PHYSICAL REVIEW B

VOLUME 37, NUMBER 15

15 MAY 1988-11
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The role of vertex corrections, associated with electron-phonon interactions, for electron scatter-
ing in metals is studied quantitatively. It is found that the correction, proportional to (m /M)'"?, is
multiplied by a large numerical factor, ~30. As a consequence the residual resistivity of a metal is
not left unchanged by electron-phonon interactions. The resistivity suffers an increase by a factor
~(140.16A), where A is the mass renormalization caused by electron-phonon interactions. The
coefficient of A depends on the square root of the ratio v /v, of sound velocity to Fermi velocity, and

the value 0.16 is obtained for the ratio ;.

I. INTRODUCTION

Electron-phonon interactions might be expected to
have a significant influence on electron transport over
and above direct scattering processes at finite tempera-
tures. For example, the residual resistivity of a metal,
i.e.,at T =0,

m*

Po= 2 (1)
ne-t

varies as (m*)? since the impurity-potential scattering
rate, 1/7, is proportional to the electronic density of
states at the Fermi surface. The explicit factor m* in Eq.
(1) arises from the fact that the group velocity of an elec-
tron at the Fermi surface is

vp=tikp/m* | 2)

which results in a proportionate current reduction if m*
is greater than m.

It is well known that electron-phonon interactions
cause a renormalization of the effective mass:!

m*=m(14+A), (3)

where m is the band mass and A is the mass-
renormalization parameter. Naively one might expect
that p, would (as a consequence) be increased by a factor
(1+A)% but this is not the case.? The scattering rate is
reduced by a compensating factor of (1+A)~2 in the ap-
proximation proposed by Migdal.> The purpose of this
study is to explore the extent to which Migdal’s approxi-
mation fails, since any deviation can lead to a new
temperature-dependent contribution to the electrical
resistivity at very low temperatures, even if all of the
scattering is elastic. This work was prompted by recent
high-precision resistivity studies of simple metals,” which
have indicated a need for further theoretical exploration.

II. ELECTRONS DRESSED WITH PHONONS

In the presence of electron-phonon interactions the en-
ergy of an electron suffers a shift =(k), the self-energy
correction, relative to its band energy e(k):

E(k)=¢e(k)+2(k) . 4)
In second-order, Brillouin-Wigner perturbation theory,

lg(g)|?
E —e(k—q)—#w(q)

S(k)=3

q

_ lg(q)]? )
= e(k+q)—E —finlq) ’

where g(q) is the electron-phonon-scattering matrix ele-
ment for momentum q. The first term arises from virtual
emission of phonons by the electron k, which then recoils
to empty states {k—q}. The second term arises from the
suppression of virtual transitions from occupied states
{k+q} to the (now) filled state k. [The quasiparticle en-
ergy E (k) is the difference between the total energy of
the (N +1)-electron system (k occupied) and the N-
electron system (k empty).]

The influence of 2(k) on the density of states N(E) is
easily found since N (E)~(dE /dk)~!.

dE _de d3 dE

dk ~ dk T dE dk ’ ©
so0, on solving for dE /dk in Eq. (6),

dE  de ds |

dk ~dk |' T dE @
Accordingly,

m* dz

- =1— iE (8)

From Eq. (3) it follows that A= —dZ /dE; whereupon A
can be calculated directly by differentiating Eq. (5):

2

g(q)

ME)=2 | | & —e(k—q)—fin(q)

q

g(q)
e(k+q)—E —fiw(q)

2
] . ©

Again, the first term is summed for k —q empty and the
second for k + q occupied.
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Equation (9) can be evaluated numerically for a free-
electron model, but see the Appendix. We show in Fig.
1, ME) versus E near Ep. The area, [A(E)dE, is neces-
sarily zero since the self-energy correction merely alters
the density-of-states distribution, but conserves the total
number of quantum states. The electron-phonon-
interaction matrix element was taken to be

glg)=Aq[w(g)]"'% 0<qg<qp, (10)

which is appropriate for a “‘jellium” model. (g, is the ra-
dius of the Debye sphere.) We modified the Debye fre-
quency spectrum (~?) to avoid the unrealistic, singular
cut off at fiw =0, which would result in infinite values for
ME) at Ep*+0. Instead we used a phonon frequency dis-
tribution,

ho

— in2
F(w)=B1B sin 20

Tho
- 1
cos’ 26 ] (11)

which falls continuously to zero at the cut off, fiw=0.
This spectrum corresponds to #io=(20 /7)sin™'(q/qp).
One should note that A(E) has a minimum at Ep. It is
this minimum which leads to a T3In(®/T) contribution
to the electronic heat capacity.® It will also cause elastic
impurity scattering to contribute a T2In(®/T) term to
the electrical resistivity.* The behavior of A(E) shown in
Fig. 1 is typical of results obtained from calculations on
specific metals.”

Consider now an N-electron system at T =0, and let
¥, be its wave function, including virtual excitations
caused by the electron-phonon interaction. If, for exam-
ple, an extra electron is added to the system in state k,
above Ef, the wave function of the (N + 1)-electron sys-
tem will be

MASS RENORMALIZATION

F B+ 8
ELECTRON ENERGY

EF- 8 E

FIG. 1. Mass-renormalization parameter A(E) divided by
AE,) near the Fermi energy Er. (@ is the Debye energy.)
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Yy~ Aty (12)
where the dressed-electron creation operator is
Af=zoi+3 E(k)_e(i(_q;)_ﬁw(q) a b2
2 E(k)-—a(gk(-f()l)_{_ﬁw(q)al:Jrqbq (13)

q

The first term creates a (bare) electron in k, and the
second term creates its phonon dressing. The third term
annihilates the phonon dressing of W, which arose be-
cause the state k was (originally) empty; it restores an
electron to k+q, which was emptied by virtual emission
of the phonon q (now annihilated). z is the quasiparticle
renormalization factor:

2

g(q)

E(k)—e(k—q)—fiw(q)

1
PEialisp>
z q

g(q)
e(k+q)—E(k)—#w(q)

+ (14)

When one compares Egs. (9) and (14), it is evident that

Lot4a, (15)
V4

which is the Ward identity. [See also Eq. (3).]

III. SCATTERING OF DRESSED ELECTRONS
BY A POTENTIAL

Suppose there are scattering potentials ¥ (r), having
Fourier transform V(Q), which give rise to the residual
resistivity. The distribution function f(k) of the
Boltzmann transport equation describes the occupation
probability of dressed electrons. So the collision operator
(arising from the impurity potentials) depends on the
(complete) matrix elements

My =(AEYy | V(D) | ALYy, (16)
instead of the “bare’” matrix element

V(Q)=(k'|V(r)|k), a7
where k'=k+Q. It follows from Egs. (13) and (16) that,

My, =2V (Q[1+AK k)], (18)

where A, the ‘“‘vertex correction” arises from the ‘“‘dress-
ing” terms of Eq. (13):

lg(q)|?
A,(K)A (k')

2
lg@|” | (4

AQ=2 A,(k)A,(K')

q

+

Here A, and A, are the energy denominators of the
second and third terms in Eq. (13).

The residual resistivity is now proportional to the
square of the matrix elements, Eq. (17), as well as to the
m* /m factors mentioned in Sec. I. Accordingly,

2
Po=—5— 2414 A)?, (20)
ne-rg

m*
m
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where 7, is the relaxation time computed without con-
sideration of electron-phonon interactions. From Egs. (3)
and (15),

m

Po= 2
ne Ty

(1+A)?, (1)

since the mass-renormalization factors and the wave-
function renormalization factors cancel. The only
modification of the residual resistivity that remains arises
from the vertex correction, A.

Migdal’s theorem 1is the observation that A is
~(m /M)"?, where M is the atomic mass, and so can be
safely neglected. In this event the well-known result that
electron-phonon interactions do not alter p, appears
justified.2 However, such a conclusion assumes that the
numerical factor multiplying (m /M)!/? is near unity. In
the following section we shall calculate the effect of ver-
tex corrections and shall find that the numerical factor is
~30.

We first examine Eq. (19) and consider the special case
when k' —k is near zero. Then from Egs. (9) and (19),

lim A(Q)=A . (22)
Q—0

The failure of Migdal’s approximation is 100% in this
limit, as originally noted by Migdal.® If the scattering
centers causing the residual resistivity were very large ob-
jects, having only Fourier components near Q =0, then
po would be increased by (1+1)% in accord with the
naive surmise mentioned in Sec. I.

IV. Q DEPENDENCE OF THE VERTEX CORRECTION

In the foregoing section we have noticed that, for very
small Q, the scattering matrix element of a dressed elec-
tron receives a proportionate contribution from the
dressed components. In such an event, the (14 A) factor
cancels the z? factor in Eq. (18), so the matrix element is
the same as that for a bare electron. For larger Q, how-
ever, the confluences of the singular factors associated
with A (k) and A(k’), etc., no longer obtain. According-
ly, the numerical value of A, Eq. (18), becomes smaller
than A. The physical meaning is that the virtual-phonon
dressing of the initial state k loses most of its overlap
with the dressing of the final state k’. The scattering ma-
trix element is then dominated by the bare part,
zX(k'| V | k). (Migdal’s approximation retains only this
contribution.)

We have calculated A(Q) in order to quantify the
failure of Migdal’s approximation. The threefold integra-
tion, d3g, in Eq. (19) can be evaluated numerically after
an initial analytic integration over the azimuthal angle
defined relative to the polar axis Q. E was taken equal to
the Fermi energy E, and the phonon spectrum was ex-
tended: O0<gq <2kg, in order to include umklapp pro-
cesses. Such an extension requires that the electron-
phonon-interaction matrix element, Eq. (10), be replaced
by one having the periodicity of the reciprocal lattice.
We employed the approximation

|g(q)|%*= A'sin(wq/G) , (23)
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where G was taken to be a (1,1,0) reciprocal-lattice vector
of a bcc monovalent metal. Dispersion of the velocity of
sound, v, was neglected in the energy denominators, A.
The relative importance of A(Q) depends on the ratio,
v/vg, of sound velocity to Fermi velocity. For a ratio,
5—!.5, a heuristic fit to the numerical values obtained was,

2
Q2 Q2

—-1/2
A

J(Q)Exg 14220 +360

(24)

This deviation from Migdal’s approximation is shown in
Fig. 2. One should note that the deviation falls rapidly
from 100% at Q =0, as expected, but remains quite
significant (~7%) near Q =k. The value near k varies
approximately as (v/vg)!/2. (The ratio of A to A, Eq.
(24), is independent of interaction strength in first-order
Born approximation.)

Equation (24) can be used to calculate the effect of the
vertex correction on, say, the residual resistivity. The re-
sult depends, of course, on the scattering potential as-
sumed. For illustrative purposes we consider

V(r)=B exp(—ri/r}), (25)

where r; is the radius of the Wigner-Seitz sphere, i.e.,
kpr,=(97/4)'3. Accordingly,

V(Q)=B'exp(—r2Q?/4) . (26)

The residual resistivity, with Migdal’s approximation, is
proportional to

Ip= fo”[V(Q)]Z(l—cose)sinede, 27
where 6 is the scattering angle, i.e.,
Q =2kgsin(6/2) . (28)
100
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FIG. 2. Vertex correction A(Q), divided by A(Ef), as a func-
tion of momentum transfer Q.



37 FAILURE OF MIGDAL’S APPROXIMATION IN ELECTRON . .. 8621

When including the vertex corrections, the residual resis-
tivity is proportional to,

I= [TV (@)1 —cosd)[ 1+21) (Q)]sin6d6 . (29)

We have neglected the quadratic term, (AJ)®. The ratio
of I to I is easily evaluated from Eqgs. (24)-(29):

I/Iy=1+0.16A . (30)

This is the factor by which the residual resistivity would
be increased as a consequence of electron-phonon interac-
tions.

The coefficient, 0.16, of A in Eq. (30) is approximately
proportional to (v/vp)!/2. Tt is rather insensitive to the
functional form of V(r), Eq. (25). For a §-function po-
tential (isotropic scattering) it has a value of ~0.11. For
scattering arising from atomic displacements surrounding
an impurity,® it can exceed 0.20. Since (m/M)'/?
~0.005, the vertex correction to p, is approximately 30
times larger than the original order-of-magnitude esti-
mates.

V. CONCLUSIONS

Numerical study of vertex corrections for electron
transport reveals that they are large enough to be of
physical significance. In a subsequent work, we have
found that such corrections cause a new, measurable con-
tribution to the low-temperature resistivity, proportional
to {’Zln(®/ T), which arises solely from elastic scatter-
ing.
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APPENDIX

The integrals in Eqgs. (5) and (9) are both singular. The
principal value is the correct interpretation of Eq. (5).
A(E), given symbolically by Eq. (9), can only be obtained
by differentiation after the principal-value evaluation of
Eq. (5) has been accomplished analytically.

A simple example of the questions involved may clarify
the meaning. Consider

1 d
y(a)zf—]xja ’

where |a | <1. Formally,

dy ' _dx
da _f~1 (x —a)?
appears to be positive (by inspection of the integrand).

However, the principal-value interpretation of the in-
tegral for y (a) leads to

1—a

14a

y(a)=In

Whereupon, by differentiation,

dy _ -2

da  1-—q?’
which is negative for |a | <1. Interestingly, this last
(and correct) result is also obtained if the integral for
dy /da is evaluated formally, without noticing the singu-
larity of the integrand.

The integrals displayed in this paper were evaluated
with appropriate care.
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