hEi ——0.00 eV. Notations are

IV. STRUCTURAI. I.V-INDUCED
INDIRECT-TO-DIRECT TRANSITION

As mentioned in Sec. II, it is still not clear whether
the superlattice is a direct- or indirect-band-gap rnateri-
al, seen if the conduction-band rmnimum is folded at the
I point. In order to clarify the position of the
superlattice's conduction-band rmmmum, the band
structure over the entire SriHouin zone is calculated. In
»g. 11, the (N„N»} combinations which yield the
conduction-band minimum at the I point are given by
open circles under the condition that N &20. Three
cases are shown corresponding to the values of valence-
band discontinuity EE„of0.00, —0.10, and —0.46 eV.
The energy band structure of the superlattice is quite
sensitive to the choice of AE„and this results in the
different combinations of (N„Nb) which make the su-

perlattice in a direct-band-gap material. For type-I su-
perlattices, an interesting feature can be seen when Figs.
11(a) and 11(b) are compared. In Fig. 11(a) the combina-
tions which make the superlattice of even N an indirect-
band-gap material are restricted to those having only
one GaP sublayer in a period, while in Fig. 11(b), such
combinations are restricted to those having only one Alp
sublayer ln a period. Surnrnarizing the cases where
Gap/Alp superlattices are of type I, the superlattices
having small and odd N, and Nb are useful for applica-
tion to optical devices, because almost all of them are

direct-band-gap materials and have large oscillator
strength, as shown in Fig. 6.

As for the case of type-II superlattices [Fig. 11(c)],
shorter-period superlattices of even N remain indirect-
band-gap materials having their conduction-band
minimum at the edge of the Brillouin zone in the x or y
direction. Larger-period superlattices can be classified
into four types depending on the band structure. One is
a superlattice which has thin GaP or Alp layers and has
the conduction-band minimum at the edge of the Bril-
louin zone in the x or y direction, like shorter-period su-
perlattices. Another has an (odd, odd) combination for
(N„Nb ), and the conduction-band minimum is at the I
point, assuring a direct optical transition. Adding them,
there is an (even, even} combination for (N„Nb ) having
the conduction-band minimum at the edge of the Bril-
louin zone in the z direction. This type of superlattice is
not seen in the cases of AE„=O.OO and —0.10 eV. The
other type has an odd N„and has the conduction-band
minimum at the edge of the Brillouin zone in the z direc-
tion.

Summarizing the case of type-II superlattices, it would
appear that GaP/AIP superlattices are also as advanta-
geous for optical devices as type-I superlattices, although
the oscillator strength is a little smaller. In any case,
from the results given above, the valence-band discon-
tinuity between GaP and A1P can be evaluated experi-
mentally by measuring the optical properties of the su-
perlattice.
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Three eases are shown in the 6gure corresponding to hy-
drostatic pressure and uniaxial pressure applied parallel
(~~) and perpendicular (i) to the layers. In the case of
the uniaxial pressure (II), the M-point energy rises faster
than the I -point energy as the pressure is increased, and
the indirect-to-direct transition occurs above 27 kbar.
In the other two cases, however, the M-point energy
does not become larger than the I -point energy and the
indirect-to-direct transition cannot be expected.

Figure 13 shows similar results for the case of
AE„=O.OO eV. In this case the superlattice is a direct-
band-gap material and the direct-to-indirect transition is
induced by uniaxial pressure (i} above 6 kbar. In this
case the pressure dependence of the direct- and indirect-
band gapa are quite similar to the case of b,E„=—0.46
eV. For the other two types of applied pressure, the
direct-to-indirect transition does not occur in the range
up to 30 kbar.

Similar calculations are also made for the superlattice
having three sublayers of GaP and one sublayer of A1P
in a period for the case of AE„=O.OO eV. This superlat-
tice is an indirect-band-gap material as shown in Fig. 11,
and the indirect-to-direct transition is induced by apply-
ing uniaxial pressure (~~) above 2 kbar or hydrostatic
pressure above 4 kbar. These features are shown in Fig.

14.
As shovvn above, the indirect-to-direct and the direct-

to-indirect transitions can be induced by applying pres-
sure in the appropriate directions. Figures 15 and 16
show the features of those transitions corresponding to
h, R', = —0.46 and 0.00 eV, respectively. In the calcula-
tion, a pressure of 30 kbar is assumed to be applied to
the superlattices for all three types of pressure. The fol-
lowing general features can be seen from Fig. 15. (1)
Uniaxial pressure (

~~
) stimulates an indirect-to-direct

transition. (2) Uniaxial pressure (i ) stimulates the
direct-to-indirect transition. By applying a uniaxial
pressure (i ) of 30 kbar, all superlattices can be turned
into indirect-band-gap materials under the condition of
/&20. Hydrostatic pressure induces both direct-to-
indirect and indirect-to-direct transition in the cases of
(N„Ns) =(2,12}and (3,9), respectively. In Fig. 16, simi-
lar results can be seen for two types of uniaxial pressure,
but hydrostatic pressure stimulates the indirect-to-direct
transition but not the direct-to-indirect transition.

Summarizing the features of pressure-induced
indirect-to-direct transition, it is quite advantageous to
apply uniaxial pressure parallel to the layers in order to
induce indirect-to-direct transitions in short-period su-
perlattices having large oscillator strength. On the other

20,
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FIG. l5. Phase diagram of the pressure-induced indirect-to-direct and direct-to-indirect transition of the (N„Xb) GaP/AlP su-
perlattice for the case of hE„=—0.46 eV. The circles represent combinations of (X„Sb)which yield direct-band-gap materials.
Four cases of pressure application are presented: (a) without pressure, (b) 30-kbar hydrostatic pressure, I,'c) 30-kbar uniaxial pres-
sure parallel (~~ ) to the layers, (d) 30-kbar uniaxial pressure perpendicular (J.) to the layers.
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hand, uniaxial pressure applied perpendicular to the lay-
ers tends to stimulate the direct-to-indirect transition,
and it is not useful for enhancing the optical activity.

This paper investigated the general aspects of the opti-
cal properties as well as the electronic structure of the
superlattice which is made of indirect-band-gap semicon-
ductors, referring mainly to the case of the GaP/AlP su-
perlattice. This superlattice exhibits rather interesting
features which di5'er greatly from those of the original
materials with respect to optical properties as well as in
the electronic structure. Also, pressure-induced
indirect-to-direct and direct-to-indirect transitions are
investigated as an example of the effect of external per-
turbation applied to the superlattice. The nature of this
superlattice is clarified as follows. (1) The energy gap of
the superlattice can be adjusted by changing the layer-
thickness combination in a superlattice period. (2) The
indirect-to-direct transition can be induced by the super-
lattice potential. This transition is quite sensitive to the
band discontinuity. (3) Larger oscillator strength can be
obtained in shorter-period superlattices, which are quite
promising for application to optical devices operating in

the visible-light region. (4) Oscillator strength is sensi-
tively dependent on the superlattice structure and the
band discontinuity. (5) Pressure application yields
significant changes in the electronic structure and in-
duces either indirect-to-direct or direct-to-indirect tran-
sition.

The present theoretical formulation is quite general
and is thus applicable to the band-structure calculation
of superlattices composed of any combination Of zinc-
blende-type indirect- and/or direct-band-gap semicon-
ductors, once the relevant parameters of the sp s' tight-
binding scheme have been established. The sensitivity of
the electronic structure and optical properties of these
superlattices to the layer-thickness combination and to
the applied pressure makes it possible to design a materi-
al having a desirable gap energy and oscillator strength.
Most of the indirect-band-gap III-V compound semicon-
ductors have band-gap energies in the visible-light re-
gion. Thus the structurally-induced optical transition
holds a great promise for application to optical devices
operating in the visible-light region. The possibility of
the band-structure designing of applying pressure is
quite interesting. However, it is much more desirable
from the viewpoint of device application that the exter-
nally applied pressure is replaced by a built-in strain
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6eld. In the case of the GaP/AlP superlattice, the lat-
tice constants are most matched and the induced strain
6eld is small. On the other hand, in the strained-layer
superlattice, the intrinsic strain field can modify the
band structure significantly. In fact, an Si/Ge strained-
layer superlattice was fabricated, and several structurally
induced optical transitions were identified experimental-
ly. * Similarly, in the case of compound semiconduc-
tors, a suitable combination of indirect-band-gap materi-
als will yield a built-in strain Seld and induce a favorable
indirect-to-direct transition. The possibility of designing
the band structure suggested here will open the way to
applying superlattices composed of indirect-band-gap
semiconductors to novel functional devices.
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APPENDIX A ELECTRONIC STRUCTURE
CALCULATION QF THK SUPKRLATTICK

The following presents the details of the electronic
structure calculation. The suffixes c (c') and a (a') stand
for the cation and anion of the A (8) material which
correspond to Ga (Al) and P (P) in the GaP/A1P super-
lattice. The wave function corresponding to the atoms
in the mth sublayer of A is denoted by

~ P (m) &, and
that corresponding to the nth sublayer of 8 is denoted
by

~ P (n) &, where b (b') takes c and o (c' and a') cor
responding to the cation plane and the anion plane in
which the atom lies. The wave function of the superlat-
tice can be written in terms of these basis functions as

lg&= & f'(m)~P'(m)&+ g f (n)~P (n)&,
mEA rn'E8

b'=e', a'

(A 1)

where f (m) and f (n) are expansion coeScients Th.us
the Hamiltonian can be represented by considering the
first- and second-nearest-neighbor interactions as
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]
H

)
P' —(n }&, H, :(P' (n ) ]

H
)
P' —(n ) &,

Vz" =(@'(m)
/

H
i
P'(m}&, V,"z —=(P'(m)

f
H i/'(m+I)&,

VP —= (y'(n)
]
H

/

y'(n) &, VP, = &y'(n}
/
H

/

y'(n +1)&,

V„—:(@' (N) [ H
/

P'(N +1)&, V„=(P'(N, ) (
H

/

+' (N, +1)&,

U„—= (P'(m) [H
/
P'(m+1)&, U„:—(cb'(m)

/

H
[ qV(m+1)&,

U„:—(P'(N. )/H fP'(N. +1)&, U..= (@'(N. )[H /P'—(N. +1}&,

(A3)

' +i', d
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In the following calculation, the sp s' bases are employed, and then each matrix element given in Eq. (A3) is a 5X 5
matrix. The 5X5 submatrices take the following form:

{0)
Hbfb') =~b{b') + Ub{b') ~

zy {o)

Eb {b')
S

Eb(b')
p

Eb{b')
P (A6)

0

0 0 0 0 0
0 0 0 0 0

Ub{b~) = 0 0 0 0 0

0

(A7)

Vx

X
V,.go

VX

V, go

0

—V, ~)X
S P
X—V.go

VXg

XV.yg i

—Vg, ~)X

VX

X
V„@go

X—V.~go

X
V„yg)

—Vg, ~)X

—V, @
XV.ygo

X
V„@go

—V~.go

—V,",4oX

Vg, g)X

Vx g)
Vx~a go

Vx

V, ~3X

—V, g3X
s p
X—V„g2
X—~~yg2

XV.yg3

—V~, g3X

V. g3X

X—V.yg2

X—Vxx82

X—V„yg3

Vg, g3X

VX

X
V„yg3

X—~~yg3

X—V,„g3
—Vg, g2

X

VX,~c ag3

—V~, ~3X

XV, g2

0 0

0 Ubb(bb')f
ppn

0 0

0
0
0

0 0

0 0

go ——cos(k„d/4)cos(kid /4)

—sin(k„d/4)sin(k d /4),

g& i [sin(k„d—/4)cos{k~d /4)

+cos(k„d/4)sin(k~d/4)],

g3 =i [sin(k„d/4)cos(k d/4)

—cos(k„d/4)sin(kid /4)],

f &

———,
' cos(k~d l2),

f2 = —,
' cos(k„d/2),

f3 =cos(k„dl2 )cos(k d /2),

(A 1 l)

g2 ——cos(k„d/4)cos(k~d /4)

+sin{k„d/4)sin(k~d /4),

and b takes c or a, b' takes c' or a', and X takes A, 8,
C„orD corresponding to four combinations of cation
and anion. "A" represents the A-compound semicon-
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ductor made of e and a atoms; "8", the 8-compound
semiconductor made of c' and a'; "C", the compound
semiconductor made of e and a*; and "D" represents the
compound semiconductor made of c' and a. For
GRP/AlP supcrlattices, C and D correspond to GaP and
Alp, respectively. The lattice constant is denoted by d,
which is assumed to have the same values in A- and 8-
compound semiconductors. The lattice constants of
GaP and AlP are 5.451 and S.467 A, respectively, and
the lattice mismatch between them is about 0.3%,
whereas that between GaAs and AIAs is about 0.1%.
Therefore it can be said that the GaP/A1P superlattice is
nearly lattice matched. If perfectly-lattice-matched su-
perlattices are needed, a shght amount of As-contained

mixed-crystal GRAsP can bc used to cquahze thc latt1cc
constant of GaP to that of AlP. V& and V» represent
the first-nearest-neighbor interactions, and Ub[b. ] and

Ubb[bb. &
represent the second-nearest-neighbor interac-

tions. The second-nearest-neighbor interactions con-
sidered here are the interactions between two p,. orbitals
separated by a lattice vector of (d/2)(+e+ek ), where i,
j, and k are the cyclic permutation of x, y, and z, and c.
is a unit vector in the jth direction. The tight-binding
parameters noted above Rre determined by 6tting the
bulk band to the reference band. ' ' The 6rst-nearest-
neighbor parameters can be determined analytically as
follows, leaving the second-nearest-neighbor parameters
U~~„and U~~ to be fixed later:

E,= ,'[E,+—E„+0.8( W, —W, )], (A12)

E,= ,'[E„,+-E„„—0.8( W, —W.)], (A13)

E,=—,'[E„,+Eq„—Uq~„—Upp„+0.6(W, —W, )], (A14)

(A15)

E «, ——8' «,+0.2$' «. ,

E «, ——8' «, +0.28' «, ,

(A16)

(A17)

V„=—(E .E,—E„,E„,)'", (A18)

V„„=[(E.+Up'p )(E,+U'~ ) E, E, ]—'~ (A19)

V„=[(E,—U' )(E,—U' ) E,E „]'— (A20)

(E.+U;, E„)(E..—. E„)(E;+—U;,„—E, )(E... E,—)—
(E E )(E E )

(E,», —E». )(E,, E», ) (E,»,——E», )(E—, ,—E». )
(A21)

(E,+U;,„E„}(E,. E— , ) (E;+U;—„„E,)—(E .. —E,)—
(E, E„)(E.E—,)—»', (E E )(E E ) (E —E, )(E,—E, )

(A22}

E"—Ex
V .. .= (E.+U;,„E,, )(E...—E,—3)—V,',

g X3

' 1/2

(A23)

E* —Ex
V," = (E +~'P- E» "E,"—E»' —V,—, Es~ X'

1

U' + U' =0, (A25)

in order to conserve the trace of the Hamiltonian over

Here, E, , E„„andso on the symmetry point energies

of the reference band, and E „E«„and so on are the
atomic level energies. Vogl's universal model was used
to derive the formula given above. The fo11owing condi-
tion is assumed:

the entire Brillouin zone which is conserved when the
first-nearest-neighbor interactions alone are included.

APPENDIX O' CALCU', ATION QF THE
OPTICAL MATRIX ELEMENTS

The optical matrix elements (I,
~

M
~
I, } appearing

in Eq. (3.1) can be evaluated in terms of the function
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presented in Eq. (A 1):

&r, ~M ~r. )=
m, m'E A, 8

b, b'= a, c,c'c'
P,P' —~,p„,

fp (m; 1', )fp ( m ', 1",)

X & yp(m)
~

M
~

4p'(m ') ),

TII „aIld Tip aI'e coInpollei1ts of the
stress tensor. Suffixes 1, 2, and 3 stand for x, y, and z
directions, respectively.

1. Hydrostatic pressure

with

&r, ~~
~

r„)=.'""&r, [~ [r„),
where fp(m;1, ) stands for the expansion coefficients in

Eq. (Al) for the 1 point of the lowest conduction band,
and the suffixes p and p indicate the atomic orbital (i.e.,
s, p„,p, p„ors ) which is not explicitly written in Eq.
(Al). ~pp(m)) shows the p-orbital function of the
atoms in the mth sublayer in A or 8 material. The eval-
uation of the momentum matrix elements & 1",

~ p ~
1, )

in the empirical sp s~ tight-binding scheme has been
done by Schulman and Chang for GaAs/Al„GaI, As
superlattices. In their work, the momentum matrix ele-
ments were evaluated from the results of a full-zone k p
calculation. In the present work„however, the numeri-
cal atomic orbitals attained by the Herman-Skillman-

type program are employed and the momentum matrix
elements between s(s') and p states are computed
directly. The momentum matrix elements between
atomic orbitals at different sites are neglected for the
sake of simplicity, since the order of magnitude of the
estimated oscillator strength may not be afFected much
of this simplification. As for this simplification, similar
treatment has been done by Drummond et al. "

APPENMX C PRESSURE DEPENDENCE OF
TIGHT-BINMNG PARAMETERS

The application of hydrostatic pressure is represented
by the following stress tensor:

Tti T22 T33+o ~

T23 T31 T12
(C2)

V=(1—ei, ) Vo,
b(b') —2 b(b')

UII„=(1—e» ) Ui I

bb {bb') —2 bb ( bb')

Here, the elements V, U ' ', and Uz
' ' are a 6rst- and

two second-nearest-neighbor parameters defined in Ap-
pendix A. The subscript 0 indicates the quantity under
no pressure.

In this case„the following components of the strain ten-
sor are derived from Eq. (Cl) as

T11
e11=ezz =e33 =

C11+2C lz

where T» is the magnitude of the applied hydrostatic
pressure. The bond length I under hydrostatic pressure
is given by

I =(1—e„)lo,
where lo denotes the bond length in the original material
without pressure. Then the tight-binding parameters of
the first- and second-nearest-neighbor interactions can be
renormalized as

T11

T22

T33

2T23

2 T31

c11 c12 c12 0

C12 C11 C12 0 0 0 e22

0 0 0 c44 0 0 ez3

0 0 0 0 c~ 0 e31

(Cl)

The effect of applying pressure to the superlattice is
taken into account by renormalizing the tight-binding
parameters. The pressure dependence of the tight-
binding parameters is derived from the change of intera-
tomic distance through the d -scaling rule. ' The
change of interatomic distance can be estimated from
the elastic moduli when a stress tensor is given. In the
case of a cubic system, the relation between stress and
strain tensors is given by

2. Parallel uniaxial pressure

When uniaxial pressure is applied parallel (~~,
"1"

direction) to the superlattice layer, the applied stress is
represented by

T„~O,
Tzz = T33 =0

T23 T31 T12

The induced components of the strain tensor are calcu-
lated as

C11+C1Z
T11(c» —ci»(c»+2c i»

(C7)
2T12 0 0 0 0 e1z C1Z

ezz =e33 = T11(c I i
—c i2 )(c I I +2c,I )

where c», c,z, and c44 are elastic moduli; e11, ezz, e33,
ez3, e31, and e1z are components of the strain tensor; and

and the pressure dependence of the tight-binding param-
eters is given by the formulas
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3V= Vo
(1—ell ) +2( 1 —e12)

U b(b') Ub(b')
PP7I' PP 110

( 1 )2 ( 1 P

(x)U bb (bb') Ubb (bb')
PP PP (1 )2+(1 )2

(Cs)

can be represented by

T11 T22

T»~0,
T23 T31 T12

The induced components of the strain tensor are then
calculated as

(y) Ubb(bb ) Ubb(bb )
Pp+ Pp~

( 1 )2

e11 =e22 =
33«» —c12)«»+2clz)

F11+~12
T$3

(C1 1
—C12 )(C!1 +2C12 )

(C 10)

Here "U ' "' and ' 'U ' ' represent the second-PP71. PP 7F

nearest-neighbor interactions between two atoms having
the same x and y coordinates, respectively.

and the pressure dependence of the tight-binding param-
eters is given by the formulas

3
V=VO

(1—el, ) +2(1—el')

3. Perpendicular uniaxial yressure b(b') b(b')U„-=U„- (C 1 1)

When uniaxial pressure is applied perpendicular (J.,"z" direction) to the superlattice layer, the applied stress
Ubb (bb') U bb(bb')

Pp» Pp lie
( 1 )2+ ( 1 )2
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