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Calculation of the electron momentnm density in Zr and ZrH~
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The electron momentum distributions (EMD's} and two-photon momentum distributions
(TPMD's) in Zr and ZrHz have been calculated by means of a self-consistent augmented-plane-wave

method. The results of the calculation for the total EMD and TPMD in Zr and ZrH2 along the

[100],[110],and [111]directions, as well as the changes which appear on the introduction of hydro-

gen, can be understood on the basis of the respective energy bands and Fermi-surface topology. %'e

also And the well-known feature that high-momentum components of the EMD have larger ampli-

tudes than those of the corresponding TPMD.

I. IX'nkODUCTION

In recent years a growing number of measurements
have been performed to study the electronic properties of
solids by means of Compton scattering' or positron an-
nihilation techniques. The investigation of the
momentum density in transition metals and metal-
hydrogen systems is of particular importance because of
their interesting electronic structure and technological
applications. In order to analyze the various experimen-
tal data, e.g., Compton profiles (CP's) or angular correla-
tion of positron annihilation radiation (ACPAR), con-
cerning these metals and compounds, we need a theoreti-
cal study of the electron momentum density employing
an ab initio band-structure calculation.

Recently, an augmented-plane-wave (APW) band-
structure calculation of the electron momentum distribu-
tions (EMD's) p(p} and two-photon momentum distribu-
tions (TPMD s) p2r(p) in Pd and stoichiometric PdH was
reported. ' It was shown that both EMD's and TPMD's
change significantly in going from Pd to PdH. A self-
consistent (SC) APW calculation of the CP's of Ti and
TiH2, as well as of V, Nb, VH2, and NbH2, ' has also
been performed, showing remarkable dimerences between
the respective CP's of the host metals and dihydrides.

Among other transition metals and hydrides, Zr and
ZrH2 have important technological applications in air-
craft industry, nuclear reactors, etc. Zirconium crystal-
lizes in the hcp structure and it is a 4d transition metal,
which reacts with hydrogen to form the stoichiometrie
ZrHs in the cubic fluorite structure (CaF2). Gupta and
Loucks" calculated the angular dependence of the posi-
tron annihilation along the [001]direction in hcp zirconi-
um. To our knowledge no theoretical or experimental
data of EMD's or TPMD's exist in the case of ZrHz.

We report here the results for EMD's and TPMD's in

Zr (fcc}and ZrHz using the APW method, aiming to un-
derstand the relation between the changes in the p(p) or
pzr(p) and the changes in the energy bands due to the
formation of a dihydride. In the present work Zr was
treated as a hypothetical fcc metal, in order to facilitate
the comparison with its dihydride. In a previous paper
we showed that this approximation was reasonable in the
case of the average CP of Ti, due to the fact that the two
structures (fcc and hcp) have the same density. Our cal-
culation was self-consistent and scalar-relativistic, using
the Hedin-Lundqvist prescription for exchange and corre-
lation. "

II. CALCULATION

The computation of the band structure for electrons
and positrons has been performed self-consistently by
means of the symmetrized augmented-plane-wave
method' (SAPW) in the "soft-core" approximation as
discussed elsewhere. ' The calculation was scalar-
relativistic, i.e., including Darwin and mass-velocity rela-
tivistic corrections, but neglecting spin-orbit coupling. '

We used the local-density approximation of Hedin and
Lundqvist'~ for the exchange and correlation part of the
electron crystal potential, while there is no such term for
the positron crystal potential. To calculate the positron
wave function we used only the Coulomb part of the SC
electron potential with opposite sign. To calculate the
converged electron potentials we used a mesh of 20 k
points in the —,', part of the first Brillouin zone (BZ).

The lattice constants and muffin-tin (MT) sphere radii
for the metal and the hydrogen atoms used in these calcu-
lations are listed in Table I. The converged electron crys-
tal potentials were used to calculate eigenvalues and wave
functions by the AP% method on a mesh of 89 k points
in the irreducible part of the Srst BZ.

The wave function +J(k, r) of an electron in a state k
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TABLE I. Lattice constants (a}and muffin-tin sphere radii of where AJ(k, p) is the Fourier transform of the product of
the metal (R ) and the hydrogen (8H ) in atomic units. electron and positron wave functions, i.e.,

RH

8.3155
2.9399

9.0329
2.5417
1.3682

A (k,p)=5(p —k —G)f exp( —ip r)'PJ(k, r)%+(r)dr .
cell

(4)

and in the jth band is given by a linear combination of
the APW functions f(r, k;,j )

O, (k, r)=gu(k;)g(r, k;,j), k;=k+G;

where U(k;) are calculated eigenvectors from the APW
secular determinant (with dimensions 70)&70 for Zr and
90X90 for ZrHI) and G,. are reciprocal lattice vectors
around the center of the first BZ. The wave function f is
a plane wave outside the MT spheres and foBows a spher-
ical harmonics expansion inside.

The positron wave function 4+(k, r) is calculated by
the same expression (1). Because the positron is thermal-
ized, or at T =0 in its ground state K+ —0 with I I sym-
metry, its wave function can be approximated by only
one term, 1 =0, inside the MT spheres.

We thus used:

~,(k.p) =Wp-k —G) y U(k, )( f,'"„+r,'N„)

where the plane-wave term is,

pwfp. l,
—— V. —X

MT=1

—4m g (1—5 I)
MT=1

The EMD p(p) is obtained from (3) if 4+(r) is replaced
by unity in expression (4).

Using Eqs. (1) and (2) for the wave functions in expres-
sion (4) we get A (k, p):

4+(r)=1 in the interstitial region,

=u+(
I
r —rz I )/u+(RMT)

inside each MT sphere, (2)

(3)

where M + 's are the radial positron wave functions at I l.
The TPMD pz„(p) can be expressed as

pz (p)= g I ~,(k p} I

'
k,j

Xexp[i (k, —p)

rgb�

]

jI( Ik
M'

with V, and VMT the volume of the unit cell and of each
MT sphere respectively, and the interstitial term is

N~ l1lax

f'N„=4Ir g exp[i(k; —p) r~] g (2i+1)&I(k;RMT)PI[p k;/(pk; )]
MT=1 I=O

r ui(r j )u+(r)j&(pr)dr/[ uI(RMTj )u+(RMT)], (7)

with p&'s the Legendre polynomials. For each k, the ex-
pI'essIOIl AJ (k, p) Is 1101'IIla11zed as

g I A, (k, p) I
=1.

%'e have used 181 reciprocal lattice vectors 6 in rnomen-
tum space. Equations (1}—(8) are the basis for our calcu-
lations of EMD p(p) and TPMD p2„(p} in Zr and its
dihyd ride.

III. RESULTS AND DISCUSSION

A. Sand structure

The calculated densities of states (DGS's) and energy
bands of Zr (fcc}and ZrHI along some important symme-
try directions are plotted in Figs. 1 and 2, respectively.
The dashed horizontal line represents the Fermi energy
EF-

Table II shows a comparison of the calculated band en-
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FIG. 1, The density of states and energy bands of Zr (fcc) along high-symmetry directions.

ergies (in Ry) of Zr by Moruzzi et al. ' with the present
t'esults. They find N(EF) = 17.42 stateslRy atom for the
DOS at EF, while our calculation gives 18.53
stateslRy atom. In their work they employed the nonre-
lativistic self-consistent Korringa-Kohn-Rostocker
(KKR) method in the muffin-tin approximation with the
exchange and correlation of Hedin-Lundqvist. The small
discrepancies between the present eigenvalues and the re-
ported data of Morruzzi et al. ' are due to the different
methods used to solve the one-electron problem and to
the fact that we have included relativistic eff'ects. It is
well known' that in the relativistic calculations the

bands become wider and deeper in energy; From Table II
we see that the most affected energy is that of the s-like
I, state (about 40 mRy difference), while the d states are
affected the least.

The band structure of ZrH2 has been extensively dis-
cussed by Gupta, ' Switendick, ' and Papaconstanto-
poulos and Switendick. ' As far as the band structure is
concerned we note that there is no difference between the
method and the approximations used in the latter paper'
and the present work, therefore we will point out only the
essential features of its electronic structure necessary for
the present discussion.

ZrHp
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FIG. 2. The density of states and energy bands of ZrH2 along high-symmetry directions.
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TABLE II. Comparison of eigenvalues 4,in Ry} for some

high-symmetry points in the Brillouin zone of zirconium be-

tween this work and that of Moruzzi et al.

Symmetry
point

I
rz5
X]
X3
L]
L3
L2

Kl
K]
K3

'Reference 16.

0.224
0.665
0.337
0.420
0.389
0.643
0.713
0.435
0.579
0.410
0.494
0.697

Present results
F. (Ry)

0.187
0.682
0.341
0.431
0.383
0.659
0.702
0.441
0.586
0.416
0.501
0.700

At low energies we observe two energy bands (Fig. 2).
The first lower band represents metal-hydrogen bonding
states corresponding to the first band of the pure metal;
these states lie lower in energy than in the host metal due
to the introduction of hydrogen. The second low-lying
band involves mainly hydrogen-hydrogen and a weak

metal-hydrogen interaction and overlaps the d states of
metal located at higher energies; the I z level (hydrogen-
hydrogen antibonding states} hes below the Fermi energy
Ez. In addition we note the presence of the two sharp
peaks in the DOS at low energies, which are characteris-
tic of the metal-hydrogen bonding interaction.

8. Electron momentum distribution

The calculated total EMD p(p) in Zr along the symme-
try directions [100], [110],and [111]are plotted in Fig. 3.
The insets show the corresponding energy bands.

Harthoorn and Mijnarends have discussed a selection
rule which allows only certain bands to contribute to the
total p(p), while the partial momentum distributions of
the other bands are zero. According to this rule, only the
bands h„X, and A, (the totally symmetric representa-
tions) are allowed to contribute to p(p) in the first and
higher Brillouin zones along the [100], [110],and [ill]
directions, respectively. The labels ( A), (8), etc. marked
in the band structure (inset} of Fig. 3 show the lower and
higher b, i, Xt, and A& bands, respectively. It should be
noted here that in our calculation we have verified the

0.8
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2
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FIG. 3. The calculated EMD p(p) due to the band electrons of Zr (fcc) along (a) [100],(b) [110],and (c) [111]directions. (The solid
lines connect the computed points. ) The corresponding energy bands are shown in the inset.
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above selection rule: The other bands give a contribution
only 10 '~% of the total p(p), which is at the limit of
detection.

The efkcts of the band structure, character of wave
functions and Fermi-Surface topology on the EMD in 3d
and 4d transition metals have been reported by several
authors. ' Here we will discuss in a similar manner
our theoretical results of p(p) in Zr.

Along the [100]direction [Fig. 3(a)) only the lowest 5,,
band is occupied (labeled by A}. Thus the total EMD is
due only to the contribution of one completely occupied
band; since the Fermi level lies well above this band, the
p(p) has a smooth shape inside the first BZ (G=O)
without discontinuities. At low momenta the behavior of
p(p) is almost Bat due to the s-like character of the I',
state. %'hen p increases, the momentum distribution be-
gins to decrease, since this 5& band loses its s character
owing to hydridization with the d band; the X, level has
predominantly a d like character. The presence of the
high-momentum components (HMC) of the p(p) in the
higher zones is due to the Umklapp process p=k+G
(G&0) while their amplitude is determined by the value
of the term

i AJ(k, p) i

In the case of the EMD along the [110]direction [Fig.
3(b)] the behavior of the lowest X, band [marked A] is
similar to that of the lowest 6& band. The next higher X,
band (marked 8) is partially occupied; it starts at I 2~ as a
d band, since the I z5. level is a pure d state and it remains
d-like inside the Srst BZ. At low p the partial momentum

density of this band increases slowly as p, ' but there
is no contribution to the total p(p), because it is not occu-
pied. At p-0. 5 a.u. this band crosses the Fermi level
and starts contributing to the total EMD. As it is expect-
ed, ~ ' no visible Fermi discontinuity occurs at this
momentum because the contribution of this d-like band is
small there. The contribution of the latter is predom-
inant in the second BZ and it gives a broadening of the
total p(p). In the region 1.7 &p & 2.6 a.u. (on either side
of I ) the HMC's of the p(p) given by the upper X, band
(8) are absent, since the corresponding states lie above
the Fermi level.

Concerning the EMD along the [111]direction [Fig.
3(c)] the behavior of the lowest A, band (labeled by A}
can be analyzed similarly to the lowest 5& band. The
upper A, band (marked 8) lies close to the Fermi energy
but fails to contribute to the total p(p) because it is not
occupied throughout. Thus the shape of p(p) along this
symmetry direction is determined by the contribution of
only one completely occupied A& band.

In Fig. 4 we show the p(p }of ZrHz along the high sym-
metry directions 6, X, and A. The respective energy
bands are plotted in the inset. It is clear that the intro-
duction of hydrogen results in quite di8'erent EMD's
from those of the pure metal. These differences can be
understood in terms of the changes in the energy bands
along with the changes in the character of the respective
wave functions.

Along the symmetry directions 6, X, and A the lower
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F&G. 5. The TPMD pzr(p) for the band electrons in Zr (fcc) along (a) [100],(b) [110],and (c) [111]directions. (The solid lines con-
nect the calculated points. ) The insets sho~ the relevant energy bands.
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bands h„X, and A, [marked as A in Figs. 4(a)-4(c), re-
spectively} are formed from metal-hydrogen bonding
states. At I

&
these bands are obtained by a bonding com-

bination of zirconium 5s and hydrogen 1s states. As p in-
creases, contributions of other states of the metal (p or
d-like states) appear, but these remain small compared
with the contribution of the s-like H states; the partial
EMD's due to these low-lying bands begin to decrease
slowly and involve generally small values in higher zones.
They sre also broader in ZrHz than in Zr, since the corre-
sponding states lie lower in energy than in the pure metal;
a lowering of the energy means being closer to the nu-
cleus and hence having higher average moments.

As is shown in Fig. 4(a), the next higher b, , band
(marked 8} is partially occupied and causes interesting
features in the p(p) along the [100] direction. This band
has essentially a d-like character (due to Zr d states); thus
the Fermi discontinuity is negligible inside the first BZ,
when the band crosses the Fermi level. On the contrary,
a strong Fermi break occurs at the equivalent momentum

p —1.1 a.u. through the Urnklapp process. In the range
p =1.1 —1.7 a.u. the p(p) results only from the contribu-
tion of the lower 5, band. Beyond p —1.7 a.u. the upper
6

&
band also yields nonzero contributions and we observe

another weaker Fermi discontinuity at this momentum.
A comparison of the total p(p) for Zr along the b, direc-
tion [Fig. 3(a)] with that of ZrH2 [Fig. 4(a)] shows that
the latter is broader and it presents discontinuities due to
the additional contribution of the partially occupied

upper 6& band.
Similarly the next higher X& band [labeled by 8 in Fig.

4(b)] is formed mainly of d-like Zr states, but now it is al-
most completely occupied throughout the BZ; thus it
gives a rather smooth partial contribution to the total
p(p). The minimum at p —1.7 a.u. corresponds to the
unoccupied part of the X, band in the second BZ. The
total EMD along the X direction has generally similar
shape in Zr and ZrH2 [Figs. 3(b) and 4(b), respectively]
except for the presence of the HMC of p(p) for ZrH2
around p =2 a.u. The absence of the latter in Zr is attri-
buted to the fact that the upper X& band in the host metal
is partially occupied.

Along the [111]direction [Fig. 4(c)] the next higher A&

band (marked as 8) is completely occupied; it starts at
I"2. level, which is formed of hydrogen-hydrogen anti-
bonding combination (s-like character} with a small f-
like Zr contribution, but it does not give s visible contri-
bution to p(p). As p increases the H-H antibonding
states hybridize with mainly the Zr p-like states and the
partial contribution of this band increases up to 0.9 a.u.
and then decreases showing a smooth behavior. Up to
p =1.2 a.u. the contribution of this A& band gives a
broader p(p} compared with that for Zr [Fig. 3(c)]. In
addition there is a higher A, band (marked C}, which is
occupied only near the center of the BZ snd starts at I 25.

with an essentially d-like Zr character. At p =0 it fails to
give a visible contribution, but at p =1.2 and 2.4 a.u. the
observed peaks on the total p(p) are due to the partial
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contribution of the I z5 state through the Umklapp pro-
cess. A sharp Fermi break is shown at p -1.3 a.u. aris-
ing from the crossing of the latter band with the Fermi
level.

C. Two-photon momentum distribution

The calculated total TPMD's p2 (p) along the three
symmetry directions [100], [110], and [111] for Zr and
ZrH2 are presented in Figs. 5 and 6, respectively. A
direct comparison of the above curves with those of the
EMD's in Figs. 3 and 4 shows that the general shape as
well as the various features and discontinuities of the cor-
responding curves are very similar for both metal and
dihydride, so they can be interpreted in a manner similar
to the one used previously. Nevertheless some differences
do exist. For instance, the HMC's of the TPMD have
smaller heights than those of the respective EMD. This
is obviously a result of the presence of the positron wave
function which reduces the contribution of the core orbit-
als in p~ (p).

It should also be pointed out that the Fermi breaks
wh1ch occur 1n ZrH2 at p —1. 1 and 1.3 B.u. along the
[100] and [111]directions, respectively, are sharper for
the TPMD (Fig. 6) than for the EMD (Fig. 4). An analo-
gous difference between p(p) and pzr(p) has been found
in Pd and PdH, ' and reflects the presence of the posi-
tron wave function in the calculation of each partial con-
tribution to the total TPMD.

IV. CONCLUSION

%e have presented a calculation of EMD's and
TPMD's in Zr and ZrHz using the self-consistent APW
method. The behavior of p(p) and pz (p) for the host
metal and the dihydride along the symmetry directions 6,
X, and A, as well as the remarkable differences which
occur on the momentum density upon the introduction of
hydrogen are interpreted in terms of the respective ener-
gy bands, the Fermi-surface topology, and the character
of the wave functions.

To our knowledge this is the first ab initia calculation
of the changes involved in the EMD's and TPMD's of a
4d transition metal upon the formation of its dihydride.
Unfortunately no experimental data like Compton
profiles or angular correlation of positron annihilation ra-
diation are available in the case of Zr and ZrH2 for com-
parison with the present theoretical results. It is hoped
that the above calculations will stimulate experimental-
ists to perform measurements on this metal and dihy-
dflde.
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