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Work function and image-plane position of metal surfaces

P. A. Serena, J. M. Soler, and N. Gare&a

(Received 30 November 1987)

%'e present fully-self-consistent calculations of the electron density in some characteristic simple-
metal surfaces. %e obtain exact numerical results for the electron density using local pseudopoten-
tials averaged in the directions parallel to the surface and very-thick-slab geometries. The resulting
work functions considerably improve the agreement between experiment and perturbative results.
Our results show that the distance of the image plane to the first atomic layer depends only weakly
on the crystallographic orientation of the surface, in marked contrast with the strong dependence
predicted from the jellium model.

The density-functional formalism' has constituted a
powerful tool for the study of the electronic structure
and fundamental properties of many systems. " This
theory has been shown to be specially useful in the study
of the metallic surface. Using this scheme, good quanti-
tative results have been obtained for the electronic-
charge-density profile in the surface region, the surface
electrostatic dipole, the work function, the surface ener-

gy, potential barriers, the image-plane position, etc.
In this work we will continue the precursory studies of

Lang and Kohn on several properties of metal sur-
faces. In their work they used the we11-known jellium
model in which the ionic point charges are replaced by a
semi-infinite distribution of constant positive charge.
They used the local-density approximation (LDA) for
describing exchange and correlation effects and the calcu-
lations were worked out self-consistently by solving the
Kohn-Sham equations. %'ith this simple model they
found very significant behavior of the negative-charge
density near the metallic surface region. To introduce
the influence of the periodic lattice on several surface
magnitudes, Lang and Kohn used first-order perturbation
theory. In this way, they analyzed the lattice effects on
the surface energy and the work function. Later on,
several authors have studied the dependence of the work
function and the surface energy' on the crystallographic
face using parametric variational methods. In these stud-
ies the electron density is calculated using a simple
parametrized potential for better representing the ionic
structure. Suitable values for these potential parameters
are obtained by minimization of the total energy of the
metal using the true potential. These parametric varia-
tional calculations improve considerably the results ob-
tained by perturbation theory applied to the jellium rnod-
el.

In this work we have solved self-consistently the
Kohn-Sham equations including in a total way a local
ionic pseudopotential within the self-consistent pro-
cedure. Therefore we do not have recourse either to
parametric variational techniques or to perturbative
methods. For describing the interaction between one ion
and one electron, we use the local empty-core pseudopo-
tential proposed by Ashcroft:"

V~,(r)=0, r gr,

V~,(r)= —Z, ir, r &r,

where Z, represents the ionic charge and r, is a cutoff ra-
dius which has been determined to give a good descrip-
tion of the largest number of bulk properties of each met-
al. The r, values that we have chosen in the present work
are the same used by Lang and Kohn in their calcula-
tions. ' The self-consistent solution of the initia1 three-
dimensional problem is very complex and, for avoiding
long and costly calculation methods, we will assume that
the variation of the different physical magnitudes along
the directions parallel to the metal surface is not impor-
tant with regard to the change of these magnitudes along
the normal direction. Then, at each point r, we can re-
place the electron density and the difFerent potentials by
their average over the plane which contains r and, at the
same time, is parallel to the metal surface, so that now
any physical magnitude will depend only on z, the coordi-
nate perpendicular to the metal surface. This turns the
three-dimensional calculation into a one-dimensional
problem.

Our calculation needs four input parameters for
describing the metal-vacuum interface: first, r„which is
related to the mean electron density n,„ofthe bulk metal
via the equation —', mr, = 1 /n, „;second, Z;, the electrostat-
ic charge of each metal ion; third, r„ the pseudopotential
cutoff radius; and finally d, the distance between two con-
secutive atomic planes which are parallel to the metal
surface we wish to study.

The introduction of ionic pseudopotentials within the
self-consistent procedure causes new problems in solving
the Schrodinger equation within the Kohn-Sham equa-
tion system. In the jellium model, both the effective po-
tential U,s(r) and the electron density n (r) take constant
values far inside the bulk, therefore it is possible to treat
the electronic wave functions as plane waves asymptoti-
cally within the metal and then the advisable system to be
studied is a semi-infinite jellium. %'ith a pseudopotential,
it is necessary to solve previously the bulk band structure
and the asymptotic behavior of the Friedel oscillations
becomes considerably more complicated. To develop the
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calculation under these circumstances we assume that the
electronic structure of metal can be studied by means of a
metallic slab. In this way the problem is reduced to cal-
culate the eigenstates of the elective-potential quantum
well associated to the metallic slab. The quantum-size
effects, which have an inhuence on work function, ' den-
sity of states (DOS) and Fermi level, ' are diminished by
choosing of a thick enough slab. Although the calcula-
tion requires long computation times and the conver-
gence process is more difficult, we have found that this
procedure is the most practical one. In our work the slab
thickness is usually about 160 a.u. This means that, for
example, we handle 37 layers for representing the (111)
aluminum face or 60 layers for the (110) face of the same
metal. Exchange-correlation effects are included in the
monoelectronic efFective potential U,s(r) by means of the
local-density approximation, following the interpolation
form due to Wigner. ' One of the limitations of this ap-
proximation is the failure to reproduce the characteristic
behavior of classical image potential —I/4z outside the
metal surfaces. But the infiuence of this external shape
on properties such as work function or surface energy is
negligible. This is because of the very small electron
density placed in regions where the image-potential elect
becomes important.

Figure 1 shows the effective potential U,s(z) and the
electron-density profile n (z}for Al(111}and Li(100}faces.
The first thing to notice is that the oscillations in n (z)
due to the periodic pseudopotential are considerably
larger than the Friedel oscillations. This can be noticed
because of the coincidence of the maxima of n (z) with
the minima of effective potential. Since the Friedel oscil-
lations are themselves important in some cases to deter-
mine the electrostatic surface dipole and work function,
it should be expected that a self-consistent treatment of
the response to the pseudopotential is also important to
determine these quantities.

In the jelliurn model it can be shown that, to ensure
charge neutrality, the jellium edge must be fixed at the
midpoint between the last plane of ions and the position
of the first missing plane. Since the electron-density
profile depends only on the position of the jellium edge,
the distance between the density drop and the last plane
of ions depends strictly linearly on the interplanar dis-
tance d. Figure 2 shows the electron-density proSe for
three faces of Al compared with that of the jelliurn model
(with the jellium edge placed as we have explained above
in each case). The interesting point to notice is that the
density obtained with the pseudopotential drops at an ap-
proximately constant distance from the last plane of ions,
nearly independent of the interplanar separation. Thus,
the jelliurn model predicts a density drop which is too far
for compact faces (large interplanar distance) and too
close for open ones.

The inAuence on bcc-metal density profiles, such as Li,
Na, etc., is similar to that one noticed for fcc metals, but
taking into account that (110) and (ill) faces are the
closest configurations for bcc and fcc crystallographic
structures, respectively. The density profile most similar
to that obtained from the jellium model is that one corre-
sponding to (100) planes, both for bcc and fcc metals. If
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FIG. 1. Self-consistent electronic-charge density n {z) and
effective one-electron potential U,&{z), for (a) Al(111) and (b)
Li(100) faces. The charge density is given in units of n„. „, the
mean electron density of the bulk metal. Black circles represent
the position of the atomic planes. Dashed line represents the
Fermi level. The position z =0 is separated from the last atom-
ic layer by half an interlayer spacing, d /2.

we compare our calculation of the electron-density profile
of the Li(100} face to the planar average of the electron
density evaluated by Alldredge and Kleinman, ' we no-
tice that the exponential decay is very similar in both
works. However, the bulk oscillation amplitude obtained
by them doubles approximately the value we have calcu-
lated here and their first peak is more pronounced. These
differences are originated partly by their use of a thinner
13-layer (100) film of lithium and partly by the difference
in the pseudopotential employed (they use a nonlocal, but
energy-independent, pseudopotential). If we compare our
results for the Al(111) face to the calculation of Cheli-
kowsky et a/. ,

' which was carried out using self-
consistent pseudopotentials and a 12-layer slab, we notice
that the bulk oscillation we have found is now more pro-
nounced for the effective potential as well as for the elec-
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TABLE I. Theoretical work function in eV for the three low-index planes of five simple metals, ob-

tained using first-order perturbation theory (Ref. 7), parametric variational calculations (Ref. 9), and lo-

cal averaged pseudopotentials within the self-consistent procedure {present work). Also we include ex-

perimental results.

Li (110)
(100}
(111)

Ref. 7

3.55
3.30
3.25

Ref. 9

3.55
3.32
3.13

%'ork function {eV)
Present

work

3.63
3.32
3.19

Experiment

2.93'
(polycrystalline)

Na (110)
(100)
(111)

3.10
2.75
2.65

3.13
2.84
2.76

3.1 1

2.88
2.76

2.75'
{polycrystalline)

(110)
(100}
(111)

2.60
2.30
2.20

2.62
2.36
2.24

2 14
(polycrystalline}

{111}
(100)
(110)

4.05
4.20
3.65

4.27
4.25
4.02

4.18
4.27
3.88

4.26
420
4.06d

4.24'
4 41"
4.28"

Pb (111)
{100)
(110)

4.15
4.50
3.80

4.10
3.90

4.30
4.31
3.98

4.25'
(polycrystalline)

"Reference 21.
Reference 22.

'Reference 23.
Reference 17.

'Reference 18.
"Reference 24.

where both electron density and potentials have an appre-
ciable variation along the directions parallel to the metal
surface. Nevertheless, the discrepancy among diferent
experimental data for Al(110) and Al(100) work func-
tions' ' and the absence of data on the work-function
anisotropy of Pb make necessary more measurements to
settle this point.

Another issue of increasing interest in the last few
years is the location of the image plane. Calculations on
image-plane position have been carried out starting from
the jellium model. Lang and Kohn have shown
rigorously that the image plane is located at the centroid
of the excess charge induced by a uniform electric field
perpendicular to the metal surface. They themselves ob-
tained the shape of the induced-charge density 5n (z) and
the image-plane position zo" (referred to the jellium edge)
which represents the eS'ective metal face. %ithin their
calculation they used the LDA for describing the
exchange-correlation potential and they did not take into
consideration that this approach does not reproduce the
expected —1/4z asymptotic behavior of the image poten-
tial. Recent calculations try to correct this deficiency, in-
cluding in some way the nonlocal e8'ects within the
exchange-correlation potential. On the one hand, Ossi-
cini et al. calculate the position of centroid within the
framework of the weighted-density (WD) approxima-
tion. On the other hand, we have calculated electron

densities, effective potentials and the image-plane loca-
tion zo at a jellium surface using the LDA inside the met-
al snd a physically based interpolation to the classical im-

age potential outside. Results for zjo', reached using these
two methods show only a slight contraction with respect
to the purely LD calculation. Other methods ' have ob-
tained zo" values from the asymptotic behavior of the
%D exchange-correlation potential far outside the metal
surface, but this scheme seems to establish artificially the
image-plane position.

In earlier studies the distance between the image plane
and the last atomic layer is s magnitude which is usually
underestimated. In the jellium treatment, this separation,
d;, is given by the simple expression

im zo +d /2

This is because the jellium edge is separated from the
last atomic layer by half an interlayer spacing, that is,
d/2. It is easy to notice the large dependence of d; on
the crystallographic face when the jelliurn model is taken
into account. The d; change between the most and the
least faces we ha~e studied, that is,

I dim„„, —d,m(»0
is 0.86 a.u. for Al, 1.04 a.u. for Pb, and 1.38 a.u. for Li.
This strong variation is given only by the d/2 contribu-
tion since zo' is s constant for each metal. In this work
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we attempt to describe the inAuence of the crystallo-
graphic face on image-plane position in a more reliable
way than formula (2). We calculate d; as the centroid
position of the charge on (z) by an electric field perpen-
dicular to the metal surface. But now, the induced elec-
tron density is calculated rather than the jellium model
using the planar-averaged pseudopotentials within the
self-consistent procedure. In this way d; is calculated
directly from 6n (z) without any assumption about the
position of the jellium edge. Induced-charge density
profiles have a similar shape to those drawn by Lang and
Kohn, ' appearing as a damped oscillation towards the
metal inside and an induced-charge peak outside the met-
al, over the region where the centroid is located. The am-
plitude of this inner oscillation takes higher values for
1ow-density metals. The outside peak is higher and nar-
rower for high-density metals.

It is known that the image-plane position depends on
the intensity of the applied electric field. To give a
unique value of d; we use that one obtained when the
electric field tends towards zero. This forces us to do
very accurate calculations to work with the lowest in-
duced charges. Another possibility is to use both positive
and negative electric fields and interpolate d; to zero
field. %e have checked that both procedures give the
same result.

In a previous work, we noticed that the image-plane
position zo can be determined very accurately from the
semiempirical relation

microscopy (STM) or for calculating metal-
semiconductor barriers. In an earlier work, we have
used also this model for studying the adsorption of alkali
atoms with great atomic radius on metal surfaces and we
showed the importance of d; value to determine surface
dipoles and work-function changes at low coverages lim-
it.

In conclusion, we have presented completely self™
consistent calculations of the electron density in the sur-
face region of some characteristic s-p metals, using local
pseudopotential averaged over the planes parallel to the
surface. The resulting work functions improve consider-
ably the agreement with experiments in comparison with
the perturbative results and agree roughly with previous

3.5-

~0

2.5-

V'„,. ( zo ) / V„,.(zo ) = 1.8,
I2

I

3 5

where V„,.(z) is the exchange-correlation potential of the
unperturbed system, within the LDA. This method cir-
cumvents the need of studying the response of the surface
electron density to a weak applied electric field. In Fig. 3
we present the image-plane position for (111), (110), and
(100) faces of Al and Li with respect to the last atomic
layer. We show the d; values obtained from Eq. (2),
from the exact determination of the centroid of 5n (z) in
the system including planar-averaged pseudopotentials,
and from applying Eq. (3) to the same system. The
difference between the last two methods is always less
than =0. 1 a.u. , thus confirming our previous results with
the jellium model and the validity of Eq. (3) in a wide
variety of systems. The most important point to notice in

Fig. 3 is that the determination of d; through the jellium
model greatly overestimates the dependence of d; on in-

terlayer distance, i.e., the crystallographic structure of
the studied surface. In fact this dependence is even in-

verted in Al surfaces (we have noticed also this behavior
in Pb). This overestimation is in qualitative agreement
with the previous observation of a marked difference in

the position of the density drop between the simple jelli-
um and the pseudopotential systems (Fig. 2).

Thus, the jellium model overestimates the image-plane
distance d; by more than 0.4 a.u. in Al(111) and Li(110).
This has important applications on several fields, such as
the determination of surface image states, the calcula-
tion of effective potential barriers for scanning tunneling

Li(111} Li(110) ~( )

4.0- (a)

i
4

Al(G3} At(N} (j (g 0 )

FIG. 3. Distance between the image plane and the last atom-
ic layer, d;, for (111),(100), and (110) faces of (a) aluminum and
(b) lithium. %e show the d; values calculated from the exact
determination of the centroid of 5n (z) including planar-
averaged pseudopotentials (solid triangles), semiempirical rela-
tion of Eq. (3) (open circles), and the jellium model [Eq. 12)]
(solid circles). The abscissa represents the interlayer spacing d.
Difkrent lines denote the behavior of d; noticed from the three
calculations.
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values obtained with parametric variational methods.
The calculated distance of the image plane to the last ion
layer is only weakly dependent on the interlayer distance,
in sharp contrast with the strong dependence predicted

from the jellium model. A previously proposed equation
[Eq. (3)] for the determination of the image-plane posi-
tion is neatly confirmed.
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