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Auger recombination in direct-gap semiconductors: Effect of anisotropy and warping
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%e show that the temperature dependence of the Auger lifetime for direct-gap semiconductors
depends on the symmetry of the bang structure. For a complete three-dimensional anisotropy such
as the warping of the valence band, one 6nds that the usual Beattie and Landsberg result,
~ '-(k& T/Eg ) exp( —A,Eg /k+ T), has to be multiplied by k& T/E~, awhile for a dispersion relation

having the shape of an ellipsoid of revolution (or more generally for a symmetry of revolution
around some axis), it has to be multiplied by kq T/Eg or (kz T/E)', depending on whether the
direction for the threshold energy of the Auger process is or &s not parallel to the symmetry axis.

The Auger recombination of an electron-hole (e-h)
pair in a semiconductor is an old subject. In 1950,
Frohlich and O' Dwyer' used, in the e-h recombination
rate, an exponential term exp( Ez/ks—T) coming from
the e-h minimum energy which they assumed to be the
band gap Es. In 1958, Beattie and Landsberg showed
that energy and momentum conservation during an
Auger process imply nonzero kinetic energies for the
electron and the hole which recombine, so that the
threshold energy for the Auger recombination has to be
larger than Es. More precisely, they have shown that,
for nondegenerate e-h plasma, in the limit of large
Ez/k+T, the temperature dependence of the Auger life-
time is
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m, and mz are the e and h masses, the band structure be-
ing assumed isotropic. Inf(x, y) is the smaller of x and y.
Twenty years later, Haug, Kerkhoff, and Lochmanni
made an exact calculation of the Auger coefficient at any
value of Eslk+T for a nondegenerate plasma, but still
with an isotropic band structure. Their result, of course,
agrees with Eq. (1) for large Ez /kz T.

In Auger-effect theory for direct-gap semiconductors,
there are mathematical difficulties coming from the re-
strictions due to energy and momentum conservation. It
is indeed much simpler to consider the Auger eff'ect in
indirect-gap materials as the phonon required in the
recombination process reduces these constraints. In a
previous work, we used a very convenient device to deal
with the conservation laws for the case of a degenerate
e-h plasma. This consists of replacing the 5 functions of
the conservation laws by their standard integral reprcsen-
tat1ons 1n terms of thc cxponcnt1al. Although thc order
of the integral appearing in the recombination rate is in-
creased, this approach greatly simphfies the calculation
as it decouples the integrations over each particle. In this
paper we use the same procedure. It allows one to get

very simply the exact result of Haug et al. in the case of
nondegenerate e-Ii plasma with isotropic band structure.
More interesting is the fact that this procedure allows
one to take into account anisotropy of the band structure.
Considering first the case of an elhpsoidal dispersion rela-
tion as for CdS or CdSe, we show that the appropriate
effective mass which enters in p difFers from the density-
of-states mass; but surprisingly, we also show that the
temperature dependence in the prefactor term of 1/~ is
changed. The power of (k&T/E ) in front of the ex-
ponential is linked to the degeneracy of the threshold for
Auger recombination, which is itself, in general, related
to the dimensionality of the band-structure symmetry. If
the energy threshold for Auger recombination is degen-
erate for a set of wave vectors, the extremities of which
cover a surface, as in the case of spherical symmetry, one
finds the temperature dependence of Eq. (1). But if the
energy threshold corresponds to a finite number of wave
vectors as in the case of the two extremities of an elli)Ii-
soidal symmetry, one finds a prefactor in (k&T/Es)
In between, a prefactor (ka T/Eg)2 is found if the degen-
eracy of the wave vectors at threshold is one dimensional
(which means that the extremities of these wave vectors
are along a line).

We have also been able to include explicitly the
valence-band warping. Along the same lines, we find that
the effective mgss that appears in p is difterent from the
usual heavy- or light-hole mass, and also that the temper-
ature dependence of the recombination rate is different
from that in Eq. (1), the energy threshold corresponding
to a Snitc number of wave vectors. Naturally the
effective-mass approximation is only valid for low-energy
electrons and holes. But our study of warping allows one
to see quite explicit;ly the eSect of anisotropy, besides its
direct interest whenever it is applicable.

In Sec. I, we write the basic equations for the Auger
recombination rate. As is usually done, we do not take
into account the problem coming from the uncertainties
on the e-e interaction and consider the matrix element as
a constant. In Sec. II, we calculate the threshold energy
for an ellipsoidal conduction band and for a warped
valence band. We consider both Auger CS'ects, between
two electrons and one hole, and between two holes and
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one electron. In Sec. III, we consider the case of spheri-
cal symmetry and recover the exact result of Hang et al.
In Sec. IV, we take an ellipsoidal band structure and
show how the temperature dependence of the Auger life-
time varies with symmetry. In Sec. V, we include the
valence-band warping and calculate the Auger efkct for
two electrons and one hole. In Sec. VI, we do the same
for two holes and one electron. In Sec. VII we present a
complete account of our method previously reported in
Ref. 5 in abbreviated form. In this section we show how
a stationary phase method may be used to solve for the
temperature dependence of Auger recombination in a
semiconductor whose band gap is much larger than kz T:
This result is both powerful and general as it does not re-
quire explicit knowledge of the s(k) energy-momentum
relationship.

0

b-h-e

e

0

I. BASIC EQUATIONS

FIG. 1. Auger effect where the e-h pair energy is given c,a) to
an electron or (b) to a hole.

The recombination probability of the Auger processes
of Fig. I is given by

a=4(2 ) "2W ' jd'k. . .)M
~

'e

X5(E)+Eg+E'3 E4)—
X5(k, +k, +k, —k, ) .

An electron (hole) with momentum k& and energy E,
recombines with a hole (electron) with momentum k3 and
energy E3, while an electron (hole) with momentum k2
and energy E2 is excited in the state (k4, E4), see Fig. 1.
The energies will be counted from the bottom of the con-
duction band (top of the valence band). We assume that

~

M ~, the matrix element for such a coHision, remains
constant as is usually done. We will review this assump-
tion at the end of Sec. VII. P is a statistical term which
accounts for the occupation probabilities of the different
states:

~=fif2f 3(1—f4)—(1—f i )(1—fr)(1 —f3 )f4

n nn —E4/k~ T4 B

aKO no(T)

where no(T} is the equilibrium plasma density (obtained
for p+p'=0} at temperature T and u is a T-independent
constant.

Using Eq. (5), one can rewrite the recombination prob-
ability [Eq. (2)] as

n nn' Eg —~6 8'

~0(T) no(T) k~T
-h, /k~ T

(6)

The parameter vo(T) has the dimension of time and
varies with temperature as Eo'2+3+3(k~T)-T . The
dimensionless function 6 (y) is a 12th-order integral con-
taining the two 5 functions coming from conservation
laws:

2m+i
' (Ei+Ei+E'3—}

-exp
k~T

P—exp G(y) = Id K;, 45(K, +K2+K3+K4)

s(K, )+e(K2)+ e.'(K, )—s(K4)
X5 y+

for a nondegenerate e-h plasma, p and p' being the e and
h chemical potentials.

I.et us introduce dimensionless momenta K=k/Ko
where Eo has the dimension of a momentum and is such
that ADDED k~T, Ao betng ——an arbitrary temperature-
independent constant. We will assume that the depen-
dence of the dispersion relations e(k) on the modulus of
the wave vector k is quadratic, i.e., e(KOK)=Icos(K).
Expressing the chemical potential p (p'} in terms of the
particles density n (n')„

(4)

and using the energy conservation one can re~rite the
statistical factor P [Eq. (3)] as

s(K4)

Ao

(we have changed K4 into —K4). For an h-h-e Auger
process E4 =b, +s( K4) [see Fig. 1(b)], so that b, =b, the
valence-band splitting, while for an e-e-h process 6=0.

The e(K; } are quadratic functions of K. For an ellip-
soidal band structure, the dispersion relation is

e(K)= A„K„'+A,E2+ A, K2 . (8)

This band structure is encountered in II-VI semiconduc-
tors such as CdS and CdSe, but also in materials under
uniaxial stress; the spherical case would correspond to
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A =Ay ——A, =A.
For low-energy holes, the k p theory gives a warped

form for the two upper valence-band energies, usually
written as

E(K)= A 'sc'+[a'z'+ c'(rc„'It„'+ac2rc2+z,'sc„')]'"
—= A'[K'+ed(K)]=A'J. "%(Q) . (9)

Equation &9) is a definition for 4(K) and %(Q); %(O) de-
pends only on the direction 0 of K, e =+1. The usual
heavy- and light-hole masses are related to the
coeScients A,B,C

K)+K2+ K3+K4 ——0,
e(K, )+e(Kz)+ e'(Ks) —s(K~)

y+ =0,
Ao

(14a)

(14b)

where y=(E —b, )/k&T. The simplest way is to use
Lagrange multipliers a and u and look for the extremum
of

cal method that we apply to ellipsoidal symmetry as well
as to the case of the warping of the valence band.

We look for the smallest E~ =b, + Eoe(K4), i.e., the
smallest positive value of e(Kz), with the constraints

' 1/2
t2

A
I + Jgt2+

6
(10) s(K4)+u (K, +K,+K,+K4)

The warping of the third valence band is smaller and for
simplicity we will assume it is spherical, e(K)= A "K .

The problem is to calculate G(y). One keeps the sym-
metry between the four particles and decouples the in-
tegration over the E s if one uses

5(K)=(2n. ) fder e'+', (1 la)

5(E)=(2ir) ' f dt e'e' . (1 lb)

This leads to

G(y)=(2m) f f df d r e'r'g, (r, t)gz(r, t)

Xgi(r, t)g4(r, t —t) . (12)

The functions g; are defined in terms of the energy e, ; of
the ith particle as

e;(K)
g(r t)= fdiK exp i K r+ t

Ao
I~ *

In the case of an e-e-h Auger e8ect, g&, gz, and g4 are
identical, while g, =g2+g4 for an h h eprocess-, a-s the
excited hole is going in a different valence band.

We will see that g;(r, t) is singular for t =0. In order to
avoid this singularity we can, since exp(iEt) is analytical,
push the contour of integration in Eq. (11b) slightly into
the upper complex half-plane. This gives t a positive and
infinitesimally small imaginary part. In this way the
defining integral equation (13}for g; is always convergent
for large k on our t contour (it is divergent if t is in the
lower complex half-plane}. In the same way the integral
giving g4(r, i t) will be convergent. —

Bs(Ki 2)

BK, 2 BK, i
Bs'(Ki)

aK,
=V'

aK,
='

ae(K, )

aK,
=V+b

aK,
='

(16a)

(16b)

(16c)

Equations (14) and (16) form a set of 16 equations with 16
unknowns (the K, 's, V and b)

(a) e e h, sphe-ri-cal symmetry: ei & 4(K)= AE,
e&(K)= A 'X . Equations (16}give immediately

V V V
K) ~

———,K3 ———,, K4———
2A

' 2A' '
2Ab

One gets b from Eq. (14a), then V from Eq. (14b), and
finally the lowest e(K4) and the threshold energy
E,i,

Kamic;„—

—(K4) are

A +2A' . A +2A';e„(K4}=,yAO, i.e. , E,b ——
, EA+A' ' ' ' A+A'

s(Ki }+e(K2}+e'(K&)—e(K4)
+a y+

0
L

or to introduce V= Aoa 'u and b = Aoa ' —1, and to
look for the extremum of the quantity S defined as

X=V (K, +Ki+Ki+K4)+yAO

+e(K, )+s(Kz)+e'(K, )+be(K4) .

The fact that S has to be extremum versus the K s leads
to

H. THRESHOLD ENERGY

Before going further into the calculation of g and 6, let
us find first the lowest possible value of E4 taking into ac-
count the conservation laws. From Eqs. (2) and (5), this
threshold energy gives the principal exponential term of
the Auger lifetime for small T (i.e., large E /ke T). This
threshold energy has already been calculated in the case
of spherical symmetry, or evaluated by numerical
methods for other symmetries. %e give here an analyti-

This is, with the usual notations, E,&
——Ez(m&+2m, )/

(m„+m, ), in agreement with the result of Eq. (1}for the
e-e-h process.

(b) h h e, spherical -sy-mmetry: ei z 4(k) = A'k and

e3(k }= Ak . A procedure similar to the above case gives

E~;„(K4}=yAot( A'+2A)/[A'+ A (2—A'/A")]J

if y is positive, but e;„(K„)=0if y is negative, so that
the threshold energy is
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E,i, =&+, , „sup(O, Es b—, ), (19)
A'+23

A'+2A —AA' A"

where sup(x, y) is the larger ofx and y.
(c} Ellipsoidal symmetry: e(K)= A„&„+A„&„

+ A, IC, and similarly for s'. Equation (16} gives
(EC, 2);=—V;/2A;, and similarly for Ki and K4. Re-
placing the j: s by their above values into the momen-
tum conservation Eq. (14a), one finds that two com-
ponents of V must be zero, and one obtains the coefficient
b from the equation for the third component. Then the
calculation goes on as in case (a} and one Suds for the
threshold

(8' +C' /4)', or (8' +C' /3)', depending on the
direction. For a heavy hole, e = —1, and the lowest
threshold is for the largest e, i.e., in the [111]direction.
For light hole, e = + 1, and the lowest threshold is for the
smallest 4, i.e., in the [100] (or [010],or [001])direction.
But in both cases 4 differs from (8' +C' /6)'/, the
value appearing in the usual Hght- and heavy-hole
masses.

(e) e h -h, -warping: si z(K)=A'& +@'(K), ei=A&,
e4= A "X . Equations (16b) and (16c) give K&=—V/2A
and K&—— V/2—A "b. As Eq. (16a) leads in general to
K,=K&, one deduces from the momentum conservation

A„+23„'

A„+A„'
(20)

Ki ——V(l/4A +1/4A "b) .

Using Eq. (25) into Eq. (16a), V should be such that

(25)

K =U(2+b ')/2A . (21)

the direction x being the one giving the lowest value of
(A;+2A )/(A;+ A ).

(d) e-e-h, warping: si &4{K)=AX~, e,'(K)= A'E
+e@(K), where 4(K) is defined in Eq. (9). Equation
(15a) gives K i z ———V/2 A, while Eq. (15c) gives
K„= V/2 Ab—. From momentum conservation one
deduces

I +2AA" 8' C'/2
4(V) 24(V)

(26)

for i =x,y, z. The calculation goes on as in case (d}, and
one finds for the threshold

For a quadratic function s'(aV) =tzze'(V) and Eq. (16b)
g1ves

Ea =~+ A'+e4+2A
A (A'+e4)

g II

CI2
8 + —

CI2V2
A' p'2 l

4(V) 24(V)

(22)

for i =x,y, z. Equation (22) implies that zero, one, or two
V; must be zero, and that the nonzero V, are equal. The
first solution of Eq. (22) is V„=V„=V, +0: in that case
V„'= Vi/3, and 4(V)= Vz(8'2+C'i/3)'/. From Eqs.
(14b) and (22), one obtains V2 and b, and finaHy the
threshold energy for that direction is found to be
ykT/(b+1), i.e.,

[&ii} A +2A'+2e(8' +C' /3)
A + A'+e(8'+C'/3)'" (23)

The next solution is V„&0, V = V, =O; then 4(V)
=8' V and the corresponding threshold is

E( goo) A +2 A ' +2' '
Eth g +gI+ gI g (24)

Finally for the third kind of extremum, arit all the K in
the direction [110], for example, one replaces 8' by
(8'2+C' /4)'/ in Eq. (24).

The direction of the lou&est threshold depends on
whether the Auger recombination is with a heavy or a
light hole. From Eqs. (23} and (24), the threshold corre-
sponds to [2—A /( A + A '+e@)]E, with 0=8',

We have set 4=(8' +pC')' with p=O, —,', or —,
' de-

pending on the directions ([100],[110],and [111],respec-
tively). For heavy holes (e =—1), the lowest threshold is
for the largest 0, i.e., 4=(8' +C' /3)'/, in the [111]
direction, while for light holes (e =+1} the lowest
threshold is for 4=8', in the [100] direction. The con-
clusions are identical to the ones for an Auger effect be-

tween two electrons and one hole. But this was not a
priori obvious: in particular, if the excited hole stays in

the same valence band, one has to replace A" by A '+e4
in Eq. (27) and in that case, one finds the reverse: the
threshold for heavy holes is in the [100]direction, while

the one for light holes is in the [111]direction.
(f) Numerical estimate If we def.ine the threshold ener-

gy as AEs, for an e-e-h Auger process the factor I, is of
the form A +2 A '/A + A

' where A depends on the
effective Hiass as l?t

For a conduction band with elhpsoidal symmetry, the
usual electron effective mass is m, =(mllm22)i/i, while

from Eq. (20} the threshold corresponds to the smallest of
m

~~

and m ~. For germanium m
I~

——1.59, mz ——0.082: us-

ing the hole eNective mass mz ——0.30, one Snds k=1.42
(taking m, =0.22) while A, = 1.21 if one uses mi.

For a valence band with warping, the usual hole
eff'ective mass is given by Eq. {10)while from Eq. {23)the
real threshold corresponds to use 8'2+C'2/3 instead of
8* +C* /6. For GaAs, 3 =14.9, A'=7. 65, 8'=4. 82,
and C'=7.71. This gives A, =1.07 instead of 1=1.11.
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III. SPHERICAL SYMMETRY ' 3/2
imago

g(r, t)=
At

Aor
exp —i

4At
Let us return to the explicit calculation of the g's and

G(y) defined in Eqs. (12) and (13). For s(K)=AX,
g (r, t) is easily found as

%e recall that t has a small positive imaginary part. Re-
placing these values ofg's into Eq. (12), one finds

r'A, [t ( A + A ') i—( A +2A ')]
G(y)=(2n) (in}

9/& i/i Jdt 9/z i/2 fd r exp i
4t i t AA—' (29)

with an integration path C around the cut [A,, + ~ f (see
Fig. 2} and a determination for (x —A, ) real positive
below the cut, and real negative above it. The calculation
of I(y) goes on in the following way: one integrates
(x —A, )

/ by parts in order to have at x =A. a conver-
gent function behaving as (x —A, ) '/2. Then the function
jump over the cut gives a factor 2 and one obtains two
real integrals, the integration over x going from A, to ~.
The integrals can be identified as two Whittaker func-
tions 8' s/4 s/4 and W 7/4 7/$ Using the identity
8'& „——8'z „,one can Snally rewrite the result in terms
of only one Whittaker function:

I(y&0)=4n' A.
/ (Ay) / e r/ W i/47/~(Ay) .

which gives after an easy integration over r
g 9/2

G(y)=(2n) (in) (4n} /
&

zI(y),
A'(A + A')'" (30)

with

(31)
—~+~~ t (t iA—),

A +23'
A+A

(32)

(35}
One can check that the three incomplete I" functions ap-
pearing in the exact result of Haug et al. form simply
~—3/4 7/4

As for large z, 8'i „(z)-z~e */z, one Suds that

lim I(y ) =4n'/2g iy'/ze —~r
++ oo

(36)

as easily obtained directly from Eq. (34). This gives for
the Auger rate a temperature variation in the case of
Es&b,

In order to calculate I(y), we deform the integration
path, see Fig. 2.

For y &0, we can push it to infinity in the lower com-
plex half-plane. The only nonzero contribution comes
from the pole at t =0 which gives

I(y (0)= [(Ay) —3&y+ —", ] (33)

For y &0, we push the contour toward infinity in the
upper complex half-plane. The nonzero contribution
comes from the cut starting at the branch point t =iA,
and going to +i 00 along the imaginary axis. %e make
the change of variables t =ix so that

I(y)= J "x i in ' (34)
x (x —A)/

Ql ~ ~ ~ ~JE

Ee ktt T

A+23' Eg

k, T
(37)

I)0 in agreement with Eq. (1}for b, =0. (The additional Eg
term comes from dimensional argument. }

IV. ELLIPSOIDAL SYMMETRY

I

I

I

I

t l I) &~
g 3

A„A„A,
g(r, t)=

We consider now the case e(K)= A„K„+A»X»
+ A,K, and c.'(K)= A„'E„+A»K + A,'K, . The calcu-
lation of the g's gives a result similar to Eq. (28),

' 3/2 ' 1/2

f(0

0 T

. ~O X2 y2 Z2
+exp —i + + (38)

FIG. 2. Integral path used for the calculatioa of the integrals
I(y) for y&Oand y&0.

Using these g's into G(y), one can easily perform the
Gaussian integral over x, y, and z, so that
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g 9/2

G(y )=(2~) -'(i~)'(4~)3"
A A A (A +A')' (A +A')' (A +A')' I(y),

—~+i~ t (t i—A), ' (t i—A},' (t —i A, )'

(39)

with A,„=( 3„+2 2„' ) /( 3,+ 3 ' ). Equation (39) reduces to the spherical expression (31) if A,„=1» =A,
The calculation of I(y } is very simple for y &0 as the contribution of the t =0 pole gives again a second-order poly-

nomial in y:

1 1 1

g g g ) A, A,x y z

3 1 1 1 1 1 1 1

4 gi gi gl 2 A,„A, A. A., A,,A,„
(40)

For y y 0, one has now four "poles," t =0, A,„,A», and
Slid our cxprcssloil docs iiot rcdllec to a Wlilyttakcl'

function.
If A,„&A» & A,„one is left with a first-order integral

—k y

I(y ) =2m 8

A,„'"(A,,—A.„)'"
oo ~

—yx
+2 dx

x (x —A,„)(x—A,, )'il (44)

ky ~
—yx

I(y) =2 dx
x'(x —A,, )' l(x —A, )' l(x —A,, )'»

oo
—yx

+2 dx
x'(x —X )'"(x —X )'"(x —X )'" '

(41)

which has to be calculated numerically. However, in the
limit of large positive y, the result is controlled by the
lowest pole A,, and one easily finds that

lim I (y ) = 2

+ A,„'(A, —A,„)' l(A,, —A,„)' y

ksT ksT
exp —A,„ (43)

i.e., 1/l goes as T and is smaller than the weB-known
result of Eq. (1) by a factor kz T/F. .

If two of the A, ,- are equal, as encountered in most phys-
ical situations, one has to consider two eases:

(i) If A» =A,, & A,„,the preceding result applies, and one
finds a prefactor temperature dependence going as T / .

(ii) If A,„=A,» & A,„then

One sees that the exponential term of the Auger rate is
controlled by the lowest ( A;+23,'}/( A, + A ) as previ-
ously found in the threshold calculation, but most of all
that the prefactor of I(y ) goes now as y

' instead of
y', so that

The first term comes from the contribution of the pole at
For large y, it is the dominant factor of the result,

and one finds in that case for the temperature dependence
of the Auger rate,

kqT

Eg
(45)

If A,„=A, =A,„the result is that of Sec. III.
One can relate these behaviors to the symmetry of the

band structure. When all the A.; are distinct, the thresh-
old corresponds to only two points on the energy surface
because we have only a discrete symmetry: in that case
G(y) behaves as y

'» . This is also the case if one has
an ellipsoid of revolution, and if the threshold corre-
sponds to the direction parallel to the symmetry axis: in
that case also only two points contribute at threshold.
On the contrary, if the threshold is in the direction per-
pendicular to the symmetry axis, because of the symme-
try of revolution, there is a degeneracy for the threshold
which corresponds to an equatorial circle and in that case
G(y) behaves as yo. Finally, for a spherical symmetry,
there is again degeneracy and the threshold corresponds
to a spherical surface which gives G (y ) —y'

V. WARPING, e-e-h AUGER EFFECT

We have now s, z ~(K)= AK and S3(K)
= A'%(Q}Kl, where %(Q) depends only on the momen-
tum direction [see Eq. (9)]. The g, , ~'s are simply given

by Eq. (28), but, due to the complexity of %(Q), we leave
for the moment the integral of g3 uncalculated. G(y}
can be written as

9/2

G(y)=(2~) (il») ~
tyt I

fdt fd K exp i 'k(Q)K t
t3(i t)3/3 Ao

Ao
d rexp —i r —+.

4A t i —t
+ix,r (46)
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The Gaussian integral over r is then easily calculated, so that 6(y ) becomes
3

—4 ~ 9/2 ~ 3/26 (y ) =(2m) (im') (4im )
~ J(y),

iaaf

J(y)= f dt
3 3 fdn f dE 4mK exp i A'%(Q)+ A E

i 3~2(r 2j}3~2 4m o 0 2i —t

Performing the Gaussian integration over E, one is left with a third-order integral

(47)

J(y)=(inAO. ) dQ dt
4~[ g + g ' Il(Q)] —m+ic

' 3/2
. A +23'%(Q)

A + A'%(Q)

(48)

A +23'%(Q)
A + A '% (Q)

(49)

One can check that for %(Q)=1, Eqs. (47) and (48) give
the spherical case, Eqs. (30) and (31}. The next step is to
perform the integration over t. This is done as for the
spherical case (Sec. III), where A. is replaced by A,(Q) with

' 3/2

J(y &0)=m fdn A+A'O' Q

[yx(n)]'" yx(n)
X(n)'"

W 3y4 2'(yA(Q)) (51)
The result depends if y is positive or negative.

For y «0, the contribution of the t =0 pole gives, as
for Eq. (33),

' 3/2
3i2

4 f A +28'%'(Q)

There is of course no hope to do this last integral analyti-
cally for any y. Nevertheless one can 6nd simply, from
Eq. (51), its behavior for large y. Using the asymptotic
expansion of the Whittaker function, one rewrites J(y)
as

3y 1 5
(50}

A,(Q)
J(y + )=my' fdn A+A'ql Q

' 3/2
~

—yA, (Q)

A, (Q)

One concludes that the temperature dependence is the
same as for the spherical case, with only some difFerent
combinations of A ', 8', C' than the ones appearing in the
usual heavy and light holes.

For y g0, the integration over t gives a %hittaker
function, as in Eq. (35), so that

for which the dominant contribution comes from the
directions where A,(Q) is minimum. These directions
have already been found in Sec. II, and they vary depend-
ing whether the recombination is with a heavy or a light
hole. Noting Qo(go, po} as such a direction, one expands
the function to be integrated around Qo so that

Ao

A + A '4'(Qo)

y' exp[ —yA(no)]

A, (Qo)

X f dgsingo f dy exp — (g—go) + (g —q)0)
a2X(n), a2X(n)

0 0 ag Qf)2
(53)

Each of the integrations over 8 and y gives a factor y
so that finally we have

J(y~+ ~ )-y ' exp[ —yl(no)] . (54)

surface as in spherical case. One concludes that if the
warping is taken into account, the temperature depen-
dence of the Auger rate is not the one of the standard Eq.
(1), but instead,

Besides the main exponential term already discussed in
Sec. II, one notes a prefactor temperature dependence
similar to the ellipsoidal case when A,„&A~&A.,: in both
cases the threshold comes from a finite number of points
on the energy surface and not, for example, from a whole

k TB A +22'ql(no)
A + A '4(no) (55)

As this T dependence is linked to the distance between
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the poles A,„A~,A,„or in the case of warping, the distance
between +,„(Q) and 4;,(Q), one expects that the tem-
perature range for which such a new behavior is predict-
ed depends on the importance of the vrarpig, g. The be-
havior depicted in Eq. (55) will be found for temperature
low enough so that the exponential term found for qi;„ is
much larger than the one found for 4('~,„. %hen the tem-
perature is raised one has a crossover to the spherical
symmetry case obtained ~hen the t~o exponential terms
are of the same order.

VI. WARPING, h-II-e AUGER EFFECT

For a recombination of an e-h pair associated with the
excitation of a hole in the lowest valence band, the four
energies are, respectively, e(K, I)= A '4'(Q, z)K, 1,
s(KI)=AKI, and e(K4)=A "K4. g, and g~ are then
simply given by Eq. (28). For gi I we perform the in-

tegration over K, and leave the angular part. Setting
K.l.r=K, rh (Ql, Q), where Q is the direction of r within
the cubic axis, one Snds

Apv&r
2

2A'tf d Q) A pv)P'

4Irqi', ~1 4 A 't

with v, =h I /qii. Replacing these g's into Eq. (12) one finds
'3 . '3/2 ' . '3/2

4 &7TA0 lo'Ap )~A 06(y) =(2~)-'

dQ, A '4l'(E
)

gl(r, t)= f f 4IIKldKI exp i t —,
' cos(rKlKI)

4m 0 0
' 3/2

i&Ap
tA' (56)

H(y, Qi, QI, Q)= f dt f dr 4Irrl 1—
—~+i~ t (i —t)

iApr2v,

2A't
l Apt v2

2A 't
AipO, ( I—l k, )r
4A't (i t)—

vi+vz+ A'/A vi+vz+ A'/A

vi+vl+(A'/A) —(A'/A") p
After an easy integration over r of a Gaussian function, one is left with

H= dt, „, 1+34m A 'i + +~~ e'~' v)+ "2 i —t

AOP —m+ig I (I —ji(, ) ig t —I A,

15v&v2

P t iA— ,

The result of this integral depends if y is positive or nega-
tive.

For y &0, the contribution of the t =0 pole gives for
H(y &0) a second-order polynomial in y, i.e., for 6(y) a
result similar to the one of Eq. (40), with some more com-
plicated angular averages.

For y & 0, one changes the integration path as done in
Fig. 2. One then integrates by parts in order to have only
(t —A, )' . The resulting integrals can be expressed in
terms of %hittaker functions. If one looks only for the
leading term of H at large y, one finds easily from Eq.
(59) that

). 3/2

H(y~+ ~)=2
App

1 I 2 (1—X)
X -2 1 ~3~5 g3

e

As the Inalll colltrlbll'tloll lll 6 ( y ) coll1es frolll the direc-
tions QI, Q2, Q for which A. is mimmum, as in Sec. V, one
expands k. around these directions. %e have to integrate

over six angles. As in Eq. (53), each integration gives a
factor y

'~ . One finally gets for 6

6(y~ oo )-y '~1 exp( —yA, ;„),
i.e., again a temperature dependence of the Auger rate
prefactor as T, as could have been expected using the
same preceding dimensional arguments.

VII. GENERAL BAND STRUCTURE:
THE STATIGNARY PHASE METHOD

We present here a general method to obtain directly
from Eq. (12) the behavior of 6 (y) at large y =Eg /ks T
for any complicated dispersion relation: This method is
extremely powerful as the calculation is performed
without using an explicit form for s(k). Of course, the
result reduces to the ones which have already been ob-
tained, in the case of ellipsoidal symInetry and warping,
but it also applies for any more reahstic band structure
provided it satisfies s(lt) =k Is(lt ), where lt =kit.

Let us set



37 AUGER RECOMBINATION IN DIRECT-GAP. . .

K(t)=(2n) fd r g, (r, t)g2(r, t)g3(r, t)g4(r, i —r);

(61)

After performing the Gaussian integrals over It:,. for
i =x,y, z, one gets for the behavior of g (r, t)

G(} ) =f dr K(t)e'r' . (62)

s(K, )
g(r, t}=(2inAO) exp i K, r+t

Ao
D(K, ),

(6&)

If we push the contour of integration over t toward
in6nity in the upper complex half-plane, we see easily
that for large y, the dominant contribution comes from
the singularity of K(t) nearest to the real t axis. This is
also clear from all the preceding examples which we have
explicitly investigated. Now since all the g's are regular
functions of t and r, the singularities of K(t) arise be-
cause the defining integral equation (61) diverges for large
r.

The behavior of g(r, t) for large r is easily obtained
from the stationary phase method: when r is large the
exponential in Eq. (13) osciHates very rapidly as a func-
tion of k, which leads to an almost complete cancellation
in the integral. The dominant contribution comes from
the region in k space where this rapid oscillation does not
occur. It is obtained by writing that the phase in the ex-
ponential, namely k r+e(K)t/Ao, is almost constant in
this region, , which means that its k gradient is almost
zero. Let us call K, the wave vector for which this gra-
dient is zero,

rVx«K)
I K = —Ao—

i ' (63)

where t has to be replaced by i-t for g&. We see that these
equations for the stationary wave vectors K, are exactly
the same as Eq. (16) for the threshold wave vectors. The
role of V is played by A or/t and the role of b by t /i t. —

Now we expand the phase up to second order around
the stationary wave vector,

where we have set

8 eD(K, }= det

In order to be able to investigate the r dependence we
now make use of the assumption that e(K) depends qua-
dratically on

~

K ~. Let us introduce the vector q{u)
such that

Vxe I tc=q= —Aou ~ (66)

(67)

The function R (u) depends only on the direction of r,
but not on its modulus.

Doing the same for g', one Suds that the exponential
term of the product g (r, t)g'(r, t)g (r,i —t) is

. 2 t(R +R') i (2R—+R')
exp —ir

t (i t)— (68)

where R and R' mean R(u} and R'(u). One can then
easily perform the integration over r without still know-
ing the explicit forms of s and s', i.e., of R and R', leav-
ing apart the r angular variables Q. Using Eqs. (65} and
(67), one rewrites G{y) as

where u is an unit vector. Since e(K) is a quadratic func-
tion of

~

K ~, one deduces from Eq. (63) that the vector
K, associated to r=ru is simply K, =rq/t and conse-
quently s(K, )=r s(q)/t, while D(K, )=D(q) does not
depend on r. One can then note that

K r+ s(K )=—q.u+ = R(u) .t r' s(q) r'
A ~o

G(y)=(2m) f1Q D (q)D'{q')(im) n ~ fdt
1

t(R +R') i (2R +—R')

' 3/2

One easily sees that the function to be integrated over t
has the same form as the one found previously, namely
t 3[t iX(Q)] ~2—e'~' with X(Q)=(2R +R')/(R +R').
A. is an unexplicited function that depends only on the
direction of r, and as we will see we do not need to know
its explicit form to get the behavior of G(y} at large y.
Nevertheless, one can check that within the specific form
of c, and e.

' used in Sees. III-VI, A, reduces to the Vs used
earlier.

The integration over r in Eq. (69) is performed as be-
fore, and one Snds in the limit of large y ~ 0,

}" exp[ —yX(Q)]. One is then left with the integration
over the r directions.

If there is a spherical symmetry for all the e(K), X will
not depend explicitly on any angular variable, and

G (y ) y l/2~ —yk

If there is a complete anisotropy for any one of the c.'s,
A. will depend on two angular variables. For large y, the
behavior of G(y) is controHed by the direction Q;„
which gives the smallest X; one expands X(Q) around this
direction,
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X(Q)=X(Q,„)+-,'(8—8 )'(t)'X/t)8')

+-,'(q —~. )'(a'X/a~') .

Noting that each of the integrations over 8 and p for
large y gives a factor y ', one finds in that case

G(y)-y 'i exp[ —yX(Q;„)] .

If in the direction of the minimum of X there is a sym-
metry of revolution, X around that minimum will depend
only on one angular variable, the integration over which
gives only one factor y ', so that

G(y)-exp[ —yX(Q;„)] .

As we see, the power of the prefactor depends only on
the dimensionality of the dispersion relation symmetry
(or more precisely of the dimensionality of the threshold
degeneracy that results directly from symmetry), and not
at all on its detailed form, as it can be obtained formally
without even writing any explicit form for s(K).

A simple way to understand physically the T depen-
dence of the Auger prefactor is to say that only a restrict-
ed region, in lt space, of size (ks T)'~ around the thresh-
old, contributes to the Auger rate. For spherical syrnme-

try this region is not limited in some directions because of
the degeneracy due to the symmetry. Further limitation
appears for this region if there is anisotropy, which pro-
duces reducing factors (kttT/Ee)'~ or kttT/Es. One
can also say that this anisotropy is expected to play some
role if the anisotropy energy is larger than ks T. For kit T
larger than this anisotropy energy, one 5nds again the
spherical symmetry situation.

As the dominant terms in the Auger rate come from a

VIII. CONCLUSION

We have shown that the temperature dependence of
the Auger lifetime is related to the symmetry of the elec-
tron and hole dispersion relations. %e find that in the
limit of large Es /ks T,

1 skr""" —SE
'

1

(73)

with p =2, 1, or 0, respectively, for a spherical symmetry,
a one-dimensional symmetry, or a complete anisotropy.
A,E is the threshold energy for the Auger process, A, be-

ing related to the ratio p of the electron and hole effective
masses. The well-known Beattie and Landsberg result,
which corresponds to p =2, does not hold if, in particu-
lar, a warping of the valence band is present.

restricted region in k space, only the matrix element M of
the recombination in that small region is important, i.e.,
M is roughly a constant in the dominant part; so that our
result also holds for a general matrix element M, difrerent
frotn a constant.

Numerica estimate: In the case of full anisotropy, the
usual prefactor of the Auger rate is decreased by an extra
term in ks T/Es, which gives 2 or 3 orders of magnitude
at room temperature depending on the band gap. For
GaAs, E =1.4 eV so that kttT/E —1.8&(10 for
T =300 K. The corresponding change in the exponential
term due to the proper value A, =1.07 of the threshold en-

ergy, instead of 1.11, gives an increase of the exponential
of 8.9 which partly compensates the prefactor change.
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