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Anisotropy of optical phonons and interface modes in GaAs-AlAs snperlattices
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In this paper phonon properties of GaAs-AlAs superlattices are studied with an 11-parameter
rigid-ion model. Short-range interactions up to the second neighbors are included, and the long-

range Coulomb interaction is calculated exactly. Modes propagating both normally (k
~~

——0) and ob-

liquely (k~~&0) to the interfaces are studied for a number of GaAs-A1As superlattices. Anisotropy
of zone-center optical phonons is examined in detail. Phonon dispersion relations of large-size

GaAs-AlAs superlattices are calculated and many interface modes are identified. All results are

compared with the existing experimental data with favorable agreement.

I. INTRODUCTION

In the last decade, semiconductor superlattices have at-
tracted much attention from scientists in both theoretical
and experimental areas, because of potential applications
in semiconductor devices. Compared to the electronic
properties, lattice-vibrational properties of superlatiices
have been much less studied. ' Most experimental infor-
mation on superlattice phonons is obtained from Raman
scattering measurements, which probe the phonon modes
with wave vectors near the center of the Brillouin
zone. Several theoretical models have been developed
to study the phonons in superlattice systems. The linear-
chain model has been used to analyze phonon modes
with wave vectors perpendicular to the interfaces. It
gives results in reasonable agreement with experiments,
but cannot be used to analyze phonon modes with wave
vectors parallel to the interfaces. The dielectric continu-
um model was used to explain the interface and slab
modes and the anisotropy of optical phonons ' froxn a
macroscopic point of view. Yip and Chang' reported
calculations in an adiabatic bond-charge model which in-
cludes the Coulomb interaction by a perturbational
method. Kobayashi' performed calculations in a rigid-
ion model, with wave vectors both perpendicular and
parallel to the interfaces, but with the long-range
Coulomb interaction completely ignored. Toriyama et
al. ' calculated phonons in a (1,1) GaAs-A1As superlat-
tice, using a rigid-ion model with Coulomb interaction.
All the above microscopic calculations did not address
questions regarding the anisotropy of zone-center
optical-phonon modes and the interface modes which
have been observed experimentally. Apparently, more
thorough theoretical studies based on a microscopic mod-
el which takes into account the Coulomb interaction are
needed. Here we are trying to provide such theoretical
studies by using an 11-parameter rigid-ion model. ' ' A
brief account of this work was previously reported in Ref.
18.

In Sec. II, we bneAy review the 11-parameter rigid-ion
model which gives reasonably accurate phonon disper-
sion curves of III-V semiconductors, and we explain how

we adapt this model to the study of superlattices. In Sec.
III, we present results for phonon dispersion curves of
GaAs-AlAs superlattices along the growth ([001]) and
in-plane ([100) and [110]}directions. The angular depen-
dence of the zone-center optical modes will be discussed.
The displacement vectors are also calculated to improve
the understanding of the anisotropy of optical modes. In
Sec. IV, the phonon dispersion relations of large-period
GaAs-A1As superlattices are calculated and interface
modes are identi6ed by comparing the superlattice pho-.

non bands with the bulk phonon bands of GaAs and
A1As. Section V summarizes our results.

II. ii-PARAMETER RIGID-ION MODEL
AND APPLICATION TO SUPERLATTICKS

The rigid-ion model has been used extensively to de-
scribe the interactions between atoms in crystals. ' In
this model, the polarization in an ionic crystal is deter-
mined completely by the displacements of ions (assumed
pointlike} from their equilibrium positions, and the in-
teractions between atoms are divided into two parts, the
short-range interaction and the long-range Coulomb in-
teraction. The 11-parameter rigid-ion model developed
by Kunc et al., ' ' which we shall adopt for superlattices,
has been used to calculate the phonon dispersion curves
of many III-V semiconductors successfully.

En the 11-parameter rigid-ion model, only the nearest
and second-neighbor forces are included in the short-
range part. Of the 11 parameters, two parameters are
used to describe the interactions between the nearest-
neighbor cation-anion interactions, four parameters are
used to describe the second-neighbor cation-cation in-
teractions, another four parameters are used to describe
the second-neighbor anion-anion interactions, and the
last parameter Q, the electron transfer charge, is used to
describe the strength of the long-range Coulomb interac-
tions between the ions.

To study the phonon dispersion relation, we solve the
equation of motion for ions,

to (k)MU=C(k)U,
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where M is the mass matrix and C(k) is the dynamic ma-
trix which consists of two parts —the short-range (SR) in-

teraction matrix and the Coulomb (C}interaction matrix:

C(k) =Cs"(k)+C'(k) .

For convenience of later discussion, we de6ne an atom-
ic layer as a collection of atoms in a plane normal to the
growth direction, a bilayer as two adjacent atomic layers,
and a sublattice as a collection of all equivalent atomic
layers (one in each period) of the superlattice. In an
(m, n ) GaAs-A1As superlattice, each period is composed
of m bilayers of GaAs and n bilayers of A1As, and the
whole system is composed of 2(m+n) sublattices. We
shall use the label J for the bilayers in a given period and
(J,cr ) for the two atomic layers associated with bilayer J;
o =1 for cation layers and 2 for anion layers. Similarly,
sublattices are labeled by (J,a ).

In adapting the 11-parameter rigid-ion model to the su-
perlattice, we choose the short-range interaction parame-
ters between any two atoms in the superlattice to be the
same as those in the corresponding bulk material with the
exception that the interaction between a Ga atom and an
Al atom across an interface is taken to be the average of
the Ga-Ga interaction in bulk GaAs and the Al-Al in-
teraction in bulk A1As. We also performed some calcula-
tions in which we averaged the interaction parameters for
atoms near the interface over a few neighboring layers,
but no qualitative differences were found.

The parameters of GaAs we used are taken from
Kunc. ' Because of the uncertainty in A1As phonon
dispersion curves, we consider two sets of interaction pa-
rameters for A1As: one is fitted to the existing experi-
mental data ' ' and the other is fitted to the theoretical
calculation of Yip and Chang. ' The parameters used in
our calculation are listed in Table I. Figure 1 shows the
calculated dispersion curves of A1As based on the two
sets of parameters of Table I. The experimental data are
also shown as dark circles for comparison. Only the re-
sults obtained by using the first set of parameters are
presented in this paper, since the results obtained by us-

ing the second set of parameters are qualitatively similar.
The large splitting of the longitudinal- and transverse-

optical modes at the zone center indicates that the long-
range Coulomb interaction cannot be neglected in III-V
semiconductors and superlattices. The fundamental
theory on how to include the long-range Coulomb in-
teraction in the rigid-ion model was discussed in detail by
Born and Huang, ' Maradudin, ' and by Venkataraman
et al. The connection between the macroscopic and mi-

croscopic theories for bulk crystals was also estab-
lished. ' ' ' Ho~ever, it is more diScult to treat the
long-range Coulomb interaction in the superlattice be-

A1As

FIG. 1. The dispersion curves of bulk A1As calculated by us-

ing 11-parameter rigid-ion model. The solid curves are the re-
sults of parameters fitted to the existing experimental data, and
the dashed curves are the results of parameters fitted to the
theoretical calculation of Yip and Chang {Ref. 13).

C;J(k,J,r }= QOQ 4n k;k,.
+D; (Jr )

UE

where i,j indicate the x,y, z directions, Qo and Q
represent the atomic transfer charges of atoms in sublat-
tice (0,0) and sublattice (J,cr), respectively, v is the
volume of the bulk unit cell, r =(0,0,0), (1,1, 1)a/4 for
a =1,2, and X is the total number of bilayers in a period.

cause of its lower symmetry. The Ewald transformation
which ensures fast convergence for evaluating the
Coulomb interaction in bulk crystals must be modified
for superlattices. %e have generalized the Ewald trans-
formation method to calculate the Coulomb matrix ele-
ments between any two atomic layers. For two atomic
layers separated by a finite distance, our method is closely
related to that of Yip and Chang. ' However, we have
rederived the formulas in a more straightforward way
and performed the sum over all atomic layers in a sublat-
tice. Unlike the method adopted by Yip and Chang, ' no
truncation of the Coulomb interaction between atomic
layers is made in the present calculation. This is of par-
ticular importance for getting the correct anisotropic be-
havior of the superlattice phonons. Details for calculat-
ing Coulomb matrix elements for superlattices are
presented in the Appendix. %e find that the Coulomb in-
teraction between a sublattice (0,0) and another sublattice
(J,o ) as k~0 can be written as

TABLE I. Interaction parameters of AlAs in the rigid-ion model. The first set of parameters is fitted to the existing experimental
data, and the second set of parameters is fitted to the theoretical calculation of Yip and Chang (Ref. 13). The units of these parame-
ters are the same as those defined in Ref. 17.

—0.4083
—0.4030

—0.0806
—0.1262

—0.0359
—0.0001

0.0112 0.0394
0.0329 0.0259

0.0115
—0.0002

—0.0169
—0.0190

—0.1007
—0.0648

—0.0349 0.1461 0.7548
0.0383 0.1393 0.7548



37 ANISOTROPY OF OPTICAL PHONONS AND INTERFACE. . .

b] c 0

D(J, r }= c b, 0

0 0 b2

for o =2.

It can be -shown that the short-range interaction between
any two sublattices also has the same form. The most in-
teresting and important conclusion one can derive from
Eq. (3) is that the superlattice optical modes have
different frequencies as k~O from different directions.
This is due to the angular dependence of the irregular
term k, k, /k and the lack of rotational invariance of the
matrix D+ C . For a bulk system with cubic symmetry,
the matrix D+C " is invariant under rotation. %e can
then choose a coordinate system in which the z axis is
along k, and the tensor k;k, /k takes the new form

0 0 0
0 0 0
0 0 1

Thus, the resulting eigenfrequencies are independent of
the direction of k as k~0.

The phenomenon of angular dependence of the optical
phonon frequency in bulk materials with axial symmetry
has been previously observed. ' For superlattice sys-
tems, a similar phenomenon was observed and it was ac-
counted for by Rytov's macroscopic theory. From the
microscopic point of view, we see that it is a combined re-
sult of the long-range Coulomb interaction and the lack
of cubic symmetry of the system.

Froin Eq. (3) it is easy to see that the anisotropy is
caused by the macroscopic 6eld from the unvanished di-
pole moment. As will be explained later, lattice vibra-
tions associated with optical branches are essentially lo-
calized in one of the two constituent materials. As far as
optical modes are concerned, the superlattice behaves
like an array of separated slabs coupled by the long-range
Coulomb interaction. Optical modes confined in each

X=(m+n) for an (m, n) GaAs-A1As superlattice. In
our calculation, the bulk GaAs electron transfer charge

Q, is used for inner GaA.s layers, and the bulk A1As elec-
tron transfer charge Qb for inner A1As layers. At the in-

terfaces, the transfer charge of As is taken to be the aver-
age of Q, and Qb since the electron overlapping is

signi6cant only for the nearest neighbors.
The first term in the right-hand side of Eq. (3) is an ir-

regular function, which has different values when k ap-
proaches zero from different directions. The second term
D, J (J,r ), which must be calculated numerically, is
direction independent. This result is similar to that of a
bulk system. However, in a bulk zinc-blende crystal, D
can be reduced to a constant multiplied by a three-
dimensional identity matrix, whereas in the superlattice
D takes the following form:

a) 0 0

D(J, r )= 0 a, 0 for o=1
0 0 a2

slab are subject to boundary conditions similar to those
for an electron con6ned in an infinitely deep quantum
well. Thus lattice vibration inside each slab can be ap-
proximately described by the displacement vectors

[1—( —1)"]cot, 1&n &N, .
2%, +1 '

To get a nonvanishing macroscopic 6eld, n has to be odd,
and the n =1 mode (the principal mode) has the strongest
dipole moment. Hence neglecting the interaction be-
tween modes with difFerent n, there are four modes (one
LO and one TO for both GaAs and A1As slabs) which
have large anisotropy. A thorough discussion of the
effect of the macroscopic dipole 5eld on the optical pho-
non frequencies in a uniaxial bulk system can be found in
Ref. 25.

III. ANISOTROPY OF OPTICAL MODES

Phonon dispersion curves along the [001] direction for
a (2,2) GaAs-AIAs superlattice are shown in Fig. 2(a}.
The folding of phonon dispersion curves of bulk GaAs

«$0+
~ g
~ a an+a

r
r

r

L

o
I = 0 —'(O,O y.) k = 0 —'. ~O,O 1/4) 0 = 0 —,(0,0 '/4)

(c)

FIG. 2. (a) The dispersion curves of a (2,2) GaAs-A1As super-
lattice along [001]; (b) GaAs bulk phonon dispersion curves
along [001] folded over the same period as (a); (c) A1As bulk
phonon dispersion curves along [001] folded over the same
period as (a). The solid curves are transverse modes 4', doubly de-
generate) and the dashed curves are longitudinal modes.

U;(J, o ) =f(J)u, (a),
where u, (ir ) is displacement vectors for the correspond-
ing bulk optical mode of the same frequency, and f (J) is
a smooth *'envelope" function. It was shown that in the
continuum model, ' the envelope function f (J) for an op-
tical mode confined in a particular slab can be approxi-
mately described by the function sin[nn J/(N, + —,')a']
(we shall return to this point later), where N, is the num-
ber of bilayers inside each slab, n =1,2, . . . ,N„and a' is
the width of a bilayer (one half the lattice constant).
Thus the total dipole moment inside each slab is approxi-
mately proportional to
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[Fig. 2(b)] and A1As [Fig. 2(c)] in the superlattice Bril-
louin zone ( —„' of the bulk Brillouin zone} are also shown

for comparison. The solid curves are transverse modes
(doubly degenerate) and the dashed curves are longitudi-
nal modes. Because the optical frequencies of the bulk
GaAs and A1As have no overlap, the superlattice vibra-
tional modes derived from bulk optical branches are ei-
ther GaAs-like (confined in the GaAs slab) or AIAs-like
(confined in the AlAs slab). The degree of confinement is
determined by the smallest-imaginary-k solution to the
corresponding bulk dynamic equation at the frequency
considered. According to the calculations of Yip and
Chang, ' the superlattice optical modes have decay
lengths less than two atomic layers. Thus optical pho-
nons are well confined even in a (2,2) superlattice. The
bulk acoustical modes of GaAs and AlAs are quite simi-
lar, so the superlattice vibrational modes derived from
bulk acoustical branches are mixtures of the two sets of
acoustical modes. The results obtained here are in good
agreement with those calculated in the adiabatic bond-
charge model. '

Next, we discuss the phonon dispersion curves along a
direction perpendicular to the growth direction (in-plane
direction). Figure 3 shows the phonon dispersion curves
of a (2,2) GaAs-AlAs superlattice along the [100] direc-
tion (right panel) and the [110]direction (left panel). The
phonon modes with frequencies lower than 7 THz are
again derived from acoustical branches. Because of the
zone-folding efFect, the superlattice acoustical modes con-
tain strong mixtures of bulk TA and LA modes. As a re-
sult, we see complicated dispersion curves and several
stop bands at some finite k. The stop bands of superlat-
tice acoustical phonons for oblique incidence have recent-
ly been observed experimentally2 and studied by an elas-
tic theory.

Comparing Fig. 3 with the central panel of Fig. 2, we
find that for the n =1 optical modes, the frequencies are
distinctly difFerent for k~O from the growth direction

and from an in-plane direction. Thus, the phonon fre-
quencies are anisotropic functions of k at k=O. On the
other hand, we see in Fig. 3 that the phonon frequencies
remain the same for k approaching zero from different
in-plane directions.

In Fig. 4, we plot the frequencies of zone-center optical
modes for a (2,2) GaAs-A1As superlattice as functions of
8, the angle of the wave vector k measured from the
growth direction. 8 goes from 0 to n. /2 as k goes from
[001] to [100] in a plane normal to [010]. The solid
curves are for the modes with large angular dispersion
and the dashed curves are for the modes with negligible
angular dispersion. The symbols LOn and TOn denote
the superlattice vibrational modes with principal quan-
tum number n derived from the bulk longitudinal and
transverse optical branches, respectively. There are two
sets of vibrational modes labeled identically, one associat-
ed with the GaAs-like modes (lower-frequency set} and
the other associated with A1As-like modes (higher-
frequency set). These labels are well de6ned only at 8=0,
since modes associated with difFerent principal quantum
numbers (n} will in general be mixed as 8 deviates from
zero. Because the system has a reAection symmetry with
respect to a plane parallel to the interface and through
the center of the GaAs or AlAs slab (hereafter referred to
as the "midplane"), only modes having the same parity
can be mixed. For the (2,2) superlattice, only one even
mode (n =1) and one odd mode (n =2) are derived from
each optical branch. Hence, no mixing occurs between
modes of difFerent n How.ever, there is still mixing be-
tween the LO1 and TO1 modes. In this figure, we see
that the n =1 modes have substantial angular dispersion

Q'2 « ~ eL

Q2 ww mme7

(6aAs) ~(A1As) 2

(GaAs). (A1As),

LQ2~ 5 & w Q % % % % % % % % % % & % ol % % % % '% % % w A % % & w % % % % w w % % & % w

~O~W

[110] [100]

k = ~(1,0,0) 0.0
I I I I

0.2 0.4 0.6 0.8
8 (units of Tl-/p )

FIG. 3. Dispersion curves of (2,2) GaAs-AlAs superlattice
along [110]and [100].

FIG. 4. Frequencies of zone-center (k=o) optical modes for
a (2,2) GaAs-AlAs superlattice as functions of 8.
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and the n =2 modes are dispersionless. This is consistent
with the argument based on the dipole-moment con-
sideration.

Figure 5 shows the x- and z-component vibrational
strengths of the A1As-like and GaAs-like LG1 and T01
modes as functions of 8 for a GaAs-A1As superlattice.
Here we define the vibrational strength S; as the summa-
tion of the square of the ith component of the displace-
ment vectors over all atomic layers within a GaAs or
A1As slab, viz. ,

s;=g i U;(J, o)
i

We see that the A1As-like LO1 mode [Fig. 5(a)] turns
smoothly from z-like to x-like as 8 goes from 0 to m/2,
whereas the A1As-like TO1 mode [Fig. 5(b)] turns
smoothly from x-like to z-like, similar to the bulk LO and
TO modes. There is another AlAs-like TO1 mode (not
shown) which remains almost purely y-like for all values
of 8 and has no angular dispersion. The GaAs-like LO1
and TO1 modes [Figs. 5(c) and (d)] behave quite
differently. The GaAs-like LO1 mode starts being almost
purely z-like, gains some x component as 8 increases and
turns back to almost purely z-like at 8=m /2, with a max-

A1As(z) ~
(a)

A1As(x) ~
Lt% V*' *V

A1As(x) ~,

imum x component at 0=0.7(m. /2). The GaAs TO1
mode behaves similarly, with the x and z components in-
terchanged. The above behavior is due to the strong lnix-
ing of these two modes. In fact, at 61=m/2, the charac-
ters of the GaAs LO1 and TQ1 modes have interchanged.

Similar to Fig. 4, we show the angular dependence of
frequencies as a function of 8 of the (7,7) superlattices in

Fig. 6. Excluding the effect of mode mixing, we see that
only the n =1 modes can have significant angular disper-
sion, the other modes are essentially dispersionless. The
TO1 mode splits into two branches as 8 deviates from
zero: only (y-like) remains dispersionless and the other
(with mixed x and z components) has substantial disper-
sion. The n&1 TO modes are nearly doubly degenerated
for all angles. All these results can be understood by con-
sidering the dipole moments of the modes, which deter-
mine the magnitude of the angular dispersion. The di-
pole moment in a superlattice mode is approximately
equal to the sum of dipole moments of all the bilayers in
each period weighted by the superlattice envelope func-
tion. For the n =1 modes the envelope function is posi-
tive everywhere; thus the total dipole moment is large.
For the other modes the envelope function oscillates
within a period and the net dipole moment is substantial-
ly smaller. For modes derived from the acoustical
branches, the dipole moments of all bilayers in each
period are very small for the n =1 mode, which is de-
rived fro~ bulk acoustical modes with small wave vec-
tors, and the net dipole moment is also small for the n &1
modes because of the fast oscillation in the envelope func-
tion. Thus all the superlattice modes derived from
acoustical branches have almost no angular dispersion.

For the n =1 optical modes, we cannot classify them
according to the paint-group irreducible representations,

A1As(z) ~ QLVl
LOQL()4 L()5'

L()Q LO7
a m e

(c}
GaAs(z)

GaAs(x)

T()2 To'----
T(}3~-™a
T()4 .---
T()5 - ---
T()G
T()7

GaAs(x) («~&s)7(A1As);

G&As(z)
ggy

I I I

O.O O.2 O.4 0.6 O.a

8 (units of 7T/2)

L()2

L().&
T()2

T(&) T();&
t ()6 T()6

rr()] — ————— a ~ m ~ a a m a e e a ~ a e e e e a a a e e e e a e a e m e a a I
~I '1

f () 1 ~ & 4 % W W

~ & H 0 Ol % % W % a % % % A % % N % % Q % A 0 % % % % a u a a A % % % w w H % % a % % W'] ()7

FIG. 5. x- and z-component vibrational strengths of the
A1As-like and GaAs-like I,O1 and TO1 modes as functions of 8
at the zone center I', k=0) for a (2,2) GaAs-AlAs superlattice.
(a) A1As-like LO1, (b) A1As-like, (c) GaAs-like LO1, and C' d)
GaAs-like TO1. . . - -, GaAs-like x component;
GaAs-like z component; ———,AlAs-like x component;
—-—-, A1As-like z component.

I 1

0.0 0 2 04 0.6 0.8
8 (units of 7r/2)

1.0

FIG. 6. Angular dependence of the optical phonons at the
Brillouin zone center as a function of 8 for a (7,7) GaAs-AlAs
superlattice.
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because their displacement vectors vary with 8. For the
n&1 modes which have negligible dipole moments, the
long-range part of the Coulomb interaction can be ig-
nored. If we only keep the short-range interactions, then
the displacement vectors (the eigenvectors of the dynamic
matrix) for the k =0 modes transform according to the ir-
reducible representations of the Dzd point-group. Thus
for n&1 we can classify the z-like LOn (n odd) modes as
the Bz modes, the z-like LOn (n even) modes as the A,
modes and the x- and y-like TOn modes as two degen-
erate E modes. In the A, (Bz) mode, atoms oscillate
symmetrically (antisymmetrically} about the midplane in
the GaAs or AlAs slab, and the corresponding envelope
function is an odd (even) function about the midplane.
For all superlattice modes derived from the acoustical
branches, the net dipole moments are negligible; thus the
LA (n odd), LA (n even), and TA modes can be similarly
classified as the 82, A &, and E modes, respectively.

In Fig. 6, we see that at fimte values of 8, two modes
with different n mix with each other as their frequencies
become close. For example, the A1As-like LO1 mode in-
teracts with the LO3 modes at 8 near 0.4(n. /2), then
again interacts with the LO5 modes at 8 near 0.6(m/2),
and finally interacts with the LO7 modes at 8 near
1.0(m/2). Thus, the LO3 mode appears to have a
significant angular dispersion for 0.4& 8&0.6(m/2), and
so does the LO5 mode for 0.6&8&1.0(m/2). So for
0.4& 8&0.6(ir/2), the mode labeled by LO3 has strong
LO1 character, and for 0.6 & 8 & 1.0(m /2), the mode la-
beled by LO5 has strong L01 character. Therefore, the
de6nitipns of LOn and TOn are only meaningful along
the k, direction (8=0). Similarly, the GaAs-like LOl
mode and LO3 modes interact at 8 near 0.5(m/2}. Note
that because the superlattice has reliection symmetry
about the midplane, modes of even n and modes of odd n

cannot mix.
To examine the dependence of angular dispersion of

optical modes on the slab thickness, we plot in Fig. 7 the
zone-center principal optical phonon frequencies at 8=0
and 8=@/2 of (rn, 4) GaAs-A1As superlattices as func-
tions of m. %e see that the frequency difFerence

~

v(8=m/2) —v(8=0)
~

for A1As-like modes increase
with m, whereas this quantity for GaAs-like modes de-
creases with m. The small oscillation in the frequency of
the GaAs-like TO mode at 8=m/2 as a funct'ion of m is
due to the interaction of this mode with other modes
(n&1) of similar frequencies. As m approaches zero (the
bulk A1As limit), the frequency difFerence for AIAs-hke
modes goes to zero as expected. As m approaches
infinity, the system contains isolated A1As slabs separated
by infinitely thick GaAs slabs. Thus„ the frequency
difFerence for GaAs-like modes goes to zero just like in
bulk GaAs. On the other hand, the AlAs-like modes
should behave like what is expected from the slab model,
which predicts that at 8=m/2 the LO mode (x-like) takes
on the bulk TO frequency, whereas the TO mode (z-like)
takes on the bulk LO frequency. Such a trend is indeed
observed in Fig. 7.

To better understand the vibrational behavior of zone-
center optical phonons, we need to examine the displace-
ment vectors U, (J,o). We find that for fixed i and 0,

UO
Q)

U

LL

(GaAs) (A1As)4

0

O~ Xrlio

L

I—Crt
CD

I I I I I I I I

2 4 6 8 10 12 14 16 18 20

FIG. 7. Frequencies of zone-center principal optical modes
at 8=0 and 8=m /2 for ( m, 4) GaAs-A1As superlattices as func-
tions of m. The upper (lower) set is for A1As {GaAs)-like
modes.

U;(J, a) can be interpolated by a smooth function. At
8=0 the displacement vector of each mode is either a
symmetric (for n odd) or antisymmetric (for n even} func-
tion with respect to the midplane, and they can be 6t al-
most perfectly by sine or cosine functions. Figure 8
shows the As-component displacement vectors for a
number of GaAs-like zone-center optical modes for the
(7,7) GaAs-A1As superlattice. The corresponding Ga (or
Al) component displacement vectors (not shown) have
the same shape but with opposite signs. In these two
figures, the triangles represent Ga atoms, the squares
represent Al atoms, and the black dots represent As
atoms. The dotted lines indicate vibrations along x, the
solid lines indicate vibrations along y, and the dashed
lines indicate vibrations along z. The plots (a)-(g) in the
left panel of Fig. 8 are (from top to bottom) for GaAs-like
LOl, LO2, LO3, LO4, LO5, and TO1 (doubly degenerat-
ed) modes, with k approaching zero from the z direction
(i.e., 8=0), which correspond to the modes with frequen-
cies ranging from 8.7 to 8.0 THz shown at the left side of
Fig. 6. Plots (a}—(g) in the right panel of Fig. 8 are for
the same set of modes, but with k approaching zero from
the x direction (i.e., 8=@/2), which correspond to the
modes with frequencies ranging from 8.6 to 8.0 THz at
the right side of Fig. 6. The displacement vectors of
modes with 8=m. /2 are different from those with 8=0 in
the following ways. First, the ordering in frequency for
these modes are difkrent. This is due to the angular
dispersion as shown in Fig. 6. Second, stronger mixing of
different modes is present at 8=x/2. For example, (b)
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FIG. 8. As-component displacement vectors for a number of
GaAs-like zone-center optical modes for the (7,7) GaAs-A1As
superlattice. Left panel, k approaches zero from the z direction
(8=0); right panel, k approaches zero from the x direction
(8=m/2).

FIG. 9. GaAs-like optical phonon frequencies squared (v )

for k~o along the growth direction of (m„4) GaAs-AlAs su-

perlattices as a function of 1', 1 is the period of the superlattice.
Solid circles, present calculation; solid curves, interpolation us-

ing bulk GaAs phonon frequencies. The top four curves are for
LO (n =1-4) modes and the bottom four curves are for TO
(n =1-4) modes.

and (c) in the right panel of Fig. 8 show strong mixing of
LO1 and LO3. Third, the displacement vectors of some
modes at 8=n /2 can no longer be interpolated by a sine
or cosine function [see (e)].

Figure 8 shows clearly the confinement of GaAs-like
optical modes in the GaAs slab. Qualitatively similar re-
sults are obtained for AlAs-like optical modes. Due to
the con6nement of optical phonons in the superlattice, it
was suggested that the frequencies of zone-center optical
phonons in superlattices can be approximated by the cor-
responding bulk phonon frequencies coo(k„). Two ways
of determining k„were previously used. ' In Ref. 7,
k„=nm/X, a', and in Ref. 28, k„=nor/(N, +1)a', where

N, is the number of bilayers within the slab in which the
optical mode is con6ned and a' is the width of a bilayer.
This is in analogy to an electron confined by an infinite
barrier. However, we 6nd that the choice in between, i.e.,
k„=nm/(N, + —,')a', gives the best results (and it also

gives the best 6tted envelope function of the displacement
vectors). This is probably due to the fact that the system
has two atomic planes in each bilayer. To test this simple
scheme we p1ot in Fig. 9 the GaAs-like optical phonon
frequencies for k~o along the growth direction with
n =1—4 of (m, 4) GaAs-A1As superlattices and in Fig. 10
the corresponding AlAs-like optical phonon frequencies
for (4, m) GaAs-A1As superlattices as functions of m.
The solid circles in these two 5gures represent results of
the superlattice calculation, and the solid curves are the
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FIG. 10. A1As-like optical phonon frequencies squared (v')
for k~0 along the growth direction of (4, m) GaAs-A1As su-

perlattices as a function of 1 . Solid circles, present calculation;
solid curves, interpolation using bulk A1As phonon frequencies.
The top four curves are for LO {n = 1-4) modes and the bottom
four curves are for TO (n = 1-4) modes.
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predictions of using the bulk phonon frequencies coo(k„).
Note that because of the anisotropy of zone-center opti-
cal phonons, we have to specify the direction in which k
approaches zero. %e find that the GaAs-like modes and
the AlAs-like LO modes are well described by the simple
scheme. The AlAs-like TO modes are less well described
by the simple scheme, where the first TO mode (nodeless)
has a frequency inside the gap of bulk AlAs optical fre-
quencies, so it is an interface mode. This interface mode
persists even if we smoothly average out the short-range
interaction parameters near the interface. It should be
pointed out that the interface modes found here are mod-
el dependent. They may not appear, for example, in the
shell model or the bond-charge model. However, there
exists another type of interface mode which is not model
dependent. %e shall discuss the details of these interface
modes in the next section.

k = ~Ps'V. ,o)

[110]

(Ga As) 7(A1As) 7

[100]

IV. INTERFACE MODES

In general, there exist two types of interface modes in
superlattice structures made of polar materials. The erst
type is caused by the dissimilarity in the short-range in-
teractions of the two constituent bulk materials in the su-
perlattice. Thus, it also exists in superlattices made of
nonpolar materials (e.g., the Si-Ge superlattice). Such in-
terface modes can only be obtained in a microscopic
model and shall be referred to as "microscopic interface
modes. " The second type is caused by the difference in
the dynamic dielectric functions of the two constituent
materials. ' In the long-wavelength limit, such inter-
face modes have frequencies which satisfy a transcenden-
tal equation identical to that for the principal optical
modes with in-plane propagation (i.e., 8= ir/2) in
Rytov's dielectric continuum model. These interface
modes always exist in polar heterostructures, end we
shall refer to them as the "macroscopic interface modes, "
since they are caused by the mismatch of macroscopic
polarization 6elds on both sides of the interface.

In our microscopic model with the Coulomb interac-
tion properly included, both types of interface modes can
be found. In our calculations, the interface modes can be
identified by comparing the superlattice phonon disper-
sion curves with the bulk phonon dispersion curves.
Sood and co-workers performed resonant Raman
scattering experiments on a number of GaAs-A1As super-
lattices and observed some macroscopic interface modes.
Two of their samples, A and 8, correspond to our (7,7)
and (7,21) superlattices. Figures 11 and 12 show the pho-
non dispersion curves of these two superlattices along
[100] (right panel) and [110](left panel). For comparison,
we also plot in Figs. 13 and 14 the projected phonon
bands of bulk GaAs and AlAs along the same two direc-
tions. The projected phonon bands are obtained by su-

perposing the phonon frequencies for a large number of
k, values for each fixed ki (the projection of k in the sur-
face Brillouin zone). By comparing the phonon disper-
sion curves of the (7,7) and (7,21) GaAs-A1As superlattice
in Figs. 11 and 12 with the projected phonon bands of
bulk GaAs (Fig. 13) and A1As (Fig. 14), we can extract
those interface modes which appear in the gaps of the

FIG. 11. Dispersion curves of a (7,7) GaAs-AlAs superlattice
along [110]and [100].

(GaAs)7(AlAs)~t

[110] [100]

FIG. 12. Dispersion curves of a (7,21} GaAs-AIAs superlat-
tice along [110]snd [100].

bulk projected phonon bands. Some of these interface
modes penetrate into the bulk modes and turn into reso-
nances which are not easily extractable.

The extracted interface modes for the (7,7) superlattice
are shown in Fig. 15. In this figure, the solid curves are
macroscopic interface modes and the dashed curves are
microscopic interface modes. %e found that the inter-
face mode frequencies at large ki are insensitive to the
number of GaAs or A1As bilayers within each period (N,
or X2 ) as long as both N, and Ei are large ( & 4). This is
due to the strong localization of the interfaces modes
when kl is large. ' The GaAs macroscopic interface
mode frequencies range from 7.8 to 8.05 THz for ki from
0.8(2m/a ) to 0.3(2n./a ) and they turn into the principal
modes at smaller kI~ where their frequencies become
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FIG. 13. Projected phonon bands of the bulk of GaAs along
[100]and [110].

FIG. 15. Dispersion curves of interface modes for the {7,7)
GaAs-AlAs superlattice. Solid curves, macroscopic interface
modes; dashed curves, microscopic interface modes.

dependent on N& and N&. The interface modes observed
by Sood et a/. in both samples A and 8 are peaked
around 278 cm ', which correspond to 268 cm ' or 8.03
THz at room temperature. Thus our theoretical predic-
tion is in accord with the experiment.

To see the connection between the macroscopic inter-
face modes and the in-plane principal optical modes, we
plot in Fig. 16 the As-component displacement vectors of
the A1As-like macroscopic interface modes at a number
of in-plane wave vectors. In this figure, the modes shown
in the left panel have higher frequencies than the corre-
sponding modes shown in the right panel. At

kII ——(0.5,0)(2m/a ) there are two A1As-like macroscopic
interface modes, one for each of the two interfaces. Their
As-component displacement vectors are similar in shape
and are almost the mirror image of the complex conju-

gate of each other [see (e)]. The frequencies of the two in-
terface modes are nearly the same, indicating a very weak
interaction between the two. As the magnitude of kll
reduces, the interaction between the two interface modes
increases, and we see a larger frequency splitting (see Fig.
15) and the As-component displacement vectors become
linear combinations of the two. Near the zone center
[e.g., kll

——( —,',0)(2m/a )] the reflection symmetry begins to
play a role, and we 5nd the two interface modes behave
like bonding (symmetric combination) and antibonding
(antisymrnetric combination) states of the originally

k], = (o, o)

\

(b) g
I Icw = (1/8 0)

'~
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U I ~ l8
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(c)

e
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FIG. 14. Projected phonon bands of the bulk of AlAs along
[100]and [110].

FIG. 16. As-component displacement vectors of the AlAs-
like macroscopic interface modes for the (7,7} superlattice at a
number of in-plane wave vectors [(a)-(e): from k=(0,0) to
k = ( 2, 0)(2m /a )]. —.——., Im U„;, 1m U»;

ReU, .
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decoupled interface modes located at two interfaces. Be-
cause the interface modes in general contain both in-

plane (e.g., x) and perpendicular (z) components, one of
the interface modes contains z-like bonding character and
x-like antibonding character, while the other interface
mode contains just the opposite. At the zone center

(k~~
——0 with 8=~/2), the antibonding character in both

these interface modes are lost, and the two modes turn
into the LO1 (x-like) and TO1 (z-like) in-plane modes, re-
spectively. Those antibonding characters are completely
absorbed by the LO2 (z-like} and TO2 (x-like) modes. Al-
ternatively we may describe the situation as follows.
Start with the LO1 and TO1 modes at kI~

——0. The two
modes then mix with the LO2 and TO2 modes, respec-
tively, as k~~ deviates from zero, and then eventually

merge into two nearly degenerate interface modes at
large k~~. The fact that the two interface modes couple
strongly at smaller k~~ is consistent with the macroscopic
theory ' which predicts that the spatial extent of the in-
terface mode is inversely proportional to k(.

V. SUMMARY
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APPENDIX: COULOMB MATRIX ELEMENTS

To calculate the dynamic matrix elements for a crystal,
we often need to calculate the Bloch sum of an arbitrary
potential, V:

P(k, r)=g V(1+r)e'"',
1

(Al)

where 1 denotes the lattice vectors and r denotes an arbi-
trary position vector within the unit cell. For the long-
range Coulomb interaction the summation converges ex-
tremely slowly. Rewriting the sum in the reciprocal
space, we have

In summary, we have performed calculations on pho-
non modes in a number of GaAs-AlAs superlattices by
using the rigid-ion model. With a proper treatment of
the long-range Coulomb interaction, we predicted the an-
isotropy of zone-center optical modes and the interface
modes. All the results compare favorably to the existing
experimental data.¹teadded. After the completion of this work, a simi-
lar work on lattice dynamics in GaAs/AlAs superlat-
tices was brought to our attention. In this work, the
anisotropy of optical modes and the interface modes were
studied in the shell model.

lattice vector, and

V(k)= fdr V(r)e'"' . (A3)

Note that the summation has the same form in both real
and reciprocal spaces. Thus we can choose whichever
form converges faster.

The annoying feature about the Coulomb potential is
that neither in real space nor in reciprocal space does the
potential decay fast enough to ensure a good conver-
gence. The essence of ihe Ewald transformation is to
break up the potential into two separate terms, one of
them ( Vs) is slowly varying in real space (thus decaying
fast in reciprocal space), while the other (V ) is fast-
decaying in real space: V(R)= V (R)+ V (8). Thus we
can write

—=V (r)+V (r), (A5)

With

V (r) =—erf(ar ) and V (r) =—erfc(ar ),s F 1

r r

where o; is an adjustable parameter. The same method
can be applied to systems of any dimension.

The Fourier transform of the slowly varying function is

V (k)= f dr V (r)e'"'
'd —1

2v'7r

k
'd —1

2v'7r

f td 'e
k /2a

d —1 k~

4o,

where d is the dimensionality of the system and I'(a, x) is
the incomplete Gamma function

r(, ~=f,-i.-'di.
X

'
2m.

erfc(k/2a) for 2D systems

V (k)=- '
4

k
e-' " '

for 30 systems.

For the fast converging function, its second-order deriva-
tives are

3r) f~ —5]Jr
V/~(r) = erfc(ar )

(((k, r) =—g V (r+k)e "+""+gVF(l+r)e'"' .
U I

(A4)

In general, the choice of V and V is not unique. The
Ewald transformation for Coulomb potential in a bulk
system has of&red us an excellent example for the choice
of V and V . In Ewald's method,

P(k, r ) =—g V(r+ k)e '"+"",
U

(A2)

where u is the volume of the unit cell, z is a reciprocal- &n.(ar)
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%e now consider the dynamic matrix elements in a su-
perlattice system. In general, we have

P,)(k, rJ )=——g V (r+k)(~+k);(v+k) e

layers of atoms separated by a distance li+z, where z
is the z component of r; r =(0,0,0) and (1, 1, 1)/2 for
o.=1 and 2, respectively. This is done by performing the
summation in (A 1) over I, and Ii with I

&
fixed, viz. ,

ink I

+g Vr(l, +r, )e

where rJ denotes the equilibrium positions of ions in a
superlattice unit cell and I, denotes the superlattice lat-
tice vectors. Here J labels difFerent bulk unit cells within
a superlattice unit cell and o labels atomic positions
within each bulk unit cell. Below we shall restrict our
discussions to zinc-blende materials. So, o =1 and 2 for
cation and anion, and J becomes an index for the posi-
tions of bilayers inside a superlattice period. In a super-
lattice with X bilayers per period, we have
I, =(Ii, li, J+I'N)a/2 (a is the lattice constant), where

I, , 12, and I' are integers subject to the constraint

I, +12+J+I'N even .

1 =T(~+(2am /¹)z, where m is an integer and 1.
i

is a 2D
reciprocal lattice vector in the plane perpendicular to the
growth direction. Note that when we are deahng with
the dynamics of the ions we must avoid the self-
interaction term (I, =0 and rJ =0), the term with I, =0
must be excluded in the real-space summation involving
V, and the term V (0) should be subtracted from the k-
space summation involving V . When r is small

(A7)

where I =(Ii, lz, li ) denotes the bulk Bravais lattice vec-
tors and I+r indicates the position of an atom in layer 2
relative to an atom in layer 1; r =(x,y, z ). The fac-

tor [1+(—1)1) + /2+13
] appearing in the summation en-

sures that the constraint that l, + (2+13 must be even is
satisfied (for the face-centered cubic lattice). To facilitate
the computation of Coulomb matrix elements, we rewrite
(A7) in the form

4(k, r, l~ )=4,(k,r, I
& )+4,(k —1,r, I i },

where 1:—(1,1, 1) and 4, (k, r, l~) is given by (A7) with

the constraint factor [1+(—1) ] suppressed.
i, +i, +),

The Coulomb matrix elements between two atomic lay-
ers are defined by

8 4(k, r, I&)
C;,(r, k, li }=-

Br;Br~.

V (r)= — 1—
v'ir 3

Hence
where

S; (k, r, l~—) —S, (k —1,r, l~),

4o,
Vs(O) = — 5,,3 m

8 4, (k, r, l&)
S, , (k, r , li):—

r; ri
(AS)

Note that when a =&m (in units of 2/a), VP(0)
(4n /3)5;, , wh—ich is just the local Lorentzian field in

a cubic bulk crystal. For small-period superlattices the
above equation provides an efficient way for calculating
the Coulomb matrix elements. For large-period superlat-
tices it is more advantageous to use the layer method
which we will discuss below.

For the discussions that follow, we shall write the wave
vector (or reciprocal lattice vector) in units of (2m /a) and
the lattice vectors in units of (a/2). In the layer method,
we first calculate the Coulomb interaction between two

In the above expressions, we have set the factor
(Q, Q2/U) equal to unity by choosing proper energy units,
where Q, and Qi are electron transfer charges for atoms
in layer 1 and layer 2, respectively,

%e shall consider two cases.
(i) Intralayer interaction (I&+z =0). In this case, the

Coulomb matrix element is independent of k, ; thus, we
can simply use Ewald's method for a two-dimensional
(2D) system. We choose a = v'm (in units of 2/a) so that
the summations of matrix elements in a cubic bulk sys-
tem are zero except for the irregular term. For the dy-
namic matrix elements, we have

4 3 m2

S;,(k,p, l, )= 5,,5 0— g V (2n+k)(2n+k), (2n+k), e +g' V;, (1)e' '",

( 2n + k );(2n +k ), ;~2„+k ~.z
2n+ l
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where n=(n„nz), p~=(x,y ), and

I"; f'~

2—e "
5;, — (2rrr +3)

The symbol g' indicates that the I =0 term is to be ex-

cluded.
(ii) Inter!ayer interaction (i3+z +0). In this case, the

two-dimensional potential is itself a slowly varying func-
tion in real space. The Fourier transform of the potential
is an exponentially decaying function in the 2D k space,
viz. ,

where K*=@.{Kkik, ). The "+" sign is for C„„and
C, and the "—"sign is for C„,. For r =0 and J=0
we shall exclude the I'=0 term, which is treated sepa-
rately according to procedures given in category (i), and
we have

X f., i N(o k) =
l'( ~0) —1 eNK

Finally, we derive an expression for the Coulomb interac-
tion between a sublattice at the origin and a sublattice at
(J,o) [denoted C; (k,J,r )] in the limit k~O. We note
that the Coulomb interaction is an irregular function of k
as k~O. Separating out this term with the rest we have

~ /77k'P

V(k) = dp =2
[~2+(i +z )2]l/2

Thus we have

—nk
~
l3+z t

(A10)

S, ,(k, r, l, )= 2n g — f„,{r,k),EiE
(Al 1)

where K=(2n, +k„,2n2+k~), n=(n, ,n2), i j =xy, and

—nK
~ I3+z

~

inK —p +ink, l3
'I 3

Next we sum over the interlayer matrix elements over
13. To get the Coulomb interaction between two different
sublattices separated by J+z, we factor out the terms
involving !3 in the above equations and carry out the sum
over l3 separately in closed forms. This summation can
be done by replacing i3 by i'N+ J(J=0, . . . ,X—1) and
summing over all integers I'. 'We obtain

—(J+z )K
eXf., i N+i{r k) =

1' ~
—XK

—(X—J—z )K+

—inK p —ink z0' 2 0'

I3+Z
8;,(k, r, 13 ) = —i2m g E; f„i (r,k), (A12)

i, +z.

C,', =4m
kk 1i
k2 3 'ii

which is exactly the sum of the long-range dipole 6eld
and the short-range local fteld contributions. We thus
have

gD;, (J,r )= — 5, ,
J

The irregular term (4m/X)k;ki lk gives different values
as k~0 from different directions. In general, D; i(J, r )

has to be calculated numerically through the equations
given above. It should be pointed out that the irregular
term is independent of the distance between the two sub-
lattices. Thus any truncation of the Coulomb interaction
in the z direction will lead to erroneous results for k
pointing at a direction different from z. For k along z,
however, the truncation is still valid, as the Coulomb in-
teraction between layers falls off'quickly as the interlayer
distance increases. This can be seen from Eqs. (Al 1) and
(A12) for k„=k =0 with n

& n2 ————0.
For a bulk system (N =1),C; will be reduced to
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