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Dispersion theory for the two-dimensional polaron
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By using dispersion theory, the ground-state energy and the effective mass of a polaron in two-

dimensional and quasi-two-dimensional space are calculated. In this theory the efect of screening

on the phonon frequencies, as mell as on the electron-phonon interaction, is included. The results of
our calculations are applied to Ga& „Al„As and Hg& „Cd„Teheterostructures.

I. INTRODUCTION

There has been considerable interest in the two-
dimensional (2D) systems recently. This is partly due to
the technological advances in the technique of
molecular-beam epitaxy by which almost pure two-
dimensionsl electron gas with variable electron densities
is realizable. ' The materials where 2D systems are ob-
tained are often polar semiconductors where an electron
is coupled to longitudinal-optical modes of the lattice snd
the polaron is a resultant elementary excitation. The po-
laron theory was originally developed by Landau and by
Frohhch for three-dimensional (3D} crystals a long time
ago. ' Observation of polaronic elects in two-
dimensional systems such as the GaAs/Ga, „Al„As su-

perlattice and GaAs inversion layer through cyclotron
resonance experiments is a topic of extensive research ac-
tivity. '

If the assumption of a pure 2D nature of electrons
trapped in the inversion layer is made then it is expected
that change in the 2D polaronic mass should be larger by
a factor of 3'/4 over the 3D polaronic mass. ' Experi-
rnentally, ho~ever, the polaronic correction to the mass
in 2D GaAs heterostructure is found to be much smaller
than the theoretically expected value. ' Even though
the importance of electronic screening of the electron-
phonon interaction was well known for a long time, " its
importance in the 2D polaron problem wss Srst recog-
nized by Das Sarma. '~' He showed that, by taking the
screening into account and by considering the spread of
the electronic wave function in the direction normal to
the 2D plane, the polaron mass is smaller in two dimen-
sions than in three dimensions for GaAs heterostruc-
tures.

The standard way of finding the e8'ect of electronic
screening on the electron-phonon interaction is thorough-
ly discussed by Mahan. ' He writes the dielectric con-
stant

where ~, is the frequency of the transverse-optic mode of

the lattice, eo and e„are, respectively, the zero- and
high-frequency dielectric constant, v(q) is the Fourier
transform of the Coulomb potential, and II(q} is the po-
larization propagator for the electron gas. Using the
above deSnition for e«~,(q, co), Mahan writes the effective
interaction as V,s(q, co) =v(q, to)/e«tai(q, to). By consid-
ering the effect of electronic screening first, using Eq. (1),
it is possible to separate the effect of screened electron-
phonon interaction on V,N(q, to). The self-energy of the
electron as affected by the screened electron-phonon in-
teraction can then be obtained. In this procedure two
effects occur. The phonon frequencies are altered by the
electron screening and the electron-phonon interaction is
weakened by the electron screening directly and in addi-
tion through the modification of phonon frequencies.
The latter effect is relevant but is usually neglected. This
method for calculating the electron self-energy is some-
what complicated. An alternate method for calculating
the electron self-energy is presented in this paper. Our
method is considerably simpler and is based on the semi-
classical dispersion theory. s In this theory the electron
self-energy is given by the change in the zero-point ener-

gy of the radiation Seld when the interaction between the
electron and lattice is present and when it is not. The
theory is ideally suited to treat problems in which more
than one interaction is present as is the case with the
present problem. The most crucial quantity needed in
this theory is the dielectric constant e«„&(q,co). The ac-
curacy of the theory is limited by the correctness of the
expression used for the dielectric constant. The theory
was used to discuss the polaron in three cbmensions by
Hawton and Paranjape' and by Hawton et al. ' In the
present paper the theory is extended to the polaron in the
2D system in which the efrect of screening is included
through the use of Eq. (1). We believe our approach is
much simpler and provides a direct method for calculat-
ing the polaronic el'ects. In our method the effect of
screening on phonon frequencies is included in a natural
way while such effects are excluded in the earlier works
of Das Sarma' ' *' and of %u, Peeters and Devreese. '

Using the dispersion theory approach we evaluate, in
this paper, 2D polaron mass and the ground-state energy
of the polaron 2D snd quasi-2D situations. %e use the
random-phase approximation to express the electronic
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part of e'to„&(q, co). Although it is tempting to use the
Thomas-Fermi approximation because of the simplicity it
provides in the calculations, it has been show by %u,
Peeters, and Devreese, ' and later on by Das Sarma',
that Thomas-FCAN approxlmatlon 1s too drastic an as-
sumption to give meaningful results for the 20 polaron
problem. The principal aim of this paper is to provide
the application of the dispersion theory to the 2D pola-
ron problem. Our calculations use the random-phase ap-
proximation (RPA).

The dispersion theory approach is given in the follow-
ing section. The effective mass and the ground-state
energy for the 2D polaron is obtained for the
GaAs/Ga, „Al„As system and for Hg, „Cd„Te using
parameters given by Dornhaus and Nimtz. These ma-
terials are selected for the contrast they provide, since the
screening efFect is expected to be strong in the former
case and relatively weak in the later case. The results of
our theory are discussed in the last section.

II. METHOD

In the dispersion theory approach we calculate the
difFerence between the zero point energies of the radia-
tion field when the interaction between the electron and
the medium is present and when it is not. If we consider
the macroscopic electric field E(r', co) at point r' in the
medium, then the electric field E(r, co) at r is related to
E(r', co }by the relation

E(r, co)= fF(r, r', co)E(r', co)d r', (2)

where the nonlocal tensor F(r, r', co) depends on the elec-

trical properties of the medium and of the electron. In
the absence of the medium and the electron, obviously, F
becomes 5(r —r'}. For a medium consisting of a polar
lattice and 2D electron gas, the appropriate form of F
must be found. Upon Fourier transformation, Eq. (2) be-
CO1TleS

E(k, co) = g F(k, k', co)E(k', co) .

Equation (3}provides the eigenmodes of the system. The
zero-point energy of these modes is given by'

g=oo
E= . ), dao Tr g [F(k,k', a))]z/(g),

4@i
(4)

where g is the summation index and the contour C en-
closes the positive real axis of the complex co plane. To
get the linear result in the coupling between the electron
and the medium it is suScient to consider the g = 1 term
in Eq. (4). Furthermore, if we neglect the coupling be-
tween the electron and the medium, the zero-point ener-

gy is given by Eq. (4) provided F is replaced by another
tensor Fo. The change in the zero-paint energy in the
linear approxiation can now be written as

hE = . f, de TrG(k, k', co),
4@i'

where G(k, k', co) is the diS'erence between F and Fo.
The expression for G(k, k', co) appropriate to a three-

dimensional crystal was obtained previously using the
second-order perturbation theory by Hawton and Paran-
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where the first and second terms in the second set of large
parentheses, when multiplied by the remaining terms of
Eq. (6), correspond to F and Fo, respectively;

t ko, z) is
the unperturbed electron state, ko describing its plane-
wave character in two dimensions, and z its spread in
direction normal to the 2D plane;

~

k",z ) represents the
remaining intermediate states of the electron; and

=A[(k") —ko]/2m. We have neglected the excit-e",h

ed states which are normal to the 2D plane. The form of
the electronic state in the coordinate representation is
given by

(r
~
ko, z ) =[/(x)/L]exp(iko r),

where L is the periodic length, ko is the wave vector of
the electron in the 2D plane, and f(z) is the variational
wave function normal to the 2D plane. The suitable form
for P(z) is given by Stern and Howard ' as

(b /2)' exp( bz/2)z f—or z &0@"='0 for. (O,

where b is the variational parameter which depends on
the electron density X and the depletion charge density
Xz according to

b =(48~~e'/a')'"(X„+X)'" .



P. V. PANAT AND V. V. PARANJAPE

In Eq. (6), both vectors ko and k" representing the elec-
tronic states are two dimensional while vectors k and k'

are three dimensional.
For conventence we write Eq. (1) 111 the follow111g form:

(ko, z
I exp( —ik '.r)

I
k",z ) (k",z

I
exp(ik .r)

i ko, z )

1 62& —QP
2 2

e,...&(k, ~) e„jM„(k)(~f—co')
'

where

v(k)II(k) k U(k)II(k)
ppk =1—

(9)
Hence the frequency in the energy denominator of Eq. (6)
becomes

(k~~ +2koklcosp)=Ok2

2m II

, po(k)
COi =COO

In the definitions of JM's we have neglected in n. its fre-
quency dependence. This is a reasonable assumption'4
when coo&gco —the plasma frequency. We now write
the 3D vectors in terms of their components parallel and
perpendicular to the 2D plane according to k=(k~~, k~)
and k'=(kI, k~). The matrix elements in Eq. (6) can be
evaluated using Eqs. (7) and (8) to yield

where |I} is the angle between ko and k~~ Substituting
these in Eq. (6}and setting k =k' we get

6 k k
417e b 1

L fi „„i(kii, ) (k(+k )(b +k )

20k
IIX

Qk —N
ll

(13)

where wave-vector dependence of e, the dielectric con-
stant, is considered in the 2D plane.

We also make use of the random-phase approxima-
tion to write

p, , (k~()=

1+ z
for k2l g(S~N)2me

l5 s jk[[

1+ I 1 —[1—(SmN/k
ii

)]'i
I for k

ii
) (SmN ),

fi'e, k

(14}

(15)

where i is either 0 or op and N is the 2D electron (hole)
density. Under the Thomas-Fermi approximation Eqs.
(14) and (15) become simply

QflCOO (3s P+ SP +9xP )f(po, p, „,x )4E= dx dP
16m (x+P)'[po(x)p„(x)]

(17)
p; =1+ (16)

where y;=2me /R e, . The use of Thomas-Fermi ap-
proximation, i.e., Eq. (16), in the calculations to follow
would result, as has been pointed out, ' ' in polaron en-
ergy and mass signi6cantly different from their more reli-
able values obtainable from using the RPA results based
on Eqs. (14) and (15). Our calculations are based on RPA
and are therefore more accurate than some results ob-
tained earlier' using Thomas-Fermi approximation.

We now substitute Eq. (13) into Eq. (5). In the process
of obtaining the trace in Eq. (5), we first sum over k~ by
changing to integration; the summation over kll is
achieved later by numerical integration. To complete the
co integration in Eq. (5} we take the residue at the poles
occurring at co=m& and at co=Ok. The former pole
occurs at the lattice frequency as modified by the electron
screening. The result of the contour integration over co in
Eq. (5) leaves the integration over k~~. We now rescale the
variable k~~, and P in terms of the polaron radius
qo=(2m'„/fi), and write (k~~/qo)=x and (b/qo)=P.
Equation (5) can now be written as

where a the Frohlich constant is given by

e 1a=
2

' 1/2a-
2~~o

xo ——(ko/qo),

f(po, p„,x ) = [1+(p„/po)'~ (x +2xxocosg)]

{0) 0 ~ (3x @+Sp +9xp )

(x+0)'pap [(p /po)'"x'+1]

(18)

Similarly the energy term, hE"', proportional to xo is
given by

For a slow moving polaron (i.e., small xp) f(po p /x)
can be developed in powers of xo. The term independent
of xo in Eq. (17) provides the value of the ground-state
energy AE' ' of the polaron. It is given by
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(3x P+9xP2+SP )x (p„/po)
dx

(x+P) p~„[(p„/po)'~ x'+ I]'
(19)

dm =(m —mb)/mb .

Using Eqs. (19)-(21)we write

(3x P+SP +9xP )x (p, „/p, o)hm=—
poIM x+ p po x + 1 x

(21)

(22)

fink(~) R ko AE'" .
2m, 2m,

(20)

Following Das Sarma' we define the change in the elec-
tron mass due to its interaction with the lattice in terms
of the band mass according to

It is possible to calculate the change in the electron mass
due to electron-phonon interaction from Eq. (19). If we
define m as the polaron mass and mb as the band mass
of the electron then

Equations (1S) and (22) are the princi al results of this
paper. The numerical estimates of dE and dm and the
conclusions arising from these estimates are discussed in
the following section.

III. CONCLUSIONS

In this paper we have applied the dispersion theory to
the problem of the 2D polaron in heterojunctions and
have calculated the ground-state energy and mass of the
polaron. We have used the RPA to describe the proper-
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FIG. 1. Shows the polaron ground-state energy A,E (in units of %oo ——35 meV) for a Ga& Al„As heterostructure (purely 20 and
3D unscreened values for AEO are, respectively, 0.11 and 0.07).
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FIG. 2. Shows the variation of b, m as a function of N in a Ga~ „Al As heterostructure (purely 2D and 3D unscreened values for
urn are, respectively, 0.027 and 0.012).
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FIQ. 3. Shows the polaron ground-state energy &Eo (in units of fmo=17. 1 meV) for a Hgt „Cd„Te (x =0.2) heterostructure
(purely 20 and 30 unscreened values of hE are, respectively, 0.058 and 0.03).
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FIG. 4. Shows the variation of b m as a function of N in a Hgo &Cdo zTe heterostructure (purely 2D and 3D unscreened values for

hm are, respectively, 0.013 and 0.005).

ties of the 2D electron gas. Our results are in quantita-
tive agreement with the results of the ground-state energy
and effective mass of the polaron in the Ga, Al„As sys-
tem as obtained by the earlier authors. ' ' %'e have ob-
tained numerical estimates for the Hg& „Cd„Te system
also. As expected, the electron screening is much weaker
in the Hg) Cd„Te system than in Ga) „Al„As. Hence,
the mass enhancement of the polaron arising from the 2D
or quasi-2D confineinent is most likely to be observed in

Hg, „Cd,Te.
Figure l shows the variation of the ground-state energy

of the polaron with the 2D electron density, X, for the
Ga, „Al,As system. %e select the following parame-
ters: Nd ——10" cm, e„=10.9, eo ——12.82, (mb lm )

=0.0665, and a=0.07. As N increases the ground-state
energy is affected by two opposing efFects. On one hand
the increase in X reduces the electron-phonon interaction
due to the increase in the screening while, on the other
hand, the binding energy is enhanced due to the fact that
increasing X makes the electron gas increasingly two di-
mensional. The influence of the two effects on hE is
seen in Fig. 1 where the ground-state energy decreases
with X initially due to increased screening, but as E is in-
creased further the 2D effects predominate over the
screening effects resulting in the enhanced energy. In
Fig. 2 the effect of X on Am in Ga, Al As follows the
same pattern as for AE".

In Figs. 3 and 4 the variations of 5E" and Am with X

are shown for Hg, Cd, Te, The parameters for this ma-
terial are not precisely known. Dornhaus and Nimitz
have provided the estimates for the needed parameters as
follows: (m /mo) =0.005, co= 17.0, e„=12.5, and
%coo

——17. 1 meV. The results for Hg&, Cd„Te (with
x =0.2), shown in Figs. 3 and 4, are in sharp contrast
with those of Ga, Al As. In the case of Hg~ Cd„Te
it is expected that the screening effect would be weaker
than the eS'ect due to the 2D nature of the electron gas.
For the X values considered in the numerical calcula-
tions, both AE and hm increase with X, indicating that
the 2D e6'ect is dominant. Conversely, the absence of a
decrease in the values of b,E and Am with increasing X
clearly sho~s that the screening is negligible for this ma-
terial. The increase in the polaron mass due to the 2D
nature of the electron gas is most likely to be observed ex-
perimentally in Hg& Cd, Te.

Although our results for the variations of hE and Am
with N in Ga, A1, As are in qualitative agreement with
those of the RPA-based results of Das Sarma' and %u
Xiaoguang, ' they differ quantitatively with the results of
both these authors. The difference can be attributed to
the dissimilarity between our method and the methods
used by the earlier authors. ' ' Our method is based on
dispersion theory which takes into account the changes
in the phonon frequencies due to the electron screening,
an effect which is neglected by the earlier authors. ' '
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