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Ultrasmall, quasi-zero-dimensional, quantum-box structures can now be made which exhibit

quantum carrier confinement in all three dimensions. %'e present calculations of the properties of
excitons confined in quantum boxes. The boxes are modeled as square (side L), Rat plates (width m}.

Infinite barriers are used to confine the electron and hole. The effective-mass Schrodinger equation

is solved to determine exciton properties. A variational wave function is used to calculate the exci-

ton ground-state energy and optical properties. The exciton wave function is also expanded in

terms of electron-hole configurations made from electron and hole single-particle box states. This

wave function is used to study the onset of correlation effects. Exciton ground-state total energies,

interaction energies, Coulomb energies, kinetic energies, electron-hole separations, and oscillator

strengths are determined. The results illustrate the competing effects of quantum confinement and

Coulomb-induced electron-hole correlations. For large boxes (L &100 nm) excitons in quantum

boxes are strongly correlated and confinement effects are negligible. In small boxes (L ~ 10 nm) ex-

citons are weakly correlated. Confinement effects are dominant and the electron and hole occupy

the lowest-energy pair of single-particle levels. Confinement enhances the exciton kinetic and direct

Coulomb energies, reduces the electron-hole separation. , and increases the oscillator strength. Even

in the transition regime (10 nm &I. 100 nm), the enhancement of exciton oscillator strengths

could enhance optoelectronic properties.

I. INTRODUCTION

The optical properties of quasi-two-dimensional semi-
conductor single —and multiple —quantum-well (QW) sys-
tems have been studied intensely to determine how quan-
tum confinement in the well affects the electronic states
and band structure of QW systems. The elementary opti-
cal excitations created by photons near an absorption
edge are excitons. The fundamental effects of quantum
confinement on excitons in quasi-two-dimensional QW
systems are now well known. The degeneracy of the
light-hole and the heavy-hole bands is lifted by the
confinement and both light- and heavy-hole excitons can
exist. The interaction between confined electrons and
holes is more e6'ective than the bulk electron-hole in-
teraction and the con6ned-exciton binding energy is
enhanced. Kith the recent advances in the art of mi-
crofabrication, quantum microstructures can now be
made which exhibit quantum carrier confinement in two
dimensions [quantum well wires (QWW)' ] and in all

three dimensions [quantum boxes (QB) and micro-
crystallites "]. These structures provide new systems
for the study of quantum-con6nement effects.

In this paper we investigate the nature of excitons in

quantum boxes. Quantum-confineinent eff'ects should be
most severe for systems confined in all dimensions. In a
QW or QWW the spectrum of single-particle states is a
set of subbands of two- or one-dimensional states, respec-
tively (see Fig. 1). Each subband is a continuum of states.
The separation between subbands is determined by the
splitting between the levels for the confined motion. Al-

though this splitting increases as the strength of the
confinement increases (the well size decreases or the bar-

rier height increases), there is always a continuum of
states which can be mixed to account for the electron-
hole correlation in the exciton. In a quasi-zero-
dimensional structure with con6nement in all directions,
the density of states is a set of discrete states. The level-

splitting scales as I/Li while the electron-hole attraction
responsible for mixing single-particle state scales only as
1/L when the scale of confinement L is varied. Thus, as
the con6nement in a quasi-zero-dimensional structure in-

creases, the mixing of states needed to account for
electron-hole correlation in the exciton becomes more
difficult, and the electron and hole become frozen in the
lowest-energy single-particle states. Freeze out of motion
in the confined dimension also occurs in QW and QWW
when the confinement is increased, but correlation of the
unconfined motion in a QW or QWW is enhanced by the
greater overlap of the con6ned electron-hole pair. In a
zero-dimensional structure all motion is con6ned, so
confinement should weaken correlations of all motion.

In this paper we focus our attention on excitons in
quasi-zero-dimensional structures in part because such
excitons have not been studied extensively. Typical
quasi-zero-dimensional structures are semiconductor mi-
crocrystallitess-ll prepared in colloidal form or embed-
ded in optical glasses and semiconductor quantum
boxes fabricated by lateral confinement of quasi-two-
dimensiona1 quantum wells by implantation-enhanced
interdict'usion ' or by electron-beam lithography. The
rnicrocrystallites are approximately spherical in shape,
and motion is three-dimensional inside the structure. In
contrast, quantum boxes are thin disks with the two di-
rnensions defined by lateral confinement much larger than
the width of the quantum we11 that defines the third di-
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changes in exciton ground-state energies, radius, and op-
tical absorption. The results will be used to gain addi-
tional understanding of recent photoluminescence (PL)
experiments in which excitons were observed in quantum
boxes and to determine whether excitons in presently
fabricated boxes (L-30—100 nm) really are confined.
Recently, it has been suggested that the complete
confinement of excitons in suNciently small quantum
boxes will enhance the optical properties of excitons
enough that QB's may find applications in laser struc-
tures and in devices utilizing optical bistability. Our
results will be used to determine how complete the
confinement must be before optical properties are
enhanced. The theoretical model used to describe exci-
tons in quantum boxes is discussed in Sec. II, results are
presented in Sec. III, and conclusions are made in Sec.
IV.

II. THEORY

FIG. 1. The electronic density of states (DOS) for systems
confined in one (quantum we11), two (quantum-well wire) and
three (quantum box) dimensions. The dashed line is the DOS
for a bulk system.

mension of the box (see Fig. 2). The internal motion is
quasi-two-dimensional. The theoretical understanding of
excitons in microcrystalhtes is being deve)oped. '"
However, the theoretical description for excitons in QB's
has not been developed to the same extent. ' ' For that
reason, we restrict our attention to excitons in QB's.

The qualitative effects of confinement on excitons is the
same for excitons in microcrystallites and QB s. An exci-
ton in a large QB (microcrystallite) behaves as a free,
quasi-two- (three-) dimensional exciton. As the size L of
the box or microcrystallite decreases, confinement effects
become important. For very small L the exciton is
quasi-zero-dimensional with all motion frozen out. How-
ever, confinement effects in microcrystallites and QB's
should differ quantitatively because one degree of motion
is frozen out in QB's for all L. In this paper we deter-
mine the length scale on which the transition from negli-
gible to complete confinement occurs for excitons in

quantum boxes and how the transition is manifested by
0=

i =e, h

d d+2~
j(, i

d
2~ g i dz

+V,

Microfabricated quantum boxes are constructed from
narrow, two-dimensional quantum wells by processing
the wells to laterally confine the two-dimensional motion.
Typically, the width w of the two-dimensional quantum
well is an order of magnitude less than the length L of the
side of the box, so the box is a thin plate or disk. We
model the quantum boxes as square plates with sides of
length L and width ui. Such a quantum box is shown in
Fig. 2. Fabricated quantum boxes are typically circular
rather than square. However, shape effects are minimal
for structures with the same cross-sectional area. ' For
example, the properties of an exciton confined in a circu-
lar disk of radius R should be nearly the same as the
properties of an exciton in a square plate with side
L =v mR.

The exciton states are determined by solving the
electron-hole effective-mass Schrodinger equation. The
electron-hole interaction is the Coulomb interaction
screened by the background dielectric constant e. Polar-
ization and image charge e8ects can be significant when
there is a large dielectric discontinuity between the quan-
tum box and the surrounding medium. ' This is not the
case for microfabricated boxes made, for example, with
GaAs wells and A1GaAs barriers; therefore, we ignore
such e8'ects.

The effective-mass Hamiltonian is

if
/
&; f, /y; [ &/L2 and[z;

f & w/'2

otherwise . (2)

FIG. 2. The configuration of a quantum box.

The eit'ective mass in the plane of the disk m~~, is as-
sumed to be isotropic, but it need not be the same as the
mass m~; for motion perpendicular to the plane. An
infinite barrier is used to confine the exciton in the box.
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c (r; ) =cos(kx; )cos(ky;)cos(qz; )

&L /2&L /2&w /2

(3a)

(3b)

s(r„r/, )= pc„exp|—a„[(x,—x/, ) +(y, —
y/, ) ]I (3c)

with k =m/L, q =m. /i//. Accurate energies and wave
functions are obtained by use of 5 to 10 Gaussians. No
correlation function of z, and zz has been included. Typ-
ical well widths m are less than 5 nrn and the energy lev-
els in the well are sufficiently separated that the electron
and hole occupy the lowest-energy well states. The
single-subband approximation for confined motion gives
good results for quantum wells, quantum-well wires, i~

and quantum boxes (see Sec. III) when L & 5 nm.
The form chosen for q/ gives the correct results for the

ground state of the exciton in the limits of complete
(small L) and negligible (large L) confinement. In the
small-L limit s (r„r„):—1. In the large-L limit s (r„r/, ) is
the bulk-exciton ground-state wave function, and c(r, )

and c (r/, ) are envelope functions which are slowly vary-

ing on the scale of the exciton. Consequently Eq. (3)
should provide an adequate interpolation between the
large- and small-L limits. This is especially true when the
electron and hole masses are similar because the electron
and hole are treated equivalently in Eq. (3}. When the
electron and hole masses are very diferent a more corn-
plicated variational function should be used. For exarn-
ple, when the hole mass is much heavier than the electron
mass, ' the hole is more strongly localized than the elec-
tron for I. in the transition regime between negligible and
complete confinement, and the wave function must ac-
count for this e8'ect. The lowest-energy exciton in a box
constructed from a GaAs well and AlGaAs barriers is
made with a hole which has a hght in-plane mass similar
to the electron mass and a heavy mass in the perpendicu-
lar direction. Equation (3) should be a good wave func-
tion for this exciton. %e also consider excitons con-
structed from a hole with a heavy in-plane mass and a
light perpendicular mass. In this ease, Eq. (3}will be less

Real barriers are finite. However, a good model for the
barriers which define the edge of the disk does not exist
yet. Although carriers can tunnel from boxes with finite
barriers, this tunneling does not change the electronic
properties qualitatively until I. ~ 5 nm. Calculations
are greatly simplified by use of the iofinite-barrier model.
The x, y, and z motions for the single-particle states in an
infinite-barrier square plate are separable. The single-
particle states are products of the simple one-
dimensional-particle-in-an-infinite-well states (sines and
cosines).

Two approaches have been used to solve Eq. (1). First,
accurate ground states for confined exeitons have been
calculated by use of a variational approach. The exciton
variational wave function q/ is chosen to be a product of
the electron and hole lowest-energy subband states and a
linear combination s of Gaussian functions of the
electron-hole separation to account for correlation in the
exciton

reliable for L in the transition region. However, we have
not yet tried Inore complicated forms for O'. Exciton ex-
cited states could also be described with variational wave
functions. %'e have not attempted to model any excited
states by use of a variational approach.

A configuration-interaction approach has also been
used to calculate exciton states. The electron-hole wave
function is expanded in terms of products of the electron
and hole single-particle, noninteracting eigenstates. The
kinetic energy and interaction matrix elements ' are
found using this basis, and the Hamiltonian is diagonal-

ized to find the eigenstates. The number of basis func-
tions included in the expansion is increased until the
desired accuracy is achieved. In very small boxes, the
electron and hole are frozen in the lowest single-particle
levels and are uncorrelated. As I. increases, the electron
and hole become correlated and higher energy levels are
mixed into the exciton ground state. The CI approach is
ideal for studying the onset and evolution of the
electron-hole correlation as L increases because the mix-

ing of higher-energy states is explicitly included.
Using the exciton variational wave function, we also

calculate the electron-hole separation R in the plane of
the disk and the exciton ground-state oscillator strength
f. For R we calculate

R = ( (», —x/, )'+ (y, —y/, ) ) ' ',
where the brackets denote the expectation value in the
exciton ground state. Since we assume that the well

width u/ is small and the electron and hole are confined to
the lowest z subbands, ( (z, —z„)')is a function only of u/

and does not change as the quantum confinement (L)
changes.

For a multielectron system one can derive25 the follow-

ing f sum rule:

where

2 s p„ t

m(E, E,)—
The sum in Eq. (5) is over all states of the system, X, is

the number of electrons, m is the electron mass and the
sum in Eq. (6) is the sum over all electrons.

The oscillator strength for the exciton ground state is

ex p~ 0

f,.=
m F.,„—Eo

where ~ex) and ~0) are the states with and without the
exciton. Using the envelope-function approximation, one
can derive

2E2 2

f,„= Jq/, „(r„r,)d r,
m E,„—Eo

where I' includes all intracell matrix-element efFects, %',
„

is the exciton envelope function given, for example, by
Eq. (3) with the electron and hole at the same position. If
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0',
„

is normalized as one exciton per quantum box in Eq.
(8), then N, [Eq. (5)] is the number of electrons in the
box. This expression has been derived previously for
the oscillator strength of exciton bound to neutral donors
and acceptors. Equation (8) also reduces to the oscillator
strength of a free exciton if %,„(r„r,) is independent of
re.

All of the calculations have been performed with the
assumption that the boxes are GaAs wells. Since infinite
barriers are used, the results are independent of the pa-
rameters of the barrier. The GaAs parameters used are
a=13.1; mi, =m~~, 0—067. m; for light holes
m J p,

——0.09m, m ii,
——0.377m; and for heavy holes

m j&
——0.377m, m~~&

——0.09m. Energies are scaled by elec-
tron efFective Rydberg R, =e m, /2aoe =5.3 meV. No
attempt has been made to model matrix-element effects
included in P. However, to obtain the correct order of
magnitude for f we use P /m =1 eV, which is typical for
III-V semiconductors.

III. RESULTS

Ezr is the energy of an uncorrelated, noninteracting,
electron-hole pair con6ned in the lowest-energy
quantum-box states. Er is the shift in exciton energy that
occurs when the interactions are included. EKE and Ec
are the kinetic and Coulomb energies for the exciton.
Furthermore, Er and Ec are related by

Er =Ec+~EKE

where DEKE is the change in kinetic energy which occurs
when a noninteracting electron-hole pair become corre-
lated by the interactions. These energies are shown in

Fig. 3. The confinement energy Ezi displays the most
rapid variation as L decreases. This would suggest that
con6nement effects are important even for L ~100 nIn.
However, for these L, the exciton is much smaller than
the box, and the exciton ground-state energy EGs is
affected little by confinement. The exciton kinetic and
CouloInb energies show a similar weak dependence on L
for larger boxes. In fact EKE is much larger than E&r for

Calculations have been performed for excitons in quan-
tum boxes Inade from ~elis with m=O, 2, and 5 nm. %e
present results for excitons in two-dimensional boxes
(m=0) first to illustrate qualitatively the eff'ects of quan-
tum confinement as L is varied. %'e then present results
for excitons in quasi-two-dimensional boxes (m=2 and 5
nm) to show quantitatively the changes which occur
when the box has a 6nite-well width.

The ground-state energy EGs of the confined heavy-
hole (light in-plane mass and heavy perpendicular mass)
exciton in a square, two-dimensional (+=0) box is shown
in Fig. 3. Since m=O, no confinement energy due to per-
pendicular motion is included. The results were obtained
using the variational wave function. For small L, accu-
rate energies can also be obtained by the CI approach and
these energies agree with energies obtained variationally,
Equation (3) should be most appropriate for the heavy-
hole exciton because the in-plane hole mass and the elec-
tron mass are similar. The CI calculations con6rm that
the electron and hole in the heavy-hole exciton can be
treated equivalently, as in Eq. (3), because the electron
and hole parts of the wave function determined by the CI
calculations are almost the same.

At small L the confinement energy increases as 1/L,
and the interaction energy increases as 1/L. The
con6nement energy dominates, and the ground-state en-
ergy increases monotonically with decreasing L. Similar
results have been obtained in calculations for microcrys-
tallites. ' ' At large L (L & 100 nm), the exciton
ground-state energy approaches the energy for the
unconfined, two-dimensional exciton [ 4E„,where 8„—
is the exciton (reduced-mass p, ) efFective Rydberg]. The
shift from the limiting value is less than 5% for L 100
nID.

There are two ways to split the ground-state energy to
illustrate the effects of quantum con6nement:

EGs E1vr+EI ~

EGS EKE ++C

0

P.O-

-8.0—

1
L(nm)

FIG. 3. The ground-state (GS) energy of an exciton confined
in a square box with sides of length L. The exciton kinetic ener-

gy (KE) and Coulomb energy (C), the energy of a noninteract-
ing electron-hole pair (M), and the interaction energy (I) are
shown. For these results m =0, m

I~
z
——0.09m, and

m, p,
——0.377m.
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large L. Most of the kinetic energy of an exciton in a
large box is the kinetic energy due to correlation as an ex-
citon, and only a small part is due to quantum
confinement. As L decreases, EKE increases more rapidly
than Ec, indicating that the kinetic-energy e8'ects are
more sensitive to confinement than are Coulomb interac-
tions. Moreover, as L decreases, EKE approaches E~z,
indicating that the correlation effects in the exciton due
to the interactions are becoming less important and that
quantum confinement makes the more important contri-
bution.

Recently, Wu er al. ' showed that the broad photo-
luminescence peaks observed for excitons in quantum
boxes could result from inhomogeneous broadening
due to variations in box size because the exciton energy
was a sensitive function of L. For the exciton energy
they used EM, which varies as 1/Li Our . results show

that the actual exciton energy Eos is much less sensitive
to L. For L «100 nm, Eos is almost constant; and for 30
nm &L 5 100 nm, Eos changes more slowly than ENI by
a factor of 2 or more. Inhomogeneous line broadening
should not aFect peak widths as much as suggested by
Wu et al. because L «30 nm for boxes currently being
fabricated.

The ground-state and interaction energies for confined,
two-dimensional ( w =0) exci tons with in-plane hole
masses m

~)I,
——0.090m and 0.377m are compared in Fig. 4.

Coulomb eC'ects are weaker, and quantum confinement
occurs at larger L for the heavy-hole exciton because this
exciton is formed from a hole with a light in-plane mass.
The confined, two-dimensional (w=O), heavy-hole exci-
ton has a higher ground-state energy than the light-hole
exeiton. However, when m&0 and the confinement ener-

gy for perpendicular motion is included, the heavy-hole
exciton has the lower ground-state energy.

As L decreases and confinement effect become dom-
inant, the splitting between the quantum-box single parti-
cle states becomes large, and the electron and hole in the
exciton become increasingly confined to the lowest-
energy well states. In the limit of complete quantum
confinement, the interaction effects would be independent
of hole mass, because the hole would occupy only the
lowest-energy state and thus would have a wave function
which was independent of hole mass. From Fig. 4, it is
clear that the onset of complete quantum confinement
occurs for L ~10 nm, where EI becomes insensitive to
f1'

(j II ~

One might expect the onset of quantum-confinement
e8'ects to occur when the size of the exciton is compara-
ble to the size of the box. One might also expect the on-
set of quantum-confinement effects to occur when the
splitting b,E&z between the ground state for a nonin-
teracting pair and the first excited state that can mix with
the ground state is comparable to El. The electron-hole
separation [as defined in Eq. (4)] for a free, two-
dimensional exciton is

40

mh = 0.090

mh = 0.377

—8.
1

L(nm)

FIG. 4. The ground-state (GS) and interaction (I) energies
for confined, t~o-dimensional (m=0) excitons arith in-plane
Glasses Nl

~~
g =0.090Ptl and Pt7,

tI h =0.37701 as indicated. The
horizontal curves give the limiting values for free tvro-

dimensional excitons.

a =v'3/8eao/p,

where ao is the Bohr radius and )Li the exciton reduced
mass. For m

t~
I,
——0.090m, a = 10.9 nm; and for

m~~ &
——0.377m, a =7.46 nrn. Thus the exciton radius is

an order of magnitude smaller than L (-100 nm), where
confinement effects begin. In fact, the transition to corn-
plete confinement occurs (L —10 nm) when the length of
the box is comparable to the free-exciton radius. The ra-
tio of interaction energy to level splitting EI/EE~I gives
a more accurate criterion for the onset of confinement
effects. For m~~ I,

——0.090m, El/b, EM ——1 when L=65
nm; for m~~ I,

——0.377m, EI/EEM =1 when L=36 nm
(see Fig. 5). Thus the level spacing becomes comparable
to the interaction energy for L in the middle of the transi-
tion region from negligible (L 5100 nm) to complete
confinement (L ~10 nm). Furthermore, the shift of this
transition to lower L for the exciton with the heavier in-
plane mass is consistent with the shift of the value for L
where Z, yes» ——1.

In a two-dimensional (w=O) quantum box the elec-
tron-hole interaction has the Coulomb singularity. In a
quantum box with a finite thickness (w&0) the efFective,
two-dimensional, electron-hole interaction is weakened
because the singularity is cutoff' by the smearing of the
wave function in the z direction. This weakening of the
effective electron-hole interaction changes the exciton en-
ergies quantitatively but not qualitatively. Figure 6
shows the change in interaction energy
bEI =EI(w) —Ez(w=O) that occurs for a box with a
finite w. (The exciton energy for w&0 would also include
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2A

0.8

00

FIG. 5. Ez/Ezz and El/AE&I for con6ned two-dimensional

( m=0) excitons.

the confinement energy for the z direction. ) As expected,
the shifts are larger for excitons with heavy in-plane holes
and for thicker wells. More importantly, EEr is indepen-
dent of L for large boxes (L & 50 nm), and b,Er becomes
independent of m i z for L ~ 10 nm (the onset of complete
confinement). Eos (m&0) has the same sensitivity to box
confinement as Eos (w=O). Thus the effects of box

i 'LD

con6nement should be qualitatively the same independent
of w. The calculations were performed by using infinite
barriers to de6ne the con6nement in the z direction. Fin-
ite barriers appropriate for the band discontinuity be-
tween GaAs and Al„Ga, „Asshould be used. However,
the e8'ects of a 6nite barrier can be modeled by use of a
wider well with an infinite barrier. Little qualitative
change in exciton energies would occur in a finite-barrier
model since the qualitative behavior of the energies is in-
dependent of u in the in6nite-barrier model.

In the limit of very small boxes, the splitting between
noninteracting pair levels becomes very large, and the
electron-hole pair is con6ned to the lowest-energy state.
In this limit the direct Coulomb energy makes the dom-
inant contribution to Ei. In Fig. 7 the interaction ener-

gy, EI' found in the approximation of complete quan-
tum con6nement with the electron-hole pair in the
lowest-energy state and denoted the one-subband approx-
imation, is compared with EI found with Eq. (3). The
one-subband approximation gives 90% of the interaction
energy for L &10 nm. The accuracy is better when the
interactions are weaker (i.e., for large w or light in-plane
hole mass).

For two-dimensional (w=O) excitons, EI' /EI =1
CL for —small L. Since Ei' —1/L, EI EI'"+C——' at

small L. Thus there is a finite shift between EI and E) '
due to correlation that occurs as a contribution from
second-order perturbation theory even for very small I..
Our results suggest that C'= l.2 R„,where R„is the ex-
citonic efkctive Rydberg. For boxes with wells of 6nite
thickness (w&0), the singularity in the effective interac-
tion is cut off, El' /EI=1 CL for—small L, and the
second-order contribution due to correlation vanishes for
small I.. If we de6ne the correlation energy to be
E"'=El EI' then F—ig. 7 shows that less than 10% of
EI is due to correlation for L & 10 nm, but more than half
of El is due to correlation for L ~ 50 nm.

The probability I', that the exciton is in the uncorrelat-
ed, lowest-energy pair state is shown in Table I for a

0.75

0.50

0
0 0.25

FIG. 6. Shift of the exciton interaction energy AEI for m=2
and 5 nm. The solid curves are for the light-hole exciton
(m, z

——0.09m, m~~I,
——0.377m); the dashed curves are for the

heavy-hole exciton.

FIG. 7. One-subband approximation for the con6ned-exciton
interaction energy: for an exciton with m~~ I,

——0.09m and
m~ I, ——0.377m, (a) m=O, (b) m=2 nm, and {c)m=5 nm; and (d)
for the light-hole, two-dimensional (m=0) exciton.
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TABLE I. Contribution of higher subbands to the interac-
tion energy of a confined two-dimensional exciton with light in-

plane hole mass. Ez"' is the interaction energy found by use of
n electron and n hole subbands; EI is the interaction energy
determined with a variational wave function. P, is the proba-
bility that the electron-hole pair is in the lowest-energy pair
state, calculated by use of n =6.

*

O~ ~t ~

~'+~wna e ~

I (nm)

5

10
20
60

100

0.960
0.921
0.837
0.544

0.979
0.956
0.902
0.665
0.491

EnsbyE

4

0.996
0.991
0.972
0.824
0.666

0.999
0.997
0.989
0.899
0.773

P)

0.997
0.988
0.950
0.641
0.413

h
=0.377

con6ned two-dimensional exciton with light, in-plane
hole mass. Correlation efFects must be included to obtain
accurate EI even in the limit of complete quantum
confinement (P, =1). These correlation effects can be
added perturbatively by going beyond the one-subband
approximation for the exciton wave function. Table i
shows the interaction energy E&

' calculated by use of n

(n=1,2, 4, and 6) electron and n hole subbands. When
L & 10 nm, use of six subbands in a wave-function expan-
sion accounts for almost all of the correlation energy.
For L ~ 50 nm, higher subbands must be included to ob-
tain accurate correlation energies. Correlation in the
wave function is even more important for properties
which are more sensitive to the wave function. For ex-
ample, use of six subbands does not provide an accurate
oscillator strength because the oscillator strength is sensi-
tive to the exciton wave function evaluated for vanishing
electron-hole separation.

The electron-hole separation R for con6ned two-
dimensional excitons is shown in Fig. 8. For I. ~ 100 nm,
R is unafFected by the con6nement. For I. &10 nm, R ap-
proaches the value expected in the limit of complete
confinement. The onset of confinement effects and the
transition to complete confinement determined by the be-
havior of R are the same as obtained from the behavior of
the ground-state energy. 8 for an exciton with a light
in-plane hole mass has also been calculated by use of only
the part s of the exciton wave function due to correla-
tions. For large I., s is the same as the bulk-exciton wave
function. As L decreases, correlations become less im-
portant, and the value of R determined with a wave func-
tion which contains the correlation efFects but no
con6nement el'ects actually increases. Box con6nement
rather than correlation effects shrink the exciton as I. de-
creases. When the well has finite thickness (w+0), the
eff'ective Coulomb interaction is weaker so R is larger.
However, as with the E&s, R does not change qualitative-
ly (see Fig. 9) when w&0. The transition from negligible
confinement and the onset of complete con6nement are
insensitive to m.

Oscillator strengths for excitons with light in-plane
hole mass are shown in Fig. 10. The exciton oscillator
strength depends on the integral of %(r„r,) and on an
energy denominator [see Eq. (8)]. For small L, the exci-

t

100
L (nm)

FIG. 8. Electron-hole separation R of a confined, two-
dirnensional (+=0) exciton in a square box. The horizontal
solid lines indicate R for unconfined excitons with the indicated
in-plane hole mass. The other solid curve is R calculated for an
uncorrelated electron-hole pair confined to the lowest pair of
subband states. The dashed curves that interpolate between the
solid lines are the R for the exciton states. The upper dashed
curve is R for mz ——0.090m calculated by use of only the corre-
lated part s of the exciton wave function.

1Q—

5
I

Q i

FIG. 9. Electron-hole separation of a confined exciton in a
square box (m=O, 2, and 5 nm as indicated). The solid {dashed)
curves are for excitons with heavy (light) in-plane hole mass.
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8.0 ))

0.5—

FIG. 10. Oscillator strength for the exciton con6ned in a
square box (m=0, 2, and 5 nm as indicated). The solid curves

are for correlated excitons. The dashed curves are for uncorre-
lated electron-hole pairs in the lowest-energy pair states. In all

cases m& q
——0.377m and m~~ q ——0.090m.

0
0

FIG. 11. Exciton oscillator strength normalized by the area
L of the box. The curves are the same as in Fig. 10.

ton confinement energy varies as 1/L . Thus as L de-
creases, the energy denominator increases and f vanishes.
Similarly, the exciton confinement energy for motion in
the well varies as 1/wz; thus f decreases as w decreases.
However, no confinement energy for z motion is included
in E when w=O, so f(w=O} is actually larger than

f (w&0).
For large boxes the energy denominator is weakly

dependent on L, so the integral of 4(r„r,} determines
the behavior off. Because of the di8'erence in wave func-
tions, the oscillator strength for an exciton in the fully
correlated ground-state f, „

is very difFerent from the os-
cillator strength f for an uncorrelated electron-hole pair
in the lowest-energy pair state. The two oscillator
strengths are compared in Fig. 10. For the two-
dimensional (w=O) exciton,

%(r„r,)-1/Q A A,„,
where A =I. is the two-dimensional area of the disk and2'

A,
„

is the area of the exciton. Consequently,

J+(r„r,)d r, -L /A,„.
For a fully correlated exciton, the oscillator strength is
calculated from the coherent superposition of the ampli-
tudes for absorbing a photon in each unit cell. Thus f

2
CX

increases as I. . For the uncorrelated two-dimensional
(w =0) electron-hole pair

%(r„r,)= cos (kx, }cos (ky, }

and J 4(r„r,)d r, =l. Consequently, fz is independent

of L for large L. For L ~&A,„,f,„

is larger than f .
For L 5 A,„,the exciton, if it were unafFected by
confinement, would have an oscillator strength compara-
ble to f . However, box confinement greatly weakens the
correlation efFects in the exciton. Thus for large L, f,„

is
determined by the coherent superposition of transitions
in each unit cell; for small L, f,„converges to f because
the pair becomes uncorrelated.

The oscillator strength is often normalized by the num-
ber of unit cells (sites, molecules, etc.) in the sample to
give an oscillator strength per unit cell. Figure 11 shows

f normalized by the area of the disk. For large L,
f,„/L is independent of L since f,„

is the coherent su-

perposition of transitions in each unit cell. For small I.,
there is a strong enhancement of the normalized f. This
occurs for L where correlation eff'ects are weak and f,„

is
converging to f~. The enhancement in f is due to the in-
creased electron-hole overlap that arises from the box
con5nement and is not due to coherent superposition
effects.

This large enhancement in f /L in the limit of com-
plete quantum con6nement has motivated others to sug-
gest that quantum boxes should have enhanced optoelect-
ronic properties. ' ' However, there is substantial
enhancement in f/L even for L ~ 10 nm. Thus quan-
tum boxes which are not in the limit of complete quan-
tum confinement may also provide enhanced optoelect-
ronic properties.

Recent photoluminescence excitation measurements on
quantum disks have revealed an enhanced luminescence
ef6ciency. Kash et al. suggested that the enhancement
could arise from an increase in the radiative recombina-
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1

L(nm)

FIG. 12. Ratio of oscillator strengths for con5ned excitons
with heavy and light in-plane hole masses. The w values are in-
dicated.

tion rate of the lowest-energy exciton, an increase in the
rates for scattering of earners to band minima, or a de-
crease in nonradiative-recombination rates. They dismiss
the first explanation by claiming that the structures are
too large (L -50 nm) for confinement effects to enhance
recombination rates. In Fig. 12 we compare the oscilla-
tor strengths f and f for excitons with heavy and
light in-plane hole masses. For L «100 nm, we see an
enhancement of f relative to f . This occurs be-
cause confinement effects, which cause the enhancement
of f, are more important for the exciton with the light
in-plane hole mass. Since this exciton is the lower-energy
exciton, confinement effects do increase the relative
recombination rates of the lowest-energy exciton even for
L =100 nm. Thus this mechanism cannot be discounted
as a cause of the enhanced photoluminescence ei%ciency.

IU. CONCLUSIONS

Confining an electron and a hole in a quantum box in-
creases their direct Coulomb interaction because the two
particles are constrained to occupy the same space
despite any cost of increased kinetic energy. However,
enhancement of the direct Coulomb interaction does not
necessarily imply that Coulomb effects will be more im-
portant. The importance of Coulomb effects is deter-
mined by the extent to which the electron and hole can
correlate in forming an exciton. Single-particle energy
levels scale as I/L and Coulomb energies scale as I/L
Thus confinement effects should become dominant as a
box shrinks, and the electron-hole pairs will become un-
correlated despite the enhancement of the direct

Coulomb interaction as the box shrinks. For square,
GaAs quantum boxes, confinement effects become impor-
tant when L —100 nm. At this length scale the box is an
order of magnitude larger than the free exciton. The
single-particle, quantum-box energy levels can shift
significantly as. L changes, even when L ~ 100 nm. How-
ever, these energies and the splittings between these levels
are still much smaller than the free-exciton kinetic and
Coulomb energies when L ~ 100 nm. Consequently,
confinement has little effect on the exciton for L & 100
nm. For L =100 nm, the confinement energies become
comparable to the exciton energies and the Coulomb in-

teractions become less effective at mixing single-particle
states to form a correlated exciton. The transition to
complete quantum confinement occurs when L & 10 nm.
At this length scale, the box and exciton are the same
size, the exciton energy is dominated by confinement en-

ergies, and there is no level mixing so the electron-hole
pair occupy the pair of lowest-energy, single-particle
states.

As the boxes shrink there is a larger reduction in
electron-hole separation and an enhancement of the exci-
ton oscillator strength. These are confinement effects, not
effects due to the increase in direct Coulomb interaction
induced by the confinement. In fact, the electron-hole
separation determined solely with the correlated part of
the exciton wave function increases as the box shrinks,
indicating that correlation effects are becoming less im-
portant. Similarly, the enhanced confined-exciton oscilla-
tor strength is greater than the oscillator strength of a
fully correlated, bulklike exciton. The enhancement is a
confinement efFect because the electron-hole pair becomes
uncorrelated as the box shrinks.

The enhancement of the oscillator strength as L de-
creases can be significant even for L not in the regime of
complete quantum confinement. The observed increase
in luminescence efFiciency in photoluminescence excita-
tion measurements (for L-50 nm) may result in part
from the increase in the oscillator strength for the
lowest-energy exciton relative to the oscillator strengths
for other excitons. Calculations show that this increase
occurs for L «100 nm. Since the exciton oscillator
strengths are enhanced for boxes which are larger than
the limit for complete quantum confinement, these quan-
turn boxes may possess the enhanced optoelectronics
properties previously predicted for boxes which are in the
complete confinement limit.
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