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Effects of uniaxial stress on hole subbands in semiconductor quantum wells. I. Theory
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The valence subbands and the corresponding wave functions in semiconductor quantum wells un-

der uniaxial stress are analyzed by solving a 4X4 Luttinger-Kohn Hamiltonian together with a 4X4
strain Hamiltonian in the spin J=

2
basis. Appropriate boundary conditions are obtained by in-

tegrating the total Hamiltonian across the interfaces of the quantum wells and, if a proper unitary
transformation is made, yield eight linear equations that determine the eigenenergies and eigenfunc-
tions. The results of our general formalism can be greatly simplified for some special cases which
are used as examples in order to explore the underlying physics. The causes of the valence-band
mixing, the elect of the valence-band warping, and the behavior of the hole effective masses under
uniaxial stress are discussed. The numerical results are presented in a paper to follow.

I. INTRODUCTION

A genera1 formalism for space quantization of the ener-

gy spectrum for the valence band in semiconductor films
has been proposed by Nedorezov. ' He started from the
Luttinger-Kohn Hamiltonian in the spin J=—,'basis by
neg1ecting spin-orbit interaction, and imposed the zero
boundary conditions that are valid for describing free
carriers confined to an infinitely deep well. The subband
structure of the valence band and the corresponding
effective mass of the hole were derived analytically. Re-
cently, Fasolino and Altarelli adopted Nedorezov's for-
malism to study the subband structure and Landau levels
in heterostructures by neglecting the warping of the
valence band. By including the warping of the valence
band, Lee and Vassell found that the hole subbands
difFer significantly from those reported by Fasolino and
Altarelli. In the spirit of Ref. 3, Chang studied the
problem of the enhancement of optical nonlinearity in @-

type semiconductor quantum wells due to spatial
confinement and stress. It is well known that as a result
of spatial confinement in a quantum well, the degeneracy
of the light- and heavy-hole valence-band energies is 1ift-
ed at k =0, where k is the wave vector describing the rel-
ative electron-hole motion parallel to the interface of the
quantum we11. Excitons, when generated in such an envi-
ronment, exhibit two series of discrete energy levels cor-
responding to electrons bound to either the light hole
(LH) or heavy hole (HH). ' Allowed transitions across
the band gap occur between energy levels with the same
quantum number, n (hn =0), and have been observed in
the absorption, photoluminescence excitation (PLE), and
other spectra which probe the higher transitions of the
quantum well. However, normally "forbidden" transi-
tions [parity allowed (b,n even) and parity forbidden (hn
odd}] have also been reported in the literature and inter-
preted as a result of the valence-band mixing. In the
Luttinger-Kohn formalism for the valence band, all oft
diagonal elements in the Hamiltonian are zero at the
Brillouin-zone center, k =0. Thus parity disallowed
transitions can only be attributed to direct transitions be-
tween eigenstates from zone center (l.e., k +0). However,

if uniaxial stress or tension is applied parallel to the plane
of the quantum wells, the off-diagonal elements of the to-
tal Hamiltonian, which is a sum of the Luttinger-Kohn
Hamiltonian and the strain Hamiltonian, can be nonzero,
even at k =0. That is, the uniaxial stress itself can "in-
duce" valence-band mixing. ' ' lf the stress is applied
perpendicular to the quantum-well layers, then there is
no additional mixing due to this external perturba-
tion

From the above discussions we realize that (1) the LH
and HH subbands can be precisely identified by monitor-
ing the stress dependence, and (2} the valence-band mix-
ing occurs when the quantum wells are under stress
parallel to the interfaces or when k is away from zone
center (i.e., k&0). Therefore the main purpose of this
paper is to examine the effects of the uniaxial stress on
quantum wells at arbitrary k in the Luttinger-Kohn
Hamiltonian for the valence band. In Sec. II, a theoreti-
cal model is presented for calculating the eigenenergies
and the corresponding eigenfunctions of the total Hamil-
tonian. Finally, in Sec. III a discussion of our theoretical
analysis is given. Detailed numerical results of the hole
subbands, wave functions, and hole effective mass as
functions of stress, well thickness, barrier height, and k
are reported in the paper to follow. '

II. THEORY

The total Hamiltonian describing the energy spectrum
for the valence band in a quantum well in the presence of
uniaxial stress can be written as '

where 8& and 8, represent the Luttinger-Kohn Hamil-
tonian for the hole states and the strain Hamiltonian in-
troduced by the uniaxial stress via

2

H„= ( —,'y, K——y2[(J„——,'J )k +c.p. ]
P7l 0

—2y3(I J„,J~ Ik„k +c.p. })+Vz(z)
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H, =D~(s„„+s»+e,„)+—,'D„[(J„——,
' J )s,„+c.p. ]

+~4D„'(IJ„,J ls„+c.p. ),
where mo is the free-electron mass, Dz, D„,and D„' are
deformation potentials for the valence bands, e, ;J are com-
ponents of the strain tensor, J; are the angular rnomen-
tum matrices corresponding to a spin ——', state, c.p.
indicates cyclic permutation of indices and I o, b ]
:——,'(ah+ha) H.ere, k„,k, and k, are components of
the wave vector of a hole along the x, y, and z axes, re-
spectively, and

E =k +k +kx y z

The hole is confined in the z direction by a square-well
potential, V„(z),with a well width L and a potential bar-
rier height Vo. We assume that the Luttinger-Kohn pa-
rameters y „y2,and y, vary with z as

y, if lz I
(L/2, i =1,2, 3

Xl
y, i, if Iz I

)L/2, i =1,2, 3, (4)

where the subindices ic and b refer to well and barrier, re-
spectively. When we adopt elective units

e ''Il' 0 0

with

y= —+-,'(a+p),

rl =———'(a —P)4 2

&3y3k„k — —D„'e„»3 x» 3
M x»

y2(k„—k )+ (e —e,„„)
~3y,k„k,— D„'s2

3
ta

—D„'s,+y3~3k„k,2
Q»Z

(10)

(12)

P+Q R

P —Q
—So 0

0 5'

—S 0

with

PkQ = [—,'(y, Rye)kz+ —,'(y, % 2yi)k,2]

+ j D~(s„„+a~+E„)

Qo=
motto moe

for energy and length, respectively, the total Hamiltonian
can be written as the 4X4 matrix

Note that, in order to assure that U is unitary, we require
that y and rl be real. By examining Eq. (12), we notice
that if s and e, are nonzero, P may become complex
because k, may be complex; therefore, q& and i) are com-
plex, ilnplying that U is not unitary. However, if

=a~=0, tanP becomes real because k„and k» are
real; thus U is unitary. Throughout this paper, we limit
our discussions to the assumptions that e~ and cyz are
zero. If the uniaxial stress X is parallel to the [001],
[100],or [110]direction, the assumptions e,„=s,=0 are
fulfilled. We rewrite Eq. (9) as

S =iy3&3k k„ I
S

I =(yii/3k)k, (9')

and tanP in Eq. (12) as tanP= k„/k =cot8 where 8 is the
polar angle of lt. The wave equation

k —,'D, [s ——,'(s +s „)]I+V„(z),

[y2(kz k„2) i2y3k—„k]—

(7)

that we intend ta solve is transformed into

(13)

(14)

+ —(s»» sax )+' .—Du sx» (g) with

H'= UHU+

S =[i@&&3(k„ik)k, ]—— —D„'(e»,+is )
2

II »Z and

where k—:k„+k. As proposed by Broido and Sham, "
this 4X,4 total Hamiltonian can be reduced to two 2X 2
matrices by using the unitary transformation,

O'= U%,

where 4 is the eigenfunction and E is the corresponding
eigenvalue. Equation (14) can be written explicitly as

P+Q
l~ I+& ls I

0
0

I
z

I

—i Is I

P —Q E—
0
0

0
0

P —Q E-
I& I+i ls I

=0.
0
0

P+Q E—
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The secular equation of Eq. (15), taken with Eqs. (7), {8),
and (9'), gives

k, =(4I +I ) '[8+(8 —16I +I C)' ], (l7)

where

8 (6j 3 yi 2yp)k'+2y, {E' r—i) 4—y25

C=(A+ —E')(A E')—
I
R—

I

with

E'=E —V» (z),
'2 T

IR I'= y2k cos28+v +3 2

A+ = —,'(y, +yz)k +ri+5,

v=D„(s —s„„)/v3,
(=2D„'s„ylv 3,
1)=Dd{e„„+e»+e„),
5=2D„[e ——,'(s„„+s» )]/3 .

3 2y3k sln28 —f
2

Equation (17) yields four roots for k, : q„—q„qz,and —q2. Subscripts 1 and 2 refer to the plus and minus signs, re-
spectively, in Eq. (17) for k, . The wave functions qi', and %z have the following mathematical form."

%1(z)

%z(z)

where

Iq&Z —lq )
Z iq2Z —lqpZ—A(q 1 )C21 e —A( —qz )C2ze —A(q& )C23e —A( —q2 )C24e

iq&Z —iq]Z lq2Z lq2Z
C2&e +C22e +C23e +C24e

(19)

A(q. )= [( I
R

I
i

I
5—

I
) /(P +Q E)]» q—

N„is a normalization constant, and Cz, , j=1,2, 3„4,are known constants which must be determined by appropriate
boundary conditions. If

I
z

I
& L /2 we set

V„(z)=0, y

q2
——q2, and C» ——8"»

to represent the wave functions in the well. If
I
z

I & L /2, we choose

V»(z) = Vo, y; =y;b, q1 —— ixi, —

q2
———i v2, and C2 ——8&.

to represent the wave functions in the barrier. The wave functions ip3 and %4 for the lower block of the new total Ham-
iltonian can be obtained by using the replacement of yz~ —y2, 5~ —5, and v~ —v for k, [see Eqs. (16)-(18)]. We
have

qi1(z)
,
( )

—NL— lq)Z Eq1Z lq2Z —Ag2Z—A(q, )C4, e —A( —q, )C42e —A(q2 )C41e —A( —q2 )C44e

lq)Z —Iq&Z lq2Z —lqpZ
C4) e +C42e +C43e +C44e

(20)

where

A(qj)=[{ I
~

I

—i
I
~

I
)/(~+0 —E}]»

qual

+v 3y, kq,'(z)
z Z —Z

NL is a normahzation constant, and C4 ——8'4 (C4.
=84 ) if

I
z

I
&L/2 (

I
z

I
~L/2) for the well region

(barrier regions).
The boundary conditions are obtained from Eq. (16) by

using the operator k, = iB, and integrati—ng across the
interfaces at z =kL /2. Let z and zb be the values of z
near the interfaces in the well and barrier regions, respec-
tively. Then we have the following boundary conditions:

81P1
I b +~3y ib k ipse(z)Bz Z Zb

(22)

=(yi +2y2 )/2 and I +b=(yib+2y&b)/2
[y; and y;b are defined in Eq. (4}]. Furthermore, we as-
sume that

4~(z }=%~(zb), j=1,2 . (23)

81p2
I ~b —v 3y1bk+'1(z)+ az Z Zb

(21)

Since +~.(z) has to be convergent when z~koo in the
barrier regions, we require that

C2) ——82) ——0, C23 ——8~3 ——0 if z —++00



JOHNSON LEE AND M. O. VASSELL

C22
——822 ——0, C24 ——824 ——0 if z —+ —(x) . (24)

The boundary conditions for 4'z and %'4 can be obtained
similarly, by de5ning the following notation:

C = cosq~L /2, S~ = Smg) L j2,
A (q, )= iR i /b(q, ),

A, (qj)= —&3yi kq /b(q )

for the well region, and

b, =e ', A,C,
(a. )= [R )

/h( i' )—,

A,&(IC/)=&3y&bk~~ /b( i',—).
for the barrier regions, where

&(q) ) = (&+Q —E)„
Z J

has been defined in Eq. (7). We get eight equations from
Eqs. (21)-(24) at z =kL /2 and they are written in matrix
form as shown in Eq. (25) at right, where
P=v 3k(y» —yi ) is adopted and the following trans-
formations are used:

r'
I

W2i ———,'( W2i +i W22 ), Wzz
—

—,'( W2i i W22 —),

W„=—,'( W'„+iW',„),W24 ———,'( W2i —i W'i4),

&2i =-,'(&2i+&zz) &zz=-,'(&zi —&zz }

g„=,(a,', +a,'4), and a,4
——

—,'(&'„—8,'4) .

Equation (25) is used to describe the energy spectrum
E(k}and the corresponding eigenvectors 4",(z) and qlz(z)
when holes are confined in a finite potential well with a
barrier height Vo and a weB width L to which stress is
applied. For the eigenvector %~(z) and %4(z), we need
only replace yz with —y2, 5 with —5, and v with —v, for
k, in Eqs. (17) and (18) and Wz with W41, Bzj with 84, ,
in Eq. (25). The original eigenvector 4 as defined in Eq.
(13) can now be obtained by using Eq. (15):

CV

Qa

I

r

I

%,(z)
%,(z)
%,(z)
%4(z }

[F14(z)+4'i(z) ]e '~

[0 ',(z)+%,'(z)]e'"

[0 ',(z) —0 ',(z)]e

[q,'(z) —0', (z)]e "
L

where the normalization condition

requires that
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f dz(%'i 0'i+ %z +z) = J dz(%i %i+%g%'4) = 1

(27}

and serves to determine the normalization constants XU
and XL in Eqs. (19) and (20). The probability density and
the effective mass are defined as p (z)=

~
%i(z)

~
with

j =1,2, 3,4 and rn =(BkE) ', respectively.
The magnitudes of the physical quantities 5, ri, g, and v

[Eq. (18)] in the strain matrix elements depend on the
direction of the applied uniaxial stress of magnitude X
and are listed below.

1. Xapplied parallel to [100]:

ri=Dg(S„+2S,z)X, 5= ——,'D„(S„—S,z)X,

v=&35, (=0 .

2. Xapplied parallel to [001]:

ri=Dg(Si, +2S,2 }X, 5=—,'D„(Si,—S,z )X,

v= =0.

3. X applied parallel to [110]:

ri= —,'Dg(S„+3S,z}X, 5= ——,'D„(S„—S,z)X,

v=O, g= D„'S44 .1

2 3

Here 5;. is the compliance tensor.
To summarize this section, the general formalism for

holes confined in a quantum well under stress has been
completed by solving a 4)&4 total Hamiltonian with ap-
propriate boundary conditions. Even though our results
are valid only as long as e =c„,=0, they cover the
directions where stress can be applied experimentally.

III. DISCUSSION

In this section, we discuss a special case (X applied
parallel to [100], Vo= ~ for the infinite potential well}
which might give us some physical implications.

When Vo is infinite, ~, and a'2 obtained from Eq. (17)
become infinite; therefore, b, and bz are infinitesimal and
Eq. (25) reduces to

—A„(q,)C,

A, (q, )S,

0

A, (qi }C& —A„(q2)Cz A, (qz)Cz
'

21
A„(q,)Si A, (qz)S2 A„(qz)Sz

22

0 C2 0
—5) 0 8 24

(28)

with

q, , =(4r, l }'"[a~(a'—161 I C)'"]'" (29) [2D„(S,i —S,z)] &0

where

( 6/3k q] qz )( 1 eosq iL eosqzL ) (30)

5;=P+Q(q;) E, —
6', =P —Q(q;) E, i =1,2— (31)

and P+Q(q; ) are shown in Eq. (7). The numerical results
for the energy spectra E(k) without stress (i.e., 5=0)
have been reported in the literature. At k =0, Eq.
(30) yields

'2

E„=I+ +A+6, n=123, . . . (32)

where the upper (lower) sign refers to the heavy (light)
hole. Equation (32) indicates that (1) if ri and 5 are posi-
tive under stress X ~0, E„for the heavy hole linearly in-
creases faster than E„for the light hole as

~

—X
~

in-
creases, and (2) E„for the heavy hole runs across E„for
the light hole at

where q,. are positively de5ned and the subscripts 1 and 2
in q refer to plus and minus signs, respectively. The secu-
lar equation obtained from Eq. (28) gives

(~i~a+~&~z —21~ I }sinqiL sinq2L

m„'=[BkE(k)] ' at k~O (33)

2 = + 3 2

[~kE.(k}]k o=}'i+)'z+ y3

y2 —F„
6yz(I ~ +21'„)[(—1)"+'+ eos8„]

(yi —F„}H„sin8„

with

F„=5LIn n

because I &I'+. Thus, when X is parallel to [001],
there is no anticrossing in E„for the light and heavy
holes. This occurs because in this direction of the stress,
and at k =0,

~

R
(
=

~

S
(
=0, so that Eq. (16) is decou-

pled. Therefore the wave functions 4', and %z (4„'and
4&) represent pure states of the heavy and light hole, re-
spectively, i.e., there is no valence-band mixing.

The eff'ective masses of the heavy hole and light hole
are given by
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O„=nn[(l ++2K„)/I+]'~

Without stress ( F„=O)and without warping of the
valence band (yz ——y&), Eqs. (33)—(35) reproduce the
same result as calculated by Fasolino and Altarelli, and
confirm that m„' for the heavy and light holes are in-

dependent of well width, L. However, if stress is applied
to the system (F„&0),m„' is a function of L and 5.
Equations (33)—(35) indicate that (1) when Y'„=yt, i.e.,
X= 3y—2n n /L D„(S„—S,z), m„' becomes zero be-
cause the curvature of E„(0) is infinite, and (2)
[t)kE„(k)]k o may become zero for certain I'„,implying,
m„* is +00. The efFective mass m„' has strong depen-
dences on 5 and L.

By examining the upper block of Eq. (16), we notice
that qt', (z) and 4'z(z) are coupled as long as

~

R
~

+ S I is nonzero and composed of four com-
lq1z +lgzz

ponents: e ' and e ' in the weB region. We call the
first components heavy-hole-like and the second com-
ponents light-hole-like. Whether qt', (z) is heavy-hole-like
or light-hole-like depends on the amplitude of each of the
components which are governed by Eq. (25). In this case,
valence bands are mixed and E„(k)considered for heavy
hole and light hole as a function of stress X is expected to
show an anticrossing; this is in contrast to the case where

~

R
~

+ (
S

~

is zero, as discussed earlier (in the case of
X parallel to [001]). It is interesting to notice also that, at
k =0, Eq. (25) can be decoupled into two 4)&4 matrix
equations by letting A, =A,&

——0 and I' =0. One of
these two matrix equations describes the eigenvalues with
the even wave functions, and the other one the eigenval-
ues with odd wave functions. Detailed discussion of
these two decoupled matrix equations is presented else-
where. ' Finally, it is worth mentioning that, if

~

R ~'+
(
S )2 is zero, Eq. (16) yields

l,-iR i'
E = A~ — (k&0),

3y2k'

which are the trivial solutions of Eq. (25) and therefore
must be discarded because they do not provide any infor-
mation about the quantum size efFects.

In order to compare out theoretical prediction with
some of the experimental results, and to show the full im-
plications of the formalism in Sec. III, we solve Eq. (25)
numerically for finite potential barriers, Vo, and various
well widths, L Since .there is no guarantee that k,2 in Eq.
(17) is real if k and stress are nonzero, we have to treat k,
as complex values. All these results, including efFective-
mass studies, are reported in a paper to follow. '
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