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A nonlinear time-domain equation is derived which describes the electromagnetic field and elec-

tron transport behavior in an n+-n-n+ structure. From this governing equation, closed-form rep-

resentations for impedance are obtained. One form provides an impedance evaluatable continu-

ously in a complex-frequency domain. The other form provides an impedance at fundamental and

harmonic frequencies. The second representation is dependent upon a sampling time interval.

Electron transport in the approach obeys the Boltzmann transport equation, reexpressed in

velocity-moment equations.

I. INTRODUCTION

An extensive literature exists on the numerical solu-
tion of the Boltzmann transport equation leading to car-
rier distribution function, density, velocity, and energy
and electric field information. Similarly, a large litera-
ture exists for determining device terminal characteris-
tics such as current density and voltage based on treat-
ments of the Boltzmann equation. Recently, interest in
developing eScient analytical techniques or computa-
tionally fast numerical methods for studying elemental
and compound semiconductors has occurred. Some of
this interest has been encouraged by size reduction of de-
vices for both very-large-scale-integration VLSI and
microwave- and/or millimeter-wave applications, with a
few dimensions going into the submicron regime. Use of
I-egendre or Legendre-Hermite polynomial expansions
for the carrier distribution function in the development
of a fully numerical solution to the one-dimensional (1D)
Boltzmann transport equation has been examined for
nonstationary modeling of III-V compound semiconduc-
tor materials and devices. ' Spatia1 and time behavior for
electron density, average carrier velocity and energy, and
device terminal voltage and current were obtained. An
analytical technique for finding high-field transport pa-
rameters in semiconductors using Hermite functions to
represent the carrier distribution function has been
presented. A two-term Hermite polynomial expansion
was employed for steady-state transport in a spatially
homogeneous electric field. Electron distribution func-

tion, mobility, valley occupation, and drift velocity were
found for GaAs. Under the assumption of small pertur-
bations to the system, a closed-form analytical formula
for the electron distribution function was found as a
solution to the 10 Boltzmann transport equation.
Steady-state and time-dependent linear responses were
described for spatially inhomogeneous compound semi-
conductor systems using the relaxation time approxima-
tion. Electron distribution function data was given for
sinusoidal doping variation as in a superlattice and n+-
n -n+ GaAs structures. An exact 1I3 numerica1 solu-
tion technique to the Boltzmann transport equation for

electrons has been formulated enlisting a state equation
approach for integral multiples of the optical phonon en-

ergy. Steady current flow occurred creating a steady-
state nonequilibrium problem. Electron distribution
function, temperature, and potential were found for Si
material typical of a metal-oxide-semiconductor field-
efFect transistor (MOSFET) channel. Utilizing a two-
valley III-V semiconductor model, electron valley distri-
bution functions were determined from the Boltzmann
transport equation. A relaxation time approach had
been employed for the steady-state solution. Velocity-
field curves were obtained for GaAs and InP up to 40
kV/cm. The Boltzmann transport equation was solved
in a linear fashion providing a closed-form analytical ex-
pression for the electron distribution function. This re-
laxation time method yielded an admittance which con-
tains contact terms (contact conductance and capaci-
tance) for an n+-n-n+ device. The internal n-region ad-
mittance in a circuit representation has only a real can-
ductance component, possibly denying such a modeled
device ihe ability to display negative differential conduc-
tance.

A nonequilibrium, time varying study of an n+-n-n+
device was conducted to assess negative differential con-
ductance behavior. The study used both an analytical
moments solution approach to the Boltzmann transport
equation in order to consider many different boundary
conditions as well as a Monte Carlo simulation ap-
proach. The analytical moment approach is attractive
because its numerical implementation runs at least a
thousand times faster than a comparable Monte Carlo
computer run and can provide useful numerical results,
and in principle may have admittance expressed as a
closed-form expression. Because it is perturbational,
large signal admittance or impedance determination is
beyond this analytical model s capability. However, it is
possible, under the same constraint of using displaced
Maxwellian distribution functions, to obtain a closed-
form impedance representation under large signal condi-
tions.

Such a representation is derived here. Reduction of
the electromagnetic field equation and the carrier trans-
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port equations into a compact non111iear tlIQe-domain
equation is undergone in Sec. II. Transformation of the
nonlinear equation from the time domain into the com-
plex frequency s domain is discussed in Sec. III. The
continuous transform employed to map into the s plane
enables a closed-form impedance representation to be
found. Impedance can be evaluated at any complex fre-
quency value. By sampling only a finite time interval of
device operation, a discrete Fourier transform can be
employed to operate on the nonlinear time domain equa-
tion. The result is that another closed-form impedance
representation is obtained in Sec. IV. Impedance must
be calculated at a fundamental frequency, or multiples of
it. This harmonic representation is therefore compatible
with or similar in philosophy to other standard harmon-
ic analysis techniques like the fast Fourier transform
ieclinlque.

B. DERIVATION OF GOVERMNG NONI. INKAR
TIME-DOMAIN EQUATION

B(nu) B(nu ) q B(nkb T, )
+ = nE— (lb)m' m"

B(uiu ) B(unkb T, )
+ =QnUE-

Bt Bx Bx
(lc)

A single electron gas model is invoked to obtain a set
of equations derived as moments of the 1D Boltzmann
transport equation. Such a model is utilizable for ele-
mental (e.g., Si or Ge) or compound semiconductors
(e.g., GaAs or InP) if proper consideration is taken to
determine a single electron e8'ective mass m' and tem-
perature T, based on conduction-band edge minima oc-
cupation. This approach, of course, ignores recombina-
tion and/or generation and impact ionization efFects.
Usiilg the relaxatton tittle aild displayed Maxwelliaii dis-
tribution function approximations„along with a parabol-
ic conduction band, allows the 6rst three moment equa-
tions of the Boltzmann transport equation to be written
as' '
Bn B(nu)
Bt x

composed of a particle component and a displacement
component. It is easy to show that J is a constant in
space (but not in time) and represents the ternunal
current when evaluated at any position within the de-
vice. Solving for n using (2), taking its partial time
derivative, and placing this into (la) gives

e B E B(nu)
BtBx Bx

(4)

which is easily integrated to produce (3). Device termi-
nal voltage V& is expressed as

Vz
———f E(x)dx (5)

0

with the positive terminal at x =l.
Placing the particle momentum nu from (3) into the

momentum moment equation (lb) generates the single
equation

BJ B E B(nu') q' q B(nkb T. )

+g nE-
Bt Bt' Bx m ' m Bx

J e BE+
Tp 'rp Bt

Equation (6) can be integrated over the interval (O, l) to
yield

dJ d ~a i qI +e +qnu = nE dx — nkb T,dt' o ltd

(&)

by enlisting (5). The 6rst integral on the rhs of (7) can
be found if nz ——const. Density-field product is written
as

1 e BEnE= —— +ngE
2 q Bx

employing (2) and (5). Integrating (8) over space and in-
serting into (7) produces

These equations are, respectively, the electron density n,
electron ensemble momentum nu, and electron ensemble
energy m conservation equations. Here U is the average
electron ensemble velocity, and q, kh, , v, ~, m„and E
are, respectively, the electron charge, Boltzmann's con-
stant, electron momentum and energy relaxation times,
electron ensemble equilibrium energy, and electric 5eld.
The right-hand side (rhs) of (la) is zero because of the
single gas model.

Coupling of the transport equations to Maxwell's field
equations is accomplished by Poisson's equation

BE
(n n~ ), —

BX E

where e and n& are, respectively, the dielectric constant
and donor doping density. Current density J at any x is

1 +e +qnu
dt

I
qe 2E — — V~-

2m o
m' nkb T,

Pg

E —QnU — nkI, T~
2 2 q

2tpl Pl

—J f r 'dx+ef r~' dx. (9)
0 o~ dt

For slow r spatial variation, (9) reduces to

d V& & dV& q n&
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noting (5). A more convenient form can be found for
(10) by defining

2—E —m nU —nkI T,
0

A (t) is proportional to the difference between the stored
electric field energy and the kinetic energy at the device
ends. The kinetic energy consists of the drift energy
plus the thermal energy of the heated electron gas.
Rewriting (10) with the help of (11), gives

d Vd e dVd qnd I dJ+ +, V~=qA(t) — J —I
dt

physical variable:

d f(t)
2

e "dt=s (s) .

Equation (18) holds only if

df (t)
11m Jm le

dt ™
df (t)

111Tl „ie
t —ao dt

(18)

(20a}

(20b)

III. IMPEDANCE BASED ON A
CONTINUOUS TRANSFORM

A transform pair can be defined in the I.aplace fashion
as follows:

f(t)=- . f "f(s)e"ds, (13a)
21TJ a —j cc

f(s)= J f(t)e "dt . (13b)

In order that any physical time variable f (t) possess a
transform f(s), it is required that

Om&&&&n ~ (14)

lim f (t)=f e "

lim f(t)=f„e "
t —+ —oo

(15b)

(12)

ihe nonlinear time-domain governing equation. The
nonlinearities in the device behavior are contained in the
rhs of (12), namely in A (t).

For the case where derivative and limit operators can be
interchanged, (19) and (20) reduce to forms similar to
(14) and (15) with cr„,=cr„and o i cr-—

Examine the governing equation (12). Application of
the transform (13b) to (12) requires that (18) be applied
to the first left-hand side (lhs) term, and (17}be applied
to the second Ihs term and the last rhs term:

Ild
es + $+ P'd($)

~p Pl
r

=q f A (t)e "dt —l s+ J(s) .
oo 'r

P

(21)

The integral term on the rhs will persist even at low ter-
minal temperatures because as T, ~O, x =O, I, only the
thermal (or pressure) component of A (t) drops out in
(11).

Impedance 2(D m } is defined as the ratio of the de-
vice terminal potential to the terminal current density.

jI d(s)
2(s) =— (22)

J(s)
Putting (21) into the (22) form generates the impedance
expression

Since there are several different f{t), it is necessary that
some region exist in o space so that at least one o value
satisfies every individual statement of the form (14). As-
suming that such a o exists, every physical variable by
(13b} has a transform which can be continuously evalu-
ated over the complex part of s space where

2(s)=—I
1S+

TP

s + +coP
P

f A (t)e "dt
T

s'+ +co J(s)P
P

(23)
s=o+JN .

Transform operations on the governing equation (12)
require that transforms of both dfldt and d fldt ex-
ist:

In (23) the plasma frequency was defined as

(24}

f e "dt =sf (s) .
—oo dt

(17)

Equation (17) is a direct consequence of {15)and the ex-
istence requirements for the transform of the original

The first part of 2(s) in (23), the linear part 2, (s), is
similar in form to an impedance component ' which
never has a negative resistance propert for real frequen-
cies co. Real and imaginary parts of, (s) are expressi-
ble as

~ o +2o lr~+cr(co +co~+llr~)+co~/~~
Re[Z, (s) ]=—

(cr +o lr~+~~ co ) +(2crco+colr~)—
(25a)
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IN co& —co —0 —20 /rz —1/rz2 2 2 2

Im[Z, (s)]=
(0' +CT /7& +CO& —CO ) +(2CTCO+CO/1& )

(25b)

As (25a) shows, Re(Z, ) ~0 and the iirst term of 2(s)
can never display negative resistance in the s plane. Im-
pedance Z& therefore has positive resistance, and is in-
ductive when Im(Z, ) &0. The susceptibihty is positive
when the square of the plasma frequency exceeds the
other numerator terms in (251).

Focus below will be directed toward the second term
of P(s), that is

22(S)=2(S)—2&(S) .

2(s) will have negative resistance only if 22(s) has nega-
tive resistance and it exceeds the positive resistance of
P&{s). 22(s) is a nonhnear term, explicitly dependent
upon the terminal current density J(s). Impedance
22{s) can be put in a more convenient arrangement
through absorption of the denominator factors by the in-
tegr and,

Real and imaginary components of 22(s) are given as

22„(s)=Re(22)=— f A (t)Re[C(t)jdt, (29a)

22;(s) =1m(22) = — f A (t)Im[C(t) jdt,

J (t)=Jou {t)+J]sin(coot )u (t),
Jo J&~oJ(s)= +

0

(30a)

(301)

because A (t) is a real physical observable quantity.
Equations (29) cannot be reduced further unless As) is

specified. Thus let a test current density be imposed on
the device, consisting of a step current plus a sinusoid
turned on at t =0:

22(s) = — f A (t)C(t)dt,
—$1

C(t)=
(s +s/rz+coz)J(s)

(27) 1, t~O
0, t&0.

4

Placing (30) into (28),

(30c)

—ot
Re[C(t)]= I [0 (eg —fh)+d (fg +eh)]cos(cot )+[I (eg fh) c(fg—+eh)—]sin(cot )I,(e2+f2)(g2+h 2}

(31a}

Im[C(t)]= —
2 2 2 [[d (eg fh) c(fg eh——)]cos(cot—) —[c (eg fh)+d (fg +—eh)]sin(cot )] .(e'+ f')(g +h') (311)

C =CT(CT +COO —CO ) —20'CO2 2 2 2 (32a)

d =2CO0 +CO(0' +COO —CO ), (321)

8 =0' +CT/'T& +CO& —CO (32c)

f=2co0+co/rz,

g=(0 +COO —CO )Jo+COOJ&,

(32d)

(32e)

A =20'QPJO

Inserting the above real component formula for C (t) into the integral impedance relationship (29a),

t'

~2„(&)=+
2 2 2 2 [c(eg fh)+d(fg +eh)] f —e 'A (t)cos(cot)dt

& (e'+f')(g'+h') .

+[d{eg—fh) —c(fg+eh)] f e 'A (t)sin(cot)dt
J

(33)
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A similar formula for 22, (s) can also be derived involv-

ing (29b).
Avoiding these integral calculations as in (33) is possi-

ble with a somewhat different approach to finding an irn-

pedance. The alternate approach performs a finite
Fourier transformation in time over a sampling time in-
terval. This approach is discussed in the next section.

Equation (38) could have been obtained from (21) by the
assignments 0.~0, s~jm, and co~mco&.

Consider the development of a comprehensive spectral
impedance definition through investigation of the spec-
tral series expansions for terminal voltage and current
density using (34a)

Vd(t)= g Vd(m)e
IV. IMPEDANCE BASED GN A
FINITE FOURIER TRANSFORM

Questions of the behavior of the physical variables at
in6nite times can be completely avoided by using 6nite
Fourier transform methods instead of Laplace transform
methods enlisted in the last section. A transform pair is
de6ned as

=Vd(0)+ g Re[Vd(m)e' '],
J(t)= g Re[J(p)e ] .

=J(0)+ g Re[J(p)e ] .

(39a)

(39b)

f(t)= g F e ', t, (t&t, +T

where

2%
Ny= T

(34a)

(34b)

(35)

One-sided spectral representations of (39) hold due to
the fact that Vd and J are real physical observables im-
plying Vz( —m) = Vd (m) and J( p) =J '—(p). It is
therefore natural to de6ne the myth spectral impedance,
constructed by measuring the mth spectral component of
terminal voltage due to the pth spectral component of
terminal test current density, as

Notice that the physical variables are only described in
the time interval starting at to with width T. The sam-

phng frequency is given by cur in (35).
Transform operations in the governing equation (12)

require again that transforms of higher-order derivatives
exist. It is easy to show that such is the case for an arbi-
trary physical variable f (t). Take the derivatives of
both sides of (34a), causing

d (t) — jmcurt
g (t) = = g (jmtor )f(m)e

dt

g(m)e

Because of the similarity of (34b) and (36a)

'o+ T
6 =g(m)= —Jto

g(t)e dt,
or

to+ d t —'m co

'o dt'

=~ J A(t)e dt
fo

1—t jmrur+ J(m) . (38)
Tp

where the process has been extended to the ath deriva-
tive off (t).

Applying the transform operators in (34b) and (37) to
the time-domain governing equation (12), produces the
frequency domain relationship

r

E' g )id
e(jmcor) + jmcor+ Vd(m)

Tp Pl

—f '
A(t)e ' "dt

—m a)r+j +co J(m)
ltd QP y.

The only change needed to convert (41) into a Z ~ for-
mula would be to multiply the first term by J(m)/J(p)
and replace J(m ) by J(p) in the second-term denomina-
tor. Real and imaginary parts of the first term Z|(m)

IRe[Z, (m)]=—

Im[Z, (m )]=—

2 /Q)~ g T~

2 2 2 2
(42a)

(co —m cor) +(moor/~p)

cg~ —f?l co y
—1 /'7&

2 2 2 2

(42b}
(co —m cur) +(mcuz /rp)

V~(m )
Z (40)

J(p)
Clearly, Z z has little meaning if the pth spectral com-
ponent of current density is zero. The mth-order har-
monic impedance due to the mth-order harmonic
current component is denoted by Z =Z . In this
case for m =1, the fundamental (or first-order) harmonic
impedance Z& follows.

Recalling the frequency domain governing Eq. (38)
and utilizing (40) to provide the same test and measure-
ment harmonic frequency components for impedance,

1
JPlQ)y +

Tp

—Pl Q)p+ j +6)
Pl CO~
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Apparently, (42a) shows that Z, (m ) cannot possess neg-
ative resistance, while the character of the susceptance is
controlled by the (42b) numerator.

Z2(m), the nonlinear second term of (41), can be set
down in the felicitous construction

pending upon the initial sampling time to .Consequent-
ly, allow only uo ——pa)T, p an integer. Then merely a few

SpCCtral COHlpOnentS OCCur,

Jo, m =0
Io+ T

Z, (m) = — f A (t)D (t)dt,
Eo

D(t}= (44)

J&/2j, I =p
J(m)= '

—J&/2j, m = —p

0, m = otherwise .

(48)

—PPl Q)T+j
Pp

+co» J(m)

Suppose the terminal test current exists for all time
aIld is

Real and imaginary components of Z2(m } are

Po+ T
Z2„(m)=Re[Z2(m)]= — f A (t)Re[D(t)]dt,

ET &o

(45a)

Eo+ T
Z2, (m)=im[Zz(m)]= — f A (t)Im[D(t)]dt .

ET fo

In what comes below, just the p =1 case is discussed,
Potential Gibbs oscillation problems due to nonperiodi-
city in the nonlinear response functions Vd(t) and A (t)
can be avoided by employing a continuous periodic J(t),
as in (46), provided the system responds in a continuous
pcl lodic fash1on.

The real and imaginary parts of the integrand factor
D(t) are delineated by

Re[D(t)]=
2 z 2 2 [(ce df)co—s(mcoTt)

j
(e'+f')(c'+d')

—(cf+de)sin(m coTt )],

J (t ) =Jo+I&sin(coot ) .

The transform of (46) is

J(m) =J05 0

Im[D(t)]= —. . . [(cf+de)cos(mcort)
—1

(e'+f ')(c'+d )

+(ce —df)sin(mcoTt)],

J jcooT j (coo mao&)to-+ e —1 e
2JT ( coo —m co T )

Jt 1 —g~oT —g(a)o+mcoT )to+ (e —1)e
2j T (coo+mcor )

(47)

using (48) in the form

J(m) =c (m)+ jd (rn),

and the other redefined variables

e (rn) =co» (rncor)—

(49b)

(50)

(5 la)

%hen the driving frequency ~o is not an integer multiple
of the sampling frequency cor, coo&pco„, all sampling
spectral components J(m) are nonzero. Moreover, these
components have the very undesirable property of de-

f (m)=mcoT/r (51b)

Insertion of (49a) into (45a) produces the Z2, (m) im-
pedance component for the mth harmonic:

1 So+ T to+ T
Zz„(m)= — (ce df ) f 3 (t—)cos(mcort)dt —(cf +de) f A (t)si ( nmcotr)dt

eT (e'+f ')(c'+d')
Z2;(m ) can be expressed by a comparable formula utilizing (49b).

Despite the nonlinear quality of A (t), it is possible to use a linear two-sided spectral description for A (t) as in (34a)
because of the 6nite sampling interval T. Such a description is erllployed below since it allows the analytic evaluation
of the integrais contained in (52). Hence,

A(t)= g A, e ', t, ~t &t, +T . (53)

A more expedient form of (53) for integral reduction is the one-sided spectral picture

A (t)=as+ g [a»cos(ycoTt)+b»sin(ycoTt)],
y=l

(54)

where ao=AO„, a»=22»„, b»= —2A», (r and i subscripts indicating real and imaginary components). Placing (54)
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into (52),

Z2, (m) =-
(e2+f 2}(c2+d2)

fo+T fo+ T
(ce df—) ao f cos(mroTt )dt+(1 —5 o)a f cos (mcoTt )dt

0 0

f0+ T—(1 6 0—)(cf +de)b f sin (mcoTt)dt (55)

comes about from the sinusoidal function orthogonality
on the interval T. For the dc harmonic component, that
is where m =0, c (0)=Jo, and d (0)=0, and (55) reduces
to

interval T, then Z2, (0) and Z2„(1) can be resolved exact-
ly. Of utmost importance is the aspect of the im-
pedances that they do not depend on the initial sampling
time to.

Z2„(0)=-
ENp Jo

(56)

7p

z z+ (ai —T )
a,

(57)

COp ))CO T, +ail T /Tp (58a)

(58b)

(57) vastly simplifies to

Z2„(1)=—
EJ)cop

(59)

Estimates of ao, and ai and bi/ai directly provide,
through (56) and (57), the dc and first-harmonic com-
ponent impedances. If the energy difference quantity
A (t) has its one-sided spectral components available (at
least up to the first harmonic), say from a simulation on

drawing on (51).
For the first-harmonic component, m = 1, c (1)=0,

and d ( 1)= —Ji /2, and (55) manifests itself as

V. DISCUSSION

Closed-form impedance representations were found for
a two-terminal semiconductor device using infinite

[Z(s)] and finite (Z ) transform techniques. The rep-
resentations are general and can in principle be evalu-
ated exactly for semiconductor parameters and bias con-
ditions of interest. Specification of large signal driving
test terminal currents enabled explicit formulas for the
impedances to be found in terms of time integrals of an
energy difference function A (t). Through proper sam-

pling of the large signal device physical variables includ-
ing A (t) and the response terminal voltage Vd(t), a very
transparent harmonic impedance expression was arrived
at.

The study here employed a single electron gas model.
This approach is reasonable for many valleyed semicon-
ductors provided proper care is taken during the process
of reduction down to the single electron gas model.
Demonstrations of such reductions are available for
GaAs and Inp, for example. "'- The use of Fourier
transformation techniques to obtain impedance informa-
tion from transient simulations based on one *' ' and
two electron gas models in III-V materials are covered
in recent literature. Impedance formulas similar to
those derived here for electrons should also be obtain-
able for a single hole gas model.
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