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%e discuss the nonlinear behavior of a random composite material in which current density and
electric field are related by J=o E+a

~

E
~

'E, with cr and a position dependent. To first order in the
nonlinear coe%cient a, the effective nonlinear conductivity of the composite material is shown to be
expressible as a, = (a

~
E

~

~) /Eo, where Eo is the magnitude of the applied field, the angular brack-
ets denote a volume average, and E is the electric field in the 1inear limit (a =0). To the same order,
the coeScient a, is also shown to be related to the mean-square conductivity fiuctuation in an analo-
gous problem in which the composite is linear but the conductivity fluctuates: The connection is
Aa, = V(50. ,), where V is the volume, Lr, , is the rms conductivity fluctuation, and A, is a con-
stant with dimensions of energy. In the low-concentration regime (p gg 1, where p is the concentra-
tion of nonlinear material), an expression for a, is derived which is exact to first order in p. The ra-
tio a, /o, (where o, is the conductivity of the composite) is shown to diverge near the percolation
threshold for both a metal-insulator composite and a normal-metal-perfect-conductor composite;
the power law characterizing the divergence is estimated. The results are generalized to nonlinear
dielectric response at finite frequencies. At low concentrations, the cubic nonlinear dielectric sus-

ceptibility is found to be 7, =pX;
~

3et, /(e;+2el, )
~
'[3ei, /(e;+2es )]' (plus terms of higher order in

7;), where p is the volume fraction of inclusion, e; and ez are the dielectric constants of the non-
linear inclusion and of the host, and 7; is the nonlinear electric susceptibility of the inclusion. This
expression becomes very large near a Maxwell-Garnett resonance, in analogy with similar local-field
effects in surface-enhanced Raman scattering.

I. INTRODUCTION

There are many electrical-transport phenomena in
solids in which the current density is not linear in the ap-
plied electric field. At zero frequency, such nonlinearities
play a role in such diverse effects as dielectric breakdown,
the burning out of fuses, and the field dependence seen in

hopping conductivity in heavily doped semiconductors.
At finite frequencies, the nonlinear dependence of dis-
placement current on electric field in some materials is
the basis of nonlinear optical phenomena.

In this paper we consider some aspects of nonlinear be-
havior in granular materials and other composites. Non-
linearities may be enhanced in such materials, particular-
ly near a so-called percolation threshold at which one
component of the composite just forms an infinite con-
nected path. Recent measurements and calculations have
estimated the enhancement of these nonlinearities in
metal-insulator composites. ' ' At 6nite frequency, little
work has been carried out near the percolation threshold.
Some evidence, such as measurements on CdS "quantum
dots" and related materials' embedded in an insulating
host, suggests that dilute suspensions of small particles
may have enhanced nonlinear susceptibilities at special
frequencies.

Our particular goal in this paper is to derive several
general results applicable to cubic nonlinearities. These
are the leading nonlinear terms in homogeneous materials
with inversions symmetry. We derive a general expres-
sion for the efkctive cubic susceptibility of a composite
material, in terms of the electric 6eid distribution in the

related linear material. This expression is exact through
first order in the nonlinear susceptibility. We also prove
an interesting connection between the effective nonlinear
susceptibility and the mean-square resistance Auctuations
in a related linear material. Such a connection has previ-
ously been proven by Aharony' for a special case, but
our result is considerably more general. Finally, we use
our general formulation to obtain an exact expression for
the nonlinear susceptibility at small concentrations of im-
purities, once again through first order in the nonlinear
susceptibilities of the constituents.

Granular materials are of interest because they may
have large nonlinear susceptibilities at zero or at finite
frequencies. We briefly consider two circumstances in
which this may occur: near a percolation threshold, and
at frequencies near the "Maxwell-Garnett" or surface-
plasmon resonance. We analyze these cases using exact
inequalities, previous results from the study of conduc-
tivity fluctuations in granular matter, and a low-
concentration approximation.

The remainder of this paper describes these results in
more detail. In Sec. II we present exact results for the
cubic nonlinear susceptibilities of granular systems.
Several specific examples are then discussed in Sec. III.
A brief discussion follows in Sec. IV.

II. FORMALISM

We wish to calculate the eft'ective linear and nonlinear
susceptibilities of a medium which is both inhomogene-
ous and nonlinear. The goal is to know the nonlinear sus-
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ceptibility of the composite material, given the linear and
nonlinear susceptibilities of the host and the inclusions.
In this section we will prove several general results about
these nonlinear susceptibiliti. es.

We consider the case of nonlinear conductor at zero
frequency. This example will serve as a paradigm for
nonlinear susceptibilities of all kinds. We assume that
the current density J is related to the local electric field E
by the nonlinear equation

J(x)=o(x)E(x)+a(x)
i
E(x)

i
E(x), (2.1)

where o(x) and a(x) are the linear and nonlinear conduc-
tivities of the medium Since the medium is inhomogene-
ous as well as nonlinear, both o and a depend on posi-
tion. In writing Eq. (2.1) we have assumed that all com-
ponents in the inhomogeneous medium have inversion
symmetry. This implies that the leading nonlinear term
is of third order in the electric field.

Equation (2.1) must be supplemented by the usual elec-
trostatic equations, namely

V J=O,
VXE=O,

(2.2}

(2.3)

Note that Eqs. {2.2}—(2.4) are applicable not only to in-
homogeneous conductors, but also to other nonlinear
problems described by formally identical equations. An
important example is a nonlinear dielectric, in which the
electric displacement D is the divergence-free field, relat-
ed to E by a linear dielectric constant and a nonlinear
susceptibility. This case is discussed further below.

It is convenient to choose boundary conditions such
that the inhomogeneous conductor is represented as a re-
gion of volume V, surrounded by surface S. The bound-
ary condition is

and appropriate boundary conditions (specified below).
The set of equations (2.1}-(2.3), plus the boundary condi-
tions, constitute a boundary-value problem for J and E
which can be solved, in principle, given the geometry of
the inhomogeneous medium. Equation (2.3) implies that
the electric field can be expressed as the gradient of a po-
tential,

The coefficients o, and a, in (2.7) may be dined as the
effective Hnear and nonlinear conductivities of the com-
posite medium. Another possible definition is to relate
the total power dissipated, W= IJ E d x, to the effective

coeScients by the equation

W= fJ.Ed x= V(o,
~
Eo [ +a,

~
Eo

~
) . (2.8)

(2.9)

We now evaluate this expression through erst order in
a(x). The second term on the right-hand side may be
written, to first order in a (x },

W4 ——V(a{x)
~

E
~

)„„=(W4)i;„, (2.10)

where the subscript means that the electric field is to be
taken from the solution to the linear problem [a(x)=0].
Since a(x) is finite, E(x) will differ from Ei;„(x), the elec-
tric field which would exist if a(x) were identically zero.
The difference will be of first order in a(x}, and hence
will have only a second-order eff'ect on W„.

Likewise, in 8'2 we write

IV, = fo(x)
~
E„„(x)+5E(x)]

~

'd'x

It is shown in the Appendix that definitions (2.7) and (2.8)
are equivalent. %'e may thus choose whichever is the
more convenient for any given calculation.

%'e next prove an important exact connection between
the effective nonlinear conductivity a, and resistance
ffuctuations in a linear composite. The latter quantity
has been discussed extensively in a number of experimen-
tal and theoretical papers. ' A connection between
noise and the fourth moment of the current distribution
has been drawn 2 but the connection to nonlinearity has
not yet been made explicitly, except in a particular lattice
model. ' The proof to be presented here is quite general,
independent of the details of the composite morphology.
The identification is exact, however, only to Jt rst order in
the nonlinear conductivity a(x).

The proof is most easily accomplished starting from
definition (2.8) for the effective transport coefficients. We
write the power dissipated as

8'= o x E Ed x+a x E x=8'2+8'4 .

P= —Eox on S, {2.5) =( W2)s„+58'2, (2.11)

(J ) =o,Eo+a, i Eo i Eo . (2.7)

which, if the medium within V were uniform, would give
rise to a uniform electric field Eo everywhere within V.

Even in an inhomogeneous conductor, with these bound-
ary conditions, the space-averaged electric field within V
still equals Eo.

(E)=V 'f E(x)d x=E~. (2.6)

The eft'ective transport coeScients of the composite
can be de6ned in several ways. For example, the space-
averaged current density, (J), is related to the space-
averaged electric field, (E) (=Eo), by a nonlinear equa-
tion of the form

5IV2=2 fo(x)Ei;„(x).5E(x)d x=0 . (2.12)

This is a special case of Tellegen's theorem. Thus,
through first order in a(x), the effective coefficients o,
and a, are entirely determined by the behavior of the
electric 6eld in the linear problem:

Vo,
~
Eo~ =fo(x) [E„„(x)[ d x,

Va, iEoi =fa(x)iE„.„(x)i d x .

(2.13)

(2.14)

where Ei;„ is defined above, and 5E(x) is the extra elec-
tric field that is induced by a nonzero a (x). To first order
in a(x), the change in Wi due to the nonlinearity van-

ishes,
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%e next show that the nonlinear eff'ective conductivity
a, can be obtained from the resistance fluctuations in a
linear composite. The resistance Auctuation problem is
defined using the same geometry as in the nonlinear prob-
lem, and with the same boundary conditions on the po-
tential. %e assume that there is a linear relation between
current density J' and electric field E',

J'(x) =cr'(x)E'(x), (2.15)

and that the conductivity o'(x) is drawn from an ensem-
ble with a mean value cr(x} and a fluctuation of 5cr(x):

o'(x) =cr(x)+5a(x) . (2.16}

& 50 (x)5cr(x') &,„=Aa (x)5(x—x') . (2.17}

In Eq. (2.17) the notation & ),„means an ensemble aver-

age (to be distinguished from the spatial averages which
are denoted by unsubscripted angular brackets), 5(x—x')
is a three-dimensional Dirac 5 function, A, is a constant
with dimensions of energy, and a(x) is the nonlinear sus-

ceptibility defined in Eq. (2.1).
The effective conductivity of this network is denoted

o,' and is defined by the relation

(2.18)

where & ) denotes a volume average for one member of
the ensemble. Since o'(x) is fluctuating, the efFective con-

The mean value cr(x) is the same conductivity that enters
the nonlinear problem described above. The fiuctuating
part of the conductivity is assumed to be drawn from a
statistical ensemble, with zero ensemble average at each
point x, and with correlation functions obeying the rela-
tion

(2.20)

%e shall show that the nonlinear effective conductivity
a, can be determined from u, and 60, . Consider the re-
lation

Vcr,
'

I EOI = fJ'.E'd x, (2.21)

where J' and E' denote the current density and field in a
particular member of the ensemble of conductors with
conductivity a'(x)=cr(x)+5o(x). To first order in
5cr(x), the right-hand side of (2.21) is

f J' E'd'x = f J E„„d'x

+ f 5cr(x)E„„(x)E„„(x)d~x

+2f o(x)Ei;„(x).5E(x)d x . (2.22)

Here, o(x} is the ensemble-averaged conductivity at
point x, E„„(x)is the corresponding electric field which
would exist if the conductivity were cr(x), and
J(x)=cr(x)Ei;„(x). The last term in (2.22) can be shown

to vanish, which is a special case of Cohn's theorem. "
Combining (2.21) and (2.22}, we see that

V(a', —a, )
I EO

I

'= f 5a(x)
I Ei;.(x}

I

'd'x (2 23)

Upon squaring this equation and taking the ensemble
average, we obtain

ductivity of the composite is also fluctuating. %e can
define an ensemble average and root-mean-square Auctua-
tion by the relations

(2. 19)

V'(5a, }'
I EO I

"=f f &5«x)5«x') &., I Ei;.(» I

'
I Ei;.(x')

I

'd'x d'x'= ~f«x)
I Ei;.(x)

I

'd'x (2.24)

where the electric field E„„(x)appearing on the right-
hand side of Eq. (2.26) is the field which would exist if the
conductivity were o (x). Since the right-hand side is also
the integral which determines a, in the nonlinear prob-
lem [see Eq. (2.14}],we get

The result follows immediately from Eq. (2.10). If we
have a concentration p (by volume) of nonlinear material
2, embedded in medium 1, then the effective nonlinear
conductivity is

(3.1}
V(5cr, ) =ha, , (2.25)

which proves that the nonlinear eft'ective conductivity is
proportional to the mean-square conductivity Auctua-
tions in an analogous linear problem. [This equivalence
holds only if the noise has the special property (2.17).]

III. ILLUSTRATION

A. Dilute limit

An important special case of a nonlinear medium is the
dilute limit, in which a small amount of nonlinear medi-
um is embedded in a linear material. %hen both materi-
als are linear, the low-concentration limit is well known.
%e will derive the generalization of this approximation
for the nonlinear case.

ae pa2[3ai~(a2+2ai }] !3.2)

This is to be combined with the standard result for o-„ in

the limit p ~&1,

cr, = [c1r+i3p( r cc2ri)/(cr2+2cr~)] . (3.3)

where a2 is the nonlinear conductivity of medium 2 and

)2 denotes the average value in medium 2. This result
is valid to first order in az. If material 2 exists in the
form of spheres, then to lowest order in p it is suScient to
calculate the field within the spheres as if the outer ma-
terial were uniformly of type 1. This assumption gives,
for a„
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Because of result (2.25) proved in the preceding sec-
tion, Eq. (3.2) also gives the conductivity noise induced
when a fluctuating conductivity is introduced into a pre-
viously linear medium. The translation to the noise prob-
lem is straightforward. Medium 1 is assumed to be
linear, with nonfluctuating conductivity o. &. Medium 2
has a conductivity consisting of a nonfluctuating part o 2

plus a fluctuating part 5o 2 with zero mean and correla-
tion function

&5cr2(x)5cr2(x') }=Aa25(x —x') .

The composite medium has efFective conductivity o. and
rms fiuctuation in conductivity 5a „o,is given in the di-
lute limit by Eq. (3.3), while 5e, is obtained from (3.2) by
multiplying by v'A, /V.

B. Percolation threshoM

In the study of composite media, an important special
composition is the percolation threshold, at which one or
another of the two components first forms a connected
path across the sample. Many properties of composites
(conductivity, for example) are known to behave in singu-
lar fashion near the percolation threshold. ' We now
show that the nonlinear conductivity a, also behaves

singularly near this threshold, by exploiting the connec-
tion between nonlinearity and noise.

We consider first a mixture of conductor, conductivity
o, and nonlinear conductivity a, , present in volume frac-
tion p, and insulator, with o2 ——a2 ——0. Near p=@„ the
volume fraction at which the metallic component first
forms an infinite connected cluster, cr, -o, (p —p, )', and
we write a, /o, -(p —p, ) ". We can estimate a from
previous work on the analogous noise problem, as well as
the percolation problem. The results are summa-
rized in Table I for various models of lattice and continu-
um percolation. The details of the models are described
in the table caption and in the references cited. In all
cases studied, for both two and three dimensions, the rel-

ative strength of the nonlinearity, as described by the ra-
tio a, /0 „diuerges near p =p, . As shown earlier, this ra-
tio also governs the ratio of conductivity fluctuations to
conductivity in a noisy system near percolation, from
which we have deduced many of the results in the table.

Table I also shows analogous results for a mixture of
normal metal and perfect conductor. In this case, the
normal metal, present in volume fraction p„has linear
conductivity o.

&
and nonlinear conductivity a &, as before.

The perfect conductor has infinite linear conductivity.
The percolation threshold p, in this case denotes the
volume fraction of medium 1 at which the perfect con-
ductor forms a connected path and shorts out the resis-
tance. Near but below p„o, is large and finite, varying
as o, -u, (p, —p) ', while the ratio
a, /o, -(a, /cr i)(p, —p ) ". Values of s and x' are quoted
in Table I, which also indicates the source of these values
for various models. Once again the dimensionless ratio
describing the strength of the nonlinearity (or of the
noise, in the analogous fiuctuation problem), a, /cr„
diverges near p, in both two and three dimensions.

We now prove an inequality which shows, quite gen-
erally, that the strength of the nonlinearity diverges near
percolation for both cases just discussed. Consider first
the composite of normal metal and insulator. The
coefficients a, and rf, may be written (again through first
order in a, )

&.=pa i &
I Ei. I

'& .i/ I Eo I

'

, =p, & [ E„„~')'.„/ ~
E,

~

',
(3.4)

(3.&)

0~ /lT q )0 )
/0'

)
2 2 (3.7)

or, if it is assumed that a, /0, ~aries near p=p, as

where & )m„means that the average is to be taken over
the metallic portion of the composite. Since

(3.6)

it follows that

TABLE I. Values of the percolation exponents t, s, and K for various models of composites in two
and three dimensions (2D, 3D). The exponents t, s, K, and K' are defined in the text. The names "lattice
model" and "Swiss cheese" refer to particular models of percolating systems defined in Halperin et al.
(footnote b below), The values K~ and K„are lower and upper bounds to K obtained in Refs. 16 and 17;
KI and K'„are lower and upper bounds on K' from Ref. 17.

Structure

2D lattice model
2D Swiss cheese"
3D lattice model
3D Swiss cheese

1.29'
1.29
2.0'
2.5'

1.29'

0.95

1.07"

1.53'

1.37'

1.60"

1.12'
3.16~'"

2.33"

5.14~'"

1.07'

0.38' 1.02'

K

1.34'

0.66'

'References 12, 28, and 29.
B. I. Halperin, S. Feng, and P. N. Sen, Phys. Rev. Lett. 54, 2391 (1985).

'Reference 28.
Heermann and Stau6'er, Ref. 30.

'Reference 16.
'Reference 17.
~R. Rammal, Phys. Rev. Lett. 55, 1428 (1985).
"Tremblay et al. , Ref. 27.
P. M. Hui and D. Stroud, Ref. 22.
'Reference 15.
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(p —p, ) ", that

x&O, (3.8)

where ~ is defined the same way as in Table I. Since (3.8)
is a strict inequality (the equality sign is not allowed for
any except a 5-function distribution of field strength), the
exponent ~ is positive definite and the relative noise
strictly diverges near p, . A similar argument can be used
to derive the same inequality for a composite of normal
metal and perfect conductor.

eral expression for the nonlinear effective susceptibility:

Vg,
~
E,

~

"=JX(x)
~
E„„(x)

~

'E„„(x)E&;„(x)d'x .

C. Nonlinear optical properties

These results can also be mapped onto nonlinearities at
finite frequencies. In this case, both conductor and insu-
lator are best described by complex dielectric functions
rather than conductivities. The imaginary part of the
dielectric functions are related to the ac conductivities. '

The formal mapping of our previous results is straightfor-
ward. We consider a two-component composite, the ith
component being described by a nonlinear relation be-
tween electric displacement D and electric field E of the
form

D=e;K+X;
i Ei E. (3.9)

As in the static case, the lowest-order nonlinear suscepti-
bility„ for a material with inversion symmetry, is the cu-
bic term. In principle, however, the nonlinear suscepti-
bility X;, like e;, is complex and frequency dependent.
The quantities in Eq. (3.9) are, in general, complex. The
physical fields, denoted Ephy and D»„„are, of course,
real and are related to E and D by

Ep„y, ——Re(Ee '"'),

D~h„,——Re(De ' '} .

(3.10)

(D) =e,ED+X, i E0 i E0,
DEd x= V e, Eo +X, Eo (3.12)

In Eq. (3.12) the second factor in the integrated is E and
not E*, as might have been expected; otherwise, one
could not carry out the necessary integrations by parts to
prove (3.11) and (3.12) equivalent. Arguments analogous
to those which lead to Eq. (2.14) give the following gen-

Besides the cubic term included in (3.9), there is also a
frequency-tripling term, cubic in the applied field, which
leads to a polarization at frequency 3' [all the terms in-

cluded in (3.9) are at frequency co]. We have not con-
sidered this term although it, too, may be enhanced in a
composite medium.

If the eddy currents can be neglected, as will usually be
the case when the particie dimensions are small com-
pared to a wavelength of radiation, then the electric field
in (3.9) is curl-free, satisfying V XK=0, while the dis-
placement field is divergenceless, V.D =0. The equations
describing D and E in the inhomogeneous medium are
thus formally identical to those for J and E at zero fre-
quencies, and we can carry over many previous results
for nonlinear conductiUities to nonlinear susceptibilities.
One small but significant change appears in Eqs. (2.7) and
(2.8}. The equations analogous to these are

(3.13)

In particular, when a small concentration of spheres of
nonlinear material is included in a linear host, the
effective nonlinear susceptibility is

I,=pg, i
3@ij(e, +2ez)

i [3ez/(e, +2@2)], (3.14)

where 7, is the nonlinear susceptibility of material 1,
present in volume fraction p gal, and e] and e2 are the
linear dielectric functions of material 1 and host material
2. Once again, this result is valid to first order in 7, . Ex-
cept for the absolute-value signs, our result is the same as
that obtained in Ref. 33 by a different argument. If one
follows the argument in the latter reference, taking into
account the absolute-value signs appearing in Eq. (3.9),
one correctly obtains Eq. (3.14).

An interesting new feature is present in Eq. (3.14)
which is lacking at zero frequency. Namely, one gets a
vast enhancement of nonlinearity at frequencies such that
e, +2ez-0, a situation which cannot occur in the static
limit. But at finite frequencies, this is the condition for
the occurrence of a surface-plasmon resonance, i.e., a res-
onant mode of the charge in the small particle. This re-
sults is potentially of great practical importance in devel-
oping materials of large nonlinear susceptibilities, but has
received to date only a little discussion in the litera-
ture. ' The enhancement seen in Eq. (3.14) is rem-
iniscent of a similar enhancement seen in Raman scatter-
ing from small particles ("surface-enhanced Raman
scattering") and arises from the same reason: a great in-
crease in electric field near or within a small particle at
certain characteristic frequencies.

IU. DISCUSSION

The results we have presented here show that, not
surprisingly, nonlinearities can be strongly enhanced in
composite media. A number of previous papers' ' have
also reached this conclusion in particular cases. The
present results offer a rather general formulation of the
problem, and show that this enhancement exists in a wide
variety of cases.

Particularly promising for further work are nonlinear-
optical effects in composites. We have considered here
only one effect of this kind: cubic nonlinearity in which
the induced polarization is at the same frequency as the
incident field. There are many other effects to be con-
sidered. Two examples are frequency doubling or tri-
pling, and nonlinear effects arising from simultaneous ap-
plication of a dc and an ac electric field. There are indi-
cations that some of these other effects may also be
strongly enhanced in small particle composites. If
so, these materials may well be useful for a variety of
nonlinear-optical applications. The cubic nonlinearities
discussed here are themselves of much potential interest
for various combinations of real materials. We plan to
investigate these and other cases in future work.
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APPENDIX: PROOF OF KQUIVALKNCK
OF KQS. (2.1) AND (2.8)

O'= — J-V d x

= —fV.(JQ)d x

n.JPd x

= —I n.Jpod x

=V(J).E, . (A2)

One possible de6nition of the effective linear conduc-
tivity o., and effective nonlinear conductivity a, is to
write the integrated power dissipated as

8'= JEd x=VO, Ep +a, Ep . Al

To relate this form to our other definition, Eq. (2.7), we
write Was

(J&=tr,E,+a, ( Eo
~

'E, , (A3)

which is our other equivalent defining equation, Eq. (2.1),
for o, and a, .

Equating (Al) and (A2), and noting that these are both
valid for any choice of Ep, we equate the coeScients of Ep
to obtain
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