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Electronic structure of matter at high compression:
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This paper is concerned with the efkct of atomic-shell structure on the cold pressure of highly

compressed matter up to 1 Gbar and above. The method is to compare band-structure calculations
based on augmented spherical waves with results of the quantum-statistical model. Elements treat-
ed explicitly are Li, He, Be, Al, and K. No indication for anomalies due to pressure ionization is
found. However, an oscillatory behavior of cold-pressure curves is systematically obtained due to
isostructural electronic transitions. They are traced back to pressure-induced band shifts and elec-
tron redistribution from bands of low angular momentum (typically s and p waves) to bands of
higher angular momentum (typically d and fwaves). The shifts are shown to occur generally when

squeezing normal matter with extended atoms into highly degenerate matter. The anomalies are
particularly pronounced for alkali metals: Strong pressure Aattening is found for Li at fivefold

compression and 5-10 Mbar, and very sharply for K somewhat below Svefold compression and 500
kbar. The oscillations are much weaker for Be and Al. Metallization of He is obtained at 12.1
g/cm' and 110Mbar. For Be, a structural hcp~bcc transition at 2 Mbar is predicted.

I. INTRODUCTION

High-power laser' and particle beams as well as other
methods for generating high local energy density offer
new possibilities to investigate matter under very high
pressure up to 10 bars and beyond. For inertial
con6nement fusion, central pressures up to 10' bars are
envisioned by spherical implosion of small spheres„ isen-

tropic compression using shaped pressure pulses to keep
the material as cold as possible is an important require-
ment for this purpose. In nature, comparable pressures
are found only in the centers of stars and planets; e.g., Ju-
piter reaches a central pressure of more than 100 Mbar,
close to the atomic pressure unit e ias~ =300 Mbar (e is

the electron charge, as the Bohr radius). Recent reviews

on equations of state (EOS) of matter under high pressure
were presented by Bushman and Fortov, by Godwal
et al. , and by Ross.

The present paper is on the electronic structure of cold
matter under high pressure, on how its band structure
changes with increasing compression, and how it merges
into Fermi-gas behavior asymptotically. Statistical mod-
els, the Thomas-Fermi model and its descendants, are be-
lieved to hold at pressures above 300 Mbar, but little is
known about how the statistical-model limits are ap-
proached from below. In this paper, band-structure cal-
culations are compared with the quantum-statistical
model for a number of selected elements.

Qur major interest is concerned with anomalies of the
cold-pressure EOS p(p) due to atomic-shell structure (p
is the pressure, p the matter density). In the literature,
results on such anomalies are ambiguous. First-order
phase transitions mere predicted by Kirzhoits to occur
up to very high pressure whenever an inner atomic shell
becomes delocalized due to compression. This process of

squeezing out bound states into the continuum is called
pressure ionization. Large pressure discontinuities in

p (p) as a consequence of pressure ionization were also re-
ported by Zink, but instead of the pressure flattening
predicted by Kirzhnits he obtained pressure steepening.
These calculations were criticized by More' since they
combine a quantum treatment of bound electrons with a
statistical description of continuum electrons in an illegi-
timate way. This method does not account for the quan-
tum effects of level broadening and resonance-state for-
mation near the boundary between the discrete and con-
tinuous spectra. These efFects form the energy bands in
condensed matter and tend to smooth out any sudden
transitional behavior. A first step to account for this was
done by Lee and Thorsos;" their treatment of resonance
states changed the pressure jumps of Zink into a much
more gradual pressure steepening. But still a steepening
due to pressure ionization is in conflict with the pressure
flattening postulated by Kirzhnits.

A clarification of these contradictory results can only
be obtained from a complete quantum-mechanical band-
structure calculation. Pioneering work was done by
Voropinov, Gandelman, and Podvalnyi, ' who calculated
cold-compression curves quantum mechanically for ele-
ments across the Periodic Table. The drawback of this
early work is its limited accuracy due to insuScient treat-
ment of electron exchange and other approximations
which mere introduced to reduce the numerical complexi-
ty. Larger-scale band-structure calculations for the
high-pressure EOS of Al mere performed more recently
by McMahan and Ross, ' using the augmented-plane-
wave method (APW); a comparison of these results with
the quantum-statistical model (QSM) was given by
More. '

In the present paper, the problem is studied more sys-
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tematically for a number of materials. Band-structure
calculations based on the augmented-spherical-wave
(ASW) method's are compared with QSM results over a
wide range of densities and pressures. The investigation
is restricted to zero temperature. The theoretical basis of
the QSM and the ASW method is outlined in Secs.
II 8-II D. For general orientation, Fig. 1 shows empiri-
cal %igner-Seitz cell radii of solids at normal density
versus atomic number. ' At the bottom, the atomic
states are given in the order in which they are Sled in
free atoms. The atomic radii have a maximum for ele-

ments with s-state valence electrons and a minimum for
the d-state metals in between. Band-structure calcula-
tions like the ASW method reproduce the empirical radii
almost quantitatively, whereas the statistical model de-

scribes solids at normal density only in a very rough and
average way. The smooth solid curves show QSM results
which diSer in the strength cr of the gradient correction
(see Sec. II C).

The elements selected for detailed study are marked in

Fig. 1 by solid dots. In addition to aluminum as a stan-
dard reference case, two alkali metals, lithium and potas-
sium were chosen since they have s-state valence elec-
trons and are found to have anomalous cold-pressure
curves. The sequence helium, lithium, beryllium was
chosen to study the systematics of the anomaly as a func-
tion of Z. These few-electron elements are also con-

venient for reasons of computational economy. The re-
sults are presented in detail in Sec. III, and a concluding
discussion is given in Sec. IV.

II. THEORY

A. The degenerate Fermi gas

The pressure of highly compressed, cold matter stems
from the kinetic energy of degenerate electrons. Ulti-
mately, for very high compression, it approaches the
pressure of the degenerate Fermi gas,

&=5+ F
2 —K'

where the Fermi energy is given by

EF =(ttl~ j2rn)(3m n )

or, if necessary, by the corresponding relativistic expres-
sion. Here, %=It /2m is Planck's constant and m the elec-
tron mass. The average electron density

is obtained from the matter density p, the atomic charge
Z, and mass number A of the material, and the nuclear
mass unit mH.

The electrostatic potential of the ions distorts the ideal
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FIG. 1. Atomic %'igner-Seitx radii as a function of atomic number Z. All dots give empirical values taken from Ref. 16; solid dots
mark those elements treated explicitly in this paper. The smooth full sohd lines give results of the quantum-statistical model (QSM)
for diferent values g of the gradient correction; TFD corresponds to o =0. As the inset at the bottom, electron states are shown in
the order in which they are Qled in free atoms.
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Fermi gas. For the periodic lattice structure of cold
matter, is is convement to consider spherical atomic cells
around each ion (Wigner-Seitz cells) with radius

ro = (3Z/4m. n }'~

The overall pressure is then essentially given by the elec-
tron kinetic-energy density at the cell boundary. In the
EOS calculations below, the electron distribution is deter-
mined self-consistently within such spherical cells using
different methods. The polyhedral shape of the real ele-

mentary cell for a given lattice symmetry is accounted for
in the ASW band-structure calculations using the
mufftn-tin approximation; the results of this calculation
are then used to derive proper boundary conditions for a
spherical cell calculation.

A key element of our EOS analysis will be an angular-
momentum decomposition of the electron distribution in
the cell. This is natural for deeply bound orbits which
have deffnite angular momentum, but proves also very
useful for characterizing band electrons. The asymptotic
I distribution, approached at very high compression, is
given by the partial-wave expansion of the uniform Fermi
gas 17

redistribution of the electrons from lower to higher I
states takes place in order to approach the asymptotic
distribution. As we shall show below, it is this process
which leads systematically to oscillations in the cold-
pressure curve.

B. Density-functional dcscriytion

The compressed matter at zero temperature is modeled
like a solid with a ffxed, periodic lattice of nuclei and
with electrons moving in between. According to Hohen-
berg and Kohn, " the ground-state energy of this many-
particle system can be described as the minimum of a
density functional

E(n)=K(n)+E„,(n)+ f U(r)n(r}d3r

e n (r)n (r') d3 (7)
2 ir —r'f

where n(r) denotes the local electron density. It is ob-
tained from the functional variation

5E(n)/5n =0

under the constraint of electron-number conservation,

Z =[2/(2m) ]fd k fd r g ~
jI(kr)YI (0„)

~

2,
I, m

Z= n r r. (9)

with spherical Bessel functions j&(x} and spherical har-
monics YI (0); the r integration is over the volume of
the spherical cell and the k integration over the Fermi
sphere with radius kF =(3n n )'~3. The partial charges q,
which add up to the total charge Z = g& qI are obtained
from Eq. (5) in the form

kFro

q, =[2(21+1)/m] f dx x'[j f(x) jI &(x)JI+&—(x)],
0

(6)

where kFro=(9rrZ/4)'~ depends only on Z. The depen-
dence of q~ on Z is plotted for the lowest angular momen-
ta in Fig. 2. The I distribution of electrons in atomic cells
of actual solids differs considerably from the Fermi-gas
distribution; the shape of the Coulomb potential strongly
favors states of low angular momentum energetically,
particularly s states. When compressing the solid, a

The integrals in Eqs. (7) and (9) extend over the elementa-

ry lattice cell with the volume u =(4n/3)r03=Z/n. The
hydrostatic pressure is then obtained as the derivative of
the total energy with respect to volume,

p = dE/du . — (10)

In Eq. (7), a major difficulty is in determining the kinetic
energy X(n) and the exchange-correlation energy E„,(n);
the potential energy is readily calculated from the elec-
trostatic potential U(r) of the lattice ions and n (r}.

Statistical models and quantum-mechanical calcula-
tions differ in the way the kinetic energy is treated. In
the statistical models, one expands the kinetic energy in
terms of derivatives of n (r),

It (n) =fd r n (r)(A /2m)

&&[ ,'(3n n) ~ + ,'—n ~

Vn/n
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FIG. 2. Partial-wave decomposition of a uniform Fermi gas
enclosed in a spherical volume; the partial charges labeled by
s,p, d, etc. according to their orbital angular momentum are
plotted vs total charge Z.

The 6rst term in the square brackets presents the kinetic
energy of the free Fermi gas and the second term gives
the gradient correction which accounts for nonlocal
quantum behavior of the electrons. The strength parame-
ter o of this term was 6rst derived by %eizsacker' to be
cr =1; however, the systematic expansion of E(n) gives
cr = —,'. This discrepancy was clari6ed by Jones and

Young, ' who investigated the linear response of a uni-
form electron gas subject to a small perturbation of wave
vector k. They sho~ed that the long-wavelength
[k &k~=(3~ n)' ] response is reproduced by the Kir-
zhnits value o = —,

' and the short-wavelength (k »kF)
response by %'eizsacker s value o =1. From this work it
appears that a =—,

' is the appropriate value to describe in-

tegrated atomic properties such as the total energy and
the pressure. It will be used in the present work, unless
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stated differently. It should be clear that the expression
(11) for K(n) represents a rough approximation. It pro-
duces continuous, smooth energy spectra and does not
account in any way for the discrete spectrum and energy
bands which are characteristic of the true quantum
mechanics of the electron system. However, this approx-
imation allows for the relative simplicity of the statistical
model.

In the quantum-mechanical calculation, the kinetic en-

ergy

K(n)= f dE Z(E)f d r g'(r, E}

X [(—A' /2m)h]g(r, E)

is obtained from the single-electron wave functions
f(r, E) which also define the local electron density

n (r)= f dE Z(E)
~
f(r, E)

~

' . (13)

In zero-temperature matter the energy integration ex-
tends over the low-lying states up to the Fermi energy
Er, and Z(E) is the spectral density of states. The calcu-
lation of g(r, E) within the ASW method will be de-
scribed below.

For the exchange-correlation energy E„,(n), a local ap-
proximation is chosen. The functional derivative

culations by Kalitkin and Kuzmina. A very clear dis-
cussion of QSM and its merits for high-density matter
calculations was given by More; ' finite-temperature
QSM calculations were reported by Perrot. The QSM
is used to solve Eqs. (17) and (18) self-consistently for the
atomic cell with all terms included and with the bound-
ary conditions

dV/dr =0 and dn /dr =0 at r =ro,
rV(r)~ —Ze for r~O,
dnldr = —2Zn/aalu at r =ro,

(19a)

(19c)

with as fi /m——e . Treating the gradient term self-
consistently may look arbitrary at this point, since it is
the first-order term in an expansion and the higher-order
terms are neglected; also, this treatment considerably
complicates the numerical solution, because it leads
essentially to a fourth-order differential equation for n (r).
On the other hand, the self-consistent treatment removes
the divergence of n (r) for r~0 which is a deficiency of
the other Thomas-Fermi-type models mentioned; the
finite density of the QSM at the origin is expressed by
boundary condition (19c). It also improves the asymptot-
ic pressure behavior. The pressure is given by

p =—5(& /2m)(3+no) no (e /4—n)(3m no)' no

V„,=5E„,(n)/5n = V,„+V, (14) +p, ——,'o(fi /2m)(hn)o, (20)

is expressed by two parts, the exchange potential

V,„=—(e2/n )(3m n)'

and the von Barth-Hedin expression for the correlation
potential,

where no is the density evaluated at the cell boundary ro,
and p, is the correlation contribution

p, =0.022(e /as)no[x ln(1+1/x)+x/2 —x —
—,'] .

(20a)

V, = —0.022(e /as )ln(1+1/x),

with x=21a~(4~n/3)' and a~ =R /me .

(16) As pointed out by More, ' the high-density expansion of
the pressure (20),

p =23.27n 5 —( 5.68+ 11.16Z )n (21)

C. The quantum-statistical model

The equations of the quantum-statistical model are ob-
tained from Eqs. (7)—(9}and (11) in the form

(i)i /2m)(3m n) +—,'o(
~

Vn/n
~

—2hnln)

+ V„,+ V =EF, (17)

with the electrostatic potential

Ze zf n (r')
r /r —r'/

The various versions of the statistical model are con-
tained in these equations. The original Thomas-Fermi
(TF} model is recovered when dropping the gradient
and the exchange-correlation terms in Eq. (17). Keeping
the exchange part (15) of V„, leads to the Thomas-
Fermi-Dirac (TFD}model, and including also perturba-
tively the gradient correction gives the Thomas-Fermi-
Kirzhnits model (TFK).

The quantum-statistical model which is used in the
present work was first applied to high-pressure EOS cal-

0 3(p in Mbar and the average density n in electrons/A ),
does not depend on o up to order n . This is a conse-
quence of the self-consistent treatment and is in agree-
ment with electron-gas perturbation theory which is
applicable in the high-density range.

Some points concerning the numerical solution of the
QSM equations are discussed in Appendix A.

D. The quantum-mechanical AS%' calculation

The main results of this paper are obtained from
quantum-mechanical calculations using the augmented-
spherical-wave method. These are ab initio self-
consistent-field (SCF} band-structure calculations. The
AS% method was developed by %illiams, Kiibler, and
Gelatt and is described in fu11 detail in Ref. 15; we have
used the computer code written by these authors. In the
following we give only a brief outline of the basic concept
and emphasize a few points specific for applications of
the AS% method to highly compressed matter and
relevant for the results presented in Sec. III.

The basis for the quantum-mechanical calculation is
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the Schrodinger equation for the single-electron wave
function,

[ —(fi /2m)h+ V(r) E—]g(r,E)=0, (22)

consists of the electrostatic potential of the lattice with
atomic nuclei of charge Z at the lattice points R „,the po-
tential of the electrons, and the exchange-correlation po-
tential V„,. Solving Eq. (22), the electron states are divid-
ed into core states, which are fully localized at a lattice
point and do not contribute to the hydrostatic pressure,
and band states, the wave functions of which extend over
the whole lattice and generate the pressure. In metals at
normal density only a few valence electrons occupy the
band states. However, at pressures of 100 Mbar and
beyond also core states start to delocalize and to form en-

ergy bands. Whereas the core states are completely
determined inside an atomic cell, the band states com-
municate with the neighboring ceBs through boundary
conditions defined at the cell interfaces.

In the AS% method, the band-state wave functions are
expanded in a set of spherical waves,

which is obtained from functional variation using Eqs.
(7)—(9), (12), and (13). The self-consistent potential

Z8 I

V(r)= —g +e I, d r'+V„,(n)
[r—R„/ /

r —r')

(23}

nb, „d(r)= y [q/, R/ (r, E/, )+q/IR/ (r, EII)] .
I

(28)

The fraction of charge in partial wave I is q&
——q&1+q&2,

and the number of band electrons is

qband = g ql
I

(29)

The total electron-density distribution in the atomic cell
1s

decomposed 11lto colltllblltloIls ZI(E) of thc dlffcI'cIlt par-
tial waves. This is a major part of the calculation, and
the reader is referred to Ref. I5 for details. A speei6c
feature of the ASW method is that the density distribu-
tion of the band electrons within an atomic cell is not cal-
culated fI'0111 Q( r, E) diI'ectly, but ls dctcr1111Ilcd by

E
n,„=g J dE Z&(E)[R&(r,E)] (26)—00

where R&(r,E) is the radial solution of the Schrodinger
equation (22) with angular momentum I and energy E; it
is calculated for a spherical atomic cell extended out-
wards up to the Wigner-Seitz radius ro (4). It turns out
that R&(r, E) is almost linear in E across an energy
band; therefore, it is possible to further simplify Eq.
(26). Representing the firs four moments of each Z, (E},

~E ZI(E)E =qllEFi+quEII (n =0, 1,2, 3), (27)

by two energies EI&,,E&2 and two charges qI&, qiz, one ob-
tains

p(r, E)= g cI „(E)HI (r R„}, —
I., v

(24)
n (r) =n„„(r)+nb,„d(r),

with the core density

(30)

Z(E)= g Zi(E)
1

(25)

where L =(I,m) is a collective index denoting angular-
momentum quantum numbers with respect to a cell
center and where v runs over all lattice cells. Each cell is
then divided into a central spherical part in which V(r } is
assumed to be spherically symmetric and an outer part
with a polyhedral surface in which V(r) = Vo is assumed
to be constant (muflin-tin approximation}. The radial
parts of the spherical waves, Hi (r), are then represented
in the outer region by Hankel or von Neumann functions
depending on whether the "kinetic energy" e.=E—Vo is
negative or positive, respectively. In the inner region, the
spherical waves HI (r) are "augmented'* by explicitly in-
tegrating the Schrodinger equation. The interstitial ener-

gy e. is used as a variational parameter; this is further dis-
cussed in Appendix B.

The band-structure part of the AS% calculation deter-
mines the expansion coeflicients cI (E}and, from these,
the energy-level density

n„„(r)=g 2(21+ 1)R„&(r),
n, l

(31)

where the sum runs over all core orbits (n, l); the density
(30) is then used to redetermine the potential V(r).

The AS& calculation consists of two self-consistency
loops. In the inneratomic loop n (r) and V (r) are iterated
within the spherical atomic cell for given band-level den-
sities Z&(E). After convergence, the muffin-tin band-
structure calculation is repeated with the new n (r) and
V(r) to obtain new Z&(E). The interface between the in-
teratomic band-structure calculation and the inneratomic
loop is established by the set of four numbers
(ql 1 q12 El 1 Elp) for e h / reP esenting Z&(E). The Pro-
cedure is iterated until full self-consistency is obtained.
A typical time on a Cray-1 computer to achieve full con-
vergence for Al was about 1 min of CPU (central-
processing-unit) time.

Finally, the total pressure is also obtained as a sum
p = g& p& of partial-wave contributions, '

pl=(1~4+) gqI Rl'(ro EI;)
Dh (D„+1)—& (1+1) —V,II(rll)+E„+ V„,(rll) E„,(ro)—

P'0
(32)
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where DI,- are logarithmic derivatives DI,.

=d flnRI(r, EI, )]/. dr at the cell boundary r =ro, V,s(ro)
represents the Hartree contributions to the electrostatic
potential, and V„,(ro) and E„,(ro) are the exchange-
correlation contributions defined in Eqs. (7) and (14).

ID. RKSUI.TS

A. Overview of calculated materials

An overview of the calculated results is given in Fig. 3.
All the materials shown are explicitly investigated in this
paper, except for cesium, which has been added for corn-
parison. The quantity plotted is the bulk modulus versus
specific volume U =1/p,

8 = —U dp/du,

calculated from the pressure curves p (u) at zero ternpera-
ture within the ASW method. The open circles for
U/Do= 1 give the empirical bulk moduli at normal solid-

state volume Up. The focus of the present work is on the
behavior at high compression ratios where the details of
lattice structure become of minor importance compared
with isostructural transitions. It is this high-compression
regime where the effects of pressure ionization might
show up and where the approach to statistical-model pre-
dictions should occur.

The low compressibility of the alkali metals Li, K, and
Cs is related to the large atomic radii Rp of these ele-

10s —. 1

100-

ments at normal density, which, in turn, are due to their
s-state valence electrons (compare Fig. 1). Isostructural
transitions caused by the pressure-induced shiA of the s
electrons into other va1ence bands are most pronounced
for these elements. In Fig. 3 they show up as large
anomalies in the bulk moduli of Cs and K at U/Up=0. 4
and 0.2, respectively. For Li, the corresponding transi-
tion occurs in about the same compression region; how-
ever, the anomaly of the bulk modulus is much less pro-
nounced in this case and appears as a series of weak oscil-
lations. These results will be analyzed in detail below.

In order to study these effects more systematically as a
function of atomic number, we included helium and
beryllium, the elements neighboring lithium, in the
present investigation. These light elements were chosen
for computational convenience, since the computer time
needed quickly rises with the number of electrons. Heli-
um is known as quantum liquid at low temperature;
quantum effects inhibit solidi6cation and are responsible
for the large atomic volume Up. However, it solidifies at
higher pressure and, at the very high compression con-
sidered here, the description in terms of a frozen lattice
may be adequate. The metallization of helium will be of
particular interest in the following.

The calculated bulk moduli of beryllium and aluminum
are very close to each other and considerably larger.
They vary smoothly with compression and show no ap-
parent wiggles, at least when plotted logarithmically as in
Fig. 3. Careful analysis in the following will uncover
some weak oscillations which are also caused by band
crossings. However, several valence electrons distributed
over different bands contribute to the pressure in these
cases and, therefore, no sharp transitional behavior is ob-
served,

In what follows, results for the dig'erent materials are
discussed in the following order: Li, He, Be, Al, K.
Some of these results were already published at other
places.

8. Lithium

l0

X

-d

0.0l
0

FIG. 3. Calculated bulk modulus 8 vs speci6c volume V in
units of the zero-pressure volume Vo for elements investigated
in the present paper; only the results for Cs are from Ref. 48.

The cold pressure of lithium as a function of
compression is shown in Fig. 4. The AS% band-
structure calculation (thick solid line) is compared with
two versions of the statistical theory: the Thomas-Fermi
model and the quantum-statistical model. Two impor-
tant features should be noticed: the pronounced Aatten-
ing of the AS% pressure curve in the range 3gp~10
Mbar and the almost complete agreement between AS%
and QSM results for p & 30 Mbar.

Two QSM branches are seen at lower pressure; they
show the difference between the use of the exchange-
correlation potential V,„ofEq. (1S) alone and the full use
of V„, including the von Barth —Hedin potential V, [com-
pare Eqs. (14) and (16)], which leads to somewhat lower
pressures. A similar difference is obtained in the band
calculations when changing from V,„ to V„,. The AS~
results plotted are obtained with V„, for a bcc lattice.
Also shown are recent results of linear combination of
Gaussian-type orbitals band calculations of Boettger and
Trickey ' using fcc symmetry and the results of Liber-
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AS& calculation actually reproduces the angular-
momentum distribution of the Fermi gas which was de-
rived in Sec. IIA. The Fermi-gas values are given as
solid dots on the right-hand side of Fig. 5 and show per-
fect agreement with the AS% results. A diliculty in pro-
ducing Fig. 5 with the present version of the AS%' code is
that the band-structure part does not allow for hybridiza-
tion of states with the same angular momentum, such as
the 1s and 2s states. Therefore, the region of strong 1s-2s
interaction occurring at 100- to 1000-fold compression
for lithium is not properly calculated and has been omit-
ted in Fig. 5. Beyond 1|XM-fold compression, the 2s state
is pushed to energies high above the Fermi energy and is
replaced by 1s as the valence state in the band-structure
calculation.

Details of the band calculation at high compression are
given in Fig. 7. It shows the energy spectrum along
selected symmetry hnes of the bcc Brillouin zone for
three densities. The dashed horizontal line marks the
Fermi energy. At normal density, the band spectrum
close to the Fermi surface shows free-electron behavior
characterized by the parabolic shape around the I point;
the deeply bound Is state is not shown in Fig. 7(a). In
Fig. 7(b) at 15.6-fold compression, the picture has
changed considerably, the 2s level at I has crossed the
Fermi surface, showing an inversion of its curvature
which is typical for the s~p shift, and the ls state
represented by the lowest line is seen to broaden. Figure
7(c) displays the spectrum at 4600-fold compression,
which now exhibits almost pure free-electron behavior,
expected for the Fermi-gas limit.

C. Helium

Helium is included in the present analysis mainly for il-
lustrative purposes. Certainly, the frozen-lattice approxi-
mation used here is not adequate to describe helium at
low densities. On the other hand, this simple two-
electron system shows some qualitative features which
are relevant concerning pressure ionization and the ques-
tion of how the statistical-model limit is approached.

P
(Mbar)-

10=

10

p (g/cms)
f00

FIG. 8. Cold pressure of helium vs density; AS%' results
(thick solid line) are compared with QSM (dashed-dotted),
Thomas-Fermi (thin solid}, and Fermi-gas (dashed) results.
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Also, helium serves as an example for metallization at
high pressure. A hcp lattice is assumed; however, fcc
structure calculations also performed give almost identi-
cal results.

The calculated ASW cold-pressure curve p (p) is shown
in Fig. 8 together with the difFerent statistical-model pre-
dictions. The pressure curve p(p) is completely smooth
and shows no anomaly at densities between 1 and 10
g/cm, where pressure ionization of the Is state is found.
The results of the band calculation and of the quantum-
statistical model merge with each other just at the point
of metallization where the upper edge of the filled 1s band
hits the lower edge of the empty 2p band. The 1s and 2p
energy bands versus density are shown in Fig. 9; the band
edges have been calculated using signer-Seitz boundary

0.8
E(Ry}

200

0
10

E(RyI

0-

500
E tRy)

p (g Icm3)

I i I I I l

10
I I I I

60

FIG. 7. Lithium electron-energy spectrum in k space along
selected symmetry lines of the bcc Brillouin zone; I, 8, X, and
P are the symmetry points. (a) Normal density, (b} 15.6-fold and
(c) 4600-fold compression.

FIG. 9. Helium energy bands vs density. Metallization sets
in at a density of 12 g/cm when the filled 1s band starts to over-
lap with the unfilled 2p band; solid dots mark the Fermi energy
FF.
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conditions. The metallixation pressure of 110 Mbar cal-
culated here is in good agreement with the result of
Young et al. , who obtained 112 Mbar. Also, the
metallization density of 12.1 g/cm corresponding to a
Wigner-Seitz radius of 0.915aa compares well with the
value 0.91a& quoted by March.

D. Beryllium

I
Ul

1.0—
CJ

Ber yliium

Beryllium is the other neighboring element of lithium
with atomic number Z=4. It was chosen to investigate
how the anomaly observed in lithium changes when hav-

ing two valence electrons instead of one. Since informa-
tion on the high-pressure phases of Be is lacking in the
literature, we also include some AS% results on phase
stability.

The cold-pressure curve is shown in Fig. 10, again in
comparison with the corresponding TF and QSM results.
The band calculation describes the tighter binding of
beryllium which leads to a normal solid density larger
than the QSM value. The ratio between the calculated
and the empirical solid-state density is 1.14. There is
good agreement for the pressures at higher density be-
tween earlier linear muSn-tin orbital calculations3s and
the present ASW results.

The partial charges in the different bands are given in
Fig. 11 and should be compared with the results for lithi-
um in Fig. 5. The second valence electron of Be is added
almost exclusively to the 2p state, and the 2s state and its
depopulation with increasing density is therefore of less
importance for the cold-pressure curve. Its flattening due
to 2s~2p reordering, which shows up so sharply for I.i
in Fig. 4, is also visible for Be in Fig. 10 in the range of
10- to 50-fold corn.pression, but in considerably weaker
form.

&O4

)03

0
)0

I

)00

FIG. 11. Partial-wave decomposition of Be valence charge;
compare Fig. 5.

%e emphasize that pressure ionization of the 1s state
which sets in at about p/po=20 does not contribute to
the pressure anomaly. The calculated ls contribution to
the total pressure develops in a completely smooth
manner.

Complete merging of ASW and QSM pressures occurs
at 50-fold compression. This is just the region where the
gap between the broadened ls core state and the 2p band
closes. At this density, the distribution of the four Be
electrons, listed in Table I for difFerent densities, is still
far from the limiting Fermi-gas distribution. It appears
that the Snal reordering is described within the
quantum-statistical model and occurs in a smooth
fashion.

We add here some structural results obtained in the
present ASW calculation. The stable phase of Be at nor-
mal density was determined by Chou et al. to be hcp
with a ratio of the lattice constants c/a=1. 586. In Table
II, ASW binding energies for bcc, fcc, and hcp symmetry
are given as a function of the %igner-Seitz radius. It is
seen that the stability changes from hcp to bcc at
ro--2az, corresponding to a density of 2.7 g/cm and a
pressure of about 3 Mbar. At normal density, we 6nd
c/a = 1.56 as the optimal ASW value that should be com-
pared with the experimental value c/a=1. 57.

K. Almninum

Aluminum with ten electrons in the 1s, 2s, and 2p core
states and three valence electrons in the 3s, 3p, and 3d

0.01 I l i 1 I I I I

&00

TABLE I. Partial charges of Be at diferent densities.

Partial wave

FIG. 10. Cold pressure of beryllium vs compression; solid
dots represent AS% results, open squares earlier LMTO results
from Ref. 36, thin solid line Thomas-Fermi, and dashed line

QSM results.

Free atom (p=0)
Sohd (p=po)
Compressed solid (p=50po)
Fermi-gas limit (p~ ~ }

2.61
2.13
1.49

0
1.26
1.60
1.76

0
0.12
0.23
0.63

0
0.01
0.04
0.11
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2.3O

2.25
2.2O

2.10
2.00
1.9O

1.8O

1.6O

TABLE yl bindin g energies in R

b fcc
I ~ ra=1 633)

E (ey)

600(-hcp

29.2289
29.2265
29.2239
29.210'
29.1841
29.1382
29.O667
28.807O
28.27'69

29.229{}
29.2266
29.2239
29.21O3
29.1834
29.137O
29.{}65O
28.8034
28.27O3

29.234'
29.2306
29.2277
29.»3S
29.]859
29.{}653
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TABLE III. Partial charges of Al at di6'erent densities.

Partial wave

Free atom
Normal solid
Compressed solid (1000po)
Fermi-gas limit

6
5.2
3.9
2.34

7 0
7.4 0.4
6.7 2.3
4.66 3.82

0
0
0.7
1.67 0.43

F. Potassium

Finally, we present results for potassium as an example
for a heavier alkali metal. The isolated atom has a 4s
valence electron on top of filled is,2s,2p, 3s,3p core states
(compare Fig. 1). Potassium is of particular interest be-
cause it shows the isostructural transition due to s,p~d

compressed matter are added in Fig. 15 to illustrate the
complicated evolution from a normal solid to the asymp-
totic state comparable with a Fermi gas. The level densi-

ty Z(E} versus energy E is plotted for various stages of
Al compression; the dashed, vertical line marks the Fer-
mi energy. Notice the difkrent scales in Figs.
15(a)-15(d). In Fig. 15(a), the &E distribution charac-
teristic for the free-electron behavior of the valence elec-
trons of Al at normal density is seen; the 2s and 2p core
states are not yet visible. This picture has changed con-
siderably at 6.7-fold compression, shown in Fig. 15(b),
where the valence band is now more of p-like character
and also the broadened 2s and 2p core states are seen
close to zero energy which is set by the maximum of the
electric potential and defines the classical threshold for
pressure ionization. Figures 15(c) and 15(d) give the level

density for 37- and 100-fold compression, respectively.
For p/po=100 at a pressure above 10 Gbar, the spectral

gap between the L and M shells has closed; however,
Z(E) still deviates considerably from the Fermi-gas dis-
tribution shown as the dashed line, and one sees regions
of lower level density which correspond to particular
symmetry points (I.,X) of the fcc lattice.

reordering even more dramatically than the classical
case, cesium (compare Fig. 3); on the other hand, it is
much less investigated. Voropinov, Gandelman, and
Podvalnyi' highlighted the isostructural transition in K
which they found from a spherical cell band calculation
to occur as a 6rst-order phase transition in the cold-
compression curve at a pressure of 180 kbar. Bukowin-
ski ' presented AP% calculations for K below the transi-
tion region. More recent theoretical studies on K at
high-pressure concentrated on structural phase changes
either below the s~d transition or above. Here, the
emphasis is on the transition region itself.

The cold-pressure versus density, obtained for fcc K, is
shown in Fig. 16. One observes a marked flattening at
about fivefold compression corresponding to pressures
between 500 and 550 kbar. The con6guration space used
in the ASW calculation contains four core levels
(ls,2s,2p, 3s} and two nonhybridized band configurations
(3p and 4s,4p, 3d,4f). The latter is addressed as the
valence band. The partial-pressure contributions from
the valence and the core (3p) electrons are also given in
Fig. 16 as dashed lines. It is seen that the valence pres-
sure decreases at high compression and the 3p-core pres-
sure dominates for p/po & 5. It was checked that even at
the highest calculated pressure the 3s state contributed
less than 1%.

The 4s,4p ~3d electron reordering leads to a very pro-
nounced pressure anomaly in potassium. The anomaly is
most impressively seen in terms of the bulk modulus in
Fig. 3. In order to explain the sharpness of the transi-
tion, one needs to have a closer look at what happens at
the Fermi surface.

In Fig. 17 the volume dependence of various energy
levels at selected symmetry points of the fcc Brillouin
zone are plotted relative to the Fermi energy given as
horizontal dashed line. What strikes the eye is the cross-
ing of the Xi and W'i levels through the Fermi energy
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FIG. 15. Energy-level density Z(E) vs energy E for Al at
difkrent degrees of compression; (a) normal density, (b) 6.7-fold,
(c) 37-fold, and (d) 100-fold compression. The dashed vertical
line marks the Fermi energy. In (d) the thick dashed line gives
the Fermi-gas distribution for comparison, and the arrows K
and I.correspond to symmetry points of the fcc Brillouin zone.
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FIG. 16. Cold pressure of potassium vs compression; solid
line gives full AS%' result; dashed lines give valence and core
contributions, respectively.
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0.2 0.3
Vl Vo

FIG. 17. Electron energies for selected symmetry points
{given as curve labels) of the fcc Brillouin zone underlying the E
calculation, vs speci5c volume.

just at the critical volume v/U0 =024 where the sharp
dip in the bulk modulus sets in. As McMahan has
pointed out, the states near X3 have almost pure 3d sym-
metry and their crossing through the Fermi state leads to
a much more sudden shift of electrons into the d state
than the other redistribution mechanism of s-d hybridiza-
tion.

A more detailed account of the K results has been
published separately. Experimental work on K and also
Rb at pressures up to 200 kbar is published in Refs. 45
and 46.

IV. DISCUSSION AND CONCLUSION

The goal of this paper was to study the cold pressure of
highly compressed matter in the region 1-1000 Mbar
where the transition to statistical-model behavior occurs.
The major objective is to learn about the effects of
atomic-shell structure on the pressure when compressing
materials to extremely high densities. The emphasis is on
isostructural changes and pressure ionization. The study
is restricted to zero temperature and a Sxed lattice struc-
ture; structural transitions and the thermal ionic pressure
are not included. The study is also restricted to a few
light elements —mainly for computational reasons. %e
hope the selection is sufBcient to allow for some general
conclusions concerning the systematic trends.

No anomalies due to pressure ionization are found.
There is no series of first-order phase transitions due to
successive "squeezing of bound states into the continu-
um" as was conjectured by Kirzhnits. Following the
pressure contribution from core states through the region
of pressure ionization separately, we do not even find in-
dications for steps or relative softening of the pressure
curve. Apparently, the transition from deeply bound,
discrete electron states to completely free electrons
proceeds through many stages of gradual state broaden-
ing and resonance formation of nearly bound electrons,
thus completely smoothing any sudden efFect on the pres-
sure. As More' has put it, pressure ionization is con-
tinuous. For the 6rst time, the present paper provides ex-

plicit and systematic evidence for this.
Let us brie6y comment on results reported in the

literature which seem to support the opposite standpoint.
They can be readily attributed to alternative mechanisms
as shown in this paper. %iggles in the cold-pressure
curve of Al, found by McMahan and Ross' and inter-
preted as evidence for L- and K-shell pressure ionization,
appear to originate from 3sp~3d and 2s~3d band
crossings which happen to occur in Al at same compres-
sion as L- and E-shell pressure ionization, respectively.
Deviations between band-structure and statistical-model
calculations for cold Li in the 100-Mbar region, reported
by Ross and attributed to pressure ionization of the ls-
core state, are not con6rmed in the present Li calcula-
tions. This may result from the difFerence between the
quantum-statistical model, which includes gradient
corrections and is used here, and the Thomas-Fermi-
Dirac approximation chosen by Ross; QSM is superior.
Indications for shell structure have also been reported for
shock adiabatics at very high pressures, both theoretical-
ly' and experimentally. However, one should notice
that the generation of dynamic pressures in the region of
100 Mbar and above is connected with considerable heat-
ing of the shocked material (order of 100 eV). Shell
efFects are expected in this context due to thermal ioniza-
tion which should be clearly distinguished from the pres-
sure ionization investigated here.

The second important finding concerns isostructural
transitions. A very clear and comprehensive discussion
of this subject was given by McMahan. It is the mecha-
nism of band crossing and corresponding reordering of
valence electrons which leads systematically to oscilla-
tions of the cold-pressure curve relative to the smooth
QSM prediction. More's results' for Al, comparing
high-quality APW calculations of McMahan with QSM,
showed that these oscillations persist to very high pres-
sures with deviations from QSM of order 5% at 1 Gbar
and 0.5%%uo at 100 Gbar. The present paper extends these
results to other elements and emphasizes their interpreta-
tion. We find deviations between QSM and the present
ASW calculations of typically 10—20%%uo for He, Li, Be,
and Al in the region 10-100 Mbar. For metals, the pres-
sure in this region is almost exclusively generated by the
valence electrons.

For interpreting the pressure oscillations, one has to
notice that valence electrons in difFerent partial waves
react di8erently upon compression. This is because they
have difFerent spatial extension. Typically, waves of low
angular momentum, particularly s waves, are energetical-
ly favored in isolated atoms and solids of normal density,
but under compression their energy is shifted upwards
relative to waves of higher angular momentum which are
more easily accommodated in the decreasing cell space
available. The corresponding redistribution of electrons
leads to pressure relaxation, and due to the stepped na-
ture of the energy spectrum oscillations occur. The
change from lower to higher angular momentum is taken
as the general guideline in our presentation. Ultimately,
at extreme compression, the limit of a free and uniform
Fermi gas enclosed in a small spherical volume should be
approached; the corresponding angular-momentum
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decomposition was calculated and used for comparison.
Strong pressure anomalies due to the mechanism just

described are found in alkali metals because they have a
single valence electron of predominantly s-vrave charac-
ter. It is the 6s~5d reordering which causes the well-
known isostructural phase transition in Cs observed at 44
kbar. In the present paper we ffnd related anomalies in
I.i at about 10 Mbar due to 2s ~2@ reordering and in K
at 500 kbar due to 4s,4@~3d reordering. It is seen that
the critical pressure strongly decreases with atomic num-
ber; it roughly scales like Z '~i. In the cold-pressure
curves, the anomalies show up as shoulders rather than
real pockets. The same was found by Glotzel and
McMahanss for Cs at T=O, and the first-order phase
transition actually observed in Cs at room temperature
was attributed to a phonon anomaly, which, in turn, was
directly related to the T=O results. We consider it un-
likely that corresponding first-order phase transitions will
occur in K and Li because of the much higher pressures
involved; nevertheless, the present results strongly sug-
gest an experimental investigation of these two materials.

The authors thank Professor J. Kiibler for making his
augmented-spherical-wave code available to them, for his
continuous advice on hoer to use it, and for many very
helpful discussions on the topic of this paper. This work
was supported in part by the Bundesministerium fur
Forschung und Technologie (Bonn, Germany) and by
EURATOM.

APPENDIX A: SGI.VING QSM

Solving the QSM equations (17)-(19)is a nontrivial nu-
merical problem. Several methods' ' ' s have been de-
scribed in the literature. In the present work, we used
the transformation

TABLE IV. Thomas-Fermi-Dirac pressure in (e'/2a~ ).

8= la~
~TFD

10
20
30
40

S.12
13.1
22. 1

31.6

10
20
30
40

301
8SO

1540
2320

-24.5
Beryllium

p/p =13.6

Eyct) = 2.46
CY

y "(x)= —[y'(x) ] /2 —(2/x)[y'(x) +2Z/o ]

+(2/cr )[V EF +—(3n er)'~'],

with boundary conditions y'(0)= 2Z—/cr and y'(Ro/
as)=0. The potential V in Eq. (A2) is assumed to con-
tain the electron and exchange-correlation contributions;
the nuclear potential is represented explicitly by the
singular term (2/x}(2Z/o ), which is compensated by the
term (2/x)y'(x) at x=O so that no singularity occurs at
the origin. However, with increasing Z and decreasing rr
the solution y (x) becomes rather steep in the center and
is difficult to obtain numerically. The code BQUNDS
based on the multiple shooting method is used to solve
Eq. (A2} for an approximate V which is then recalculated
with the new density (Al). This process is iterated until
convergence is reached.

Results on the tr dependence on the QSM pressure are
shown in Fig. 18. In Fig 18(a),.the pressure is given for a
Wigner-Seitz radius Ro ——3az, which corresponds rough-

n(r)=exp[y(r/az)]/ass . (A 1)

Measuring all lengths in as and all energies in Ry, one
obtains
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&epen&en«of QSM pressures on the strength o of
the gradient term. The difrerent curves correspond to materials
with different Z, which is given as the label. (a)—(c) give results
for di8'erent VA'gner-Seitz radii R.

FIG. 19. Total energy (upper) and pressure (lower) of Be at
13.6-fold compression as a function of the constant interstitial
potential V„„chosen for the 1s core band; the corresponding
value for the valence band V„,& is kept Sxed at its optimal value
2.46 Ry; the width of the 1s core band is given as shaded region.
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ly to matter at normal density. The diN'erent lines refer
to materials with diferent Z, which is given as a label on
the right-hand side. The pressure is given in atomic units
(e /2aa ). Note that from Z=30 to 90 the o dependence
is almost linear and allows for simple interpolation as
soon as the pressures for cr=0 (Thomas-Fermi-Dirac
model) and tr=1 (QSM with Weizsacker's value) are
known. How the o dependence evolves under compres-
sion is shown in Figs. 18(b) and 18(c). For reasons of
comparison the pressures are normalized to their values
at o =0(prFD ), given in Table IV. The o dependence for
the normalized pressure shown in Fig. 18(b) at Ro ——la+
is roughly linear and similar for all investigated Z. It is
strongest for small Z and smallest for high Z. Compress-
ing further to 8=0.5a)t, as shown in Fig. 18(c), the
branch for small Z values is bent upwards (note the en-
larged scale), indicating that low-Z materials reach their
high-density Thomas-Fermi-Dirac limit at lower density
than high-Z materials.

APPENDIX 8: CHOICE OF INTERSTITIAL
ENERGY s FOR AS%

e=E —Vo in the interstitial region between the spherical
cells is usually chosen to be constant. ' Having in mind
the variational character of the AS%' method, we have
taken c. as a variational parameter. In the present AS%
calculations, the optimization was generally performed
for each material at each compression point. In cases
with several bands (e.g., when discrete core levels split)
we optimized c. for each band separately. As a result of
the e. variation, pressure lowering of typically a few per-
cent, relative to the pressure obtained for F=O, was
found; in extreme cases, such as K at 700 kbar, it
amounted to 10%.

The a variation is illustrated in Fig. 19 for the 1s core
band of Be at 13.6-fold compression. Optimization of the
valence band led to c„&——2.46. The variation of the total
energy (upper part) and the corresponding pressure
(lower part) is shown as a function of e„„,which is the e
of the ls core band; this band is shown as a shaded region
extending from —4.2 to —1.4 Ry. The optimum of the
variation is located at e.„„=—2.5 Ry, which coincides
with the calculated band center

In linearized muIn-tin band-structure calculations
such as the AS% method, the energy parameter

Z) EE E Z) E E= —25 Ry.
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