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Failure of Migdal's approximation in electron transport
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The role of vertex corrections, associated with electron-phonon interactions, for electron scatter-
ing in metals is studied quantitatively. It is found that the correction, proportional to {m /M}' ', is
multiplied by a large numerical factor, -30. As a consequence the residual resistivity of a metal is
not left unchanged by electron-phonon interactions. The resistivity su8ers an increase by a factor
-{1+0.16k, }, ~here A, is the mass renormalization caused by electron-phonon interactions. The
coefficient of k depends on the square root of the ratio U/uF of sound velocity to Fermi velocity, and
the value 0.16 is obtained for the ratio z~.

I. INTRODUCTION E(k)=s(k)+X(k) . (4)

Electron-phonon interactions might be expected to
have a signi5cant inhuence on electron transport over
and above direct scattering processes at Snite tempera-
tures. For example, the residual resistivity of a metal,
i.e., at T=0,

m*
Po=

ne

varies as (m*) since the impurity-potential scattering
rate, 1/i. , is proportional to the electronic density of
states at the Fermi surface. The explicit factor rn' in Eq.
(1) arises from the fact that the group velocity of an elec-
tron at the Fermi surface is

vF =fikF /m ',
which results in a proportionate current reduction if m '
is greater than m.

It is well known that electron-phonon interactions
cause a renormalization of the effective mass

In second-order, Brillouin-signer perturbation theory,

E —e(k —q) —i}lto(q)

Ig(e) I

'
s(k+q) —E—i}lto(q)

' (S)

where g(q} is the electron-phonon-scattering matrix ele-
ment for momentum q. The first term arises from virtual
emission of phonons by the electron k, which then recoils
to empty states Ik —qj. The second term arises from the
suppression of virtual transitions from occupied states
{k+qI to the (now) filled state k. [The quasiparticle en-

ergy E(k) is the difFerence between the total energy of
the (N+1)-electron system (k occupied) and the N-
electron system (k empty). j

The in6uence of X(k) on the density of states N(E) is
easily found since N (E)—( dE /dk )

dE de dX dE
dk dk dE dk

m'=m(1+A, ), (3)
so, on solving for dE/dk in Eq. (6),

where m is the band mass and A, is the mass-
renormalization parameter. Naively one might expect
that po would (as a consequence) be increased by a factor
(1+A,); but this is not the case. The scattering rate is
reduced by a compensating factor of (1+1,) in the ap-
proximation proposed by Migdal. The purpose of this
study is to explore the extent to which Migdal's approxi-
mation fails, since any deviation can lead to a new
temperature-dependent contribution to the electrical
resistivity at very low temperatures, even if all of the
scattering is elastic. This work was prompted by recent
high-precision resistivity studies of simple metals, which
have indicated a need for further theoretical exploration.

II. ELECTRONS DRESSED WITH PHONONS

In the presence of electron-phonon interactions the en-
ergy of an electron sufFers a shift X(k}, the self-energy
correction, relative to its band energy e(k):

dE ds dX
dk dk' dE

Accordingly,

dX
6E (8)

From Eq. (3) it follows that A, = dX/dE; where—upon A,

can be calculated directly by differentiating Eq. (S}:

g(q)
E —e(k —q) —irido(q)

g(q)
e(k+q) —E—fico(q)

Again, the erst term is summed for k —q empty and the
second for k+q occupied.
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g (q) = Aq [co(q)] 0 gq (qD (10)

Equation (9) can be evaluated
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When one corn arempares Eqs. (9) and (14)
'

1

, it is evident that

=1+A,
Z

which is thhe Ward identit . Si y. ee also Eq. (3).]

III. SCATTERING OF DRESSED ELECTRON
BY A POTENTIAL
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where k'=k+ Q. It follows from Erom qs. (13) and (16 that

Mg i, ——z V(Q)[1+A k' k
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7 I

where A, the "vert a

(18)

e vertex correction" arises from the "dress-

p(q) y I g( l) I

,(k)b, ,(k') hi(k)bi k' (19)

E-8
F EF E+ 8

ELECTRON ENERCV
F

FIG. 1.1. - ization paramet1. ass-rcnormali ( ) e
e ye energy. )

z'(1+A)', (20)

Here 6& and 52 are the ener
ec

'
erms in Eq. (13).

gy denominators f hs o the

e residual resis
'

s uar
ti vity is now proportional to the

I'/m factors ment' d
'

ccordingly,

t7l



SHAOPING HU AND A. %'. OVERHAUSER 37

where ~o is the relaxation time computed without con-
sideration of electron-phonon interactions. From Eqs. (3)
and (15),

lim A(Q)=A, .
Q~o

(22)

The failure of Migdal s approximation is 100% in this
limit, as originally noted by Migdal. If the scattering
centers causing the residual resistivity were very large ob-
jects, having only Fourier components near Q =0, then

po would be increased by (1+A,), in accord with the
naive surmise mentioned in Sec. I.

po
——

2
(1+A)

ne ~0

since the mass-renormalization factors and the wave-
function renormalization factors cancel. The only
modification of the residual resistivity that remains arises
from the vertex correction, A.

Migdal's theorem is the observation that A is
-(m /M)'~, where M is the atomic mass, and so can be
safely neglected. In this event the well-known result that
electron-phonon interactions do not alter po appears
justified. However, such a conclusion assumes that the
numerical factor multiplying (nt /M)' is near unity. In
the following section we shall calculate the effect of ver-
tex corrections and shall And that the numerical factor is
-30.

We first examine Eq. (19) and consider the special case
when k' —k is near zero. Then from Eqs. (9}and (19),

(24)

This deviation from Migdal's approximation is shown in
Fig. 2. One should note that the deviation falls rapidly
from 100% at Q =0, as expected, but remains quite
significant (-7%) near Q =k~. The value near kF varies
approximately as (U/UF)'~ (T. he ratio of A to A, , Eq.
(24), is independent of interaction strength in first-order
Born approximation. )

Equation (24) can be used to calculate the effect of the
vertex correction on, say, the residual resistivity. The re-
sult depends, of course, on the scattering potential as-
sumed. For illustrative purposes we consider

V(r)=B exp( —r /r, ), (25)

where r, is the radius of the %igner-Seitz sphere, i.e.,
kFr, =(9m /4)'~ . Accordingly,

V(Q) =B'exp( —r,'Q /4) . (26)

The residual resistivity, with Migdal s approximation, is
proportional to

where G was taken to be a (1,1,0) reciprocal-lattice vector
of a bcc monovalent metal. Dispersion of the velocity of
sound, v, was neglected in the energy denominators, h.

The relative importance of A(Q} depends on the ratio,
U/UF, of sound velocity to Fermi velocity. For a ratio,
—,', a heuristic fit to the numerical values obtained was,

2 —1/2

J(Q)= —-=1+220 +360
F F

IV. Q DEPENDENCE OF THE VERTEX CORRECTION

In the foregoing section we have noticed that, for very
small Q, the scattering matrix element of a dressed elec-
tron receives a proportionate contribution from the
dressed components. In such an event, the (1+A) factor
cancels the z factor in Eq. (18), so the matrix element is
the same as that for a bare electron. For larger Q, how-
ever, the confiuences of the singular factors associated
with b, ,(k) and hi(k'), etc., no longer obtain. According-
ly, the numerical value of A, Eq. (18), becomes smaller
than A, . The physical meaning is that the virtual-phonon
dressing of the initial state k loses most of its overlap
with the dressing of the final state k'. The scattering ma-
trix element is then dominated by the bare part,
z (k'

~

V
~

k ). (Migdal's approximation retains only this
contribution. )

We have calculated A(Q) in order to quantify the
failure of Migdal's approximation. The threefold integra-
tion, d q, in Eq. (19) can be evaluated numerically after
an initial analytic integration over the azimuthal angle
defined relative to the polar axis Q. E was taken equal to
the Fermi energy Ez, and the phonon spectrum was ex-
tended: O~q g2kz, in order to include umklapp pro-
cesses. Such an extension requires that the electron-
phonon-interaction matrix element, Eq. (10), be replaced
by one having the periodicity of the reciprocal lattice.
%e employed the approximation

Io= I [V(Q)]2(1—cos8)sin818,
0

where 0 is the scattering angle, i.e.,

Q =2kFsin(8/2) .
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(28)

~ g (q)
~

= A'sin(mq/6}, (23)
FIG. 2. Vertex correction A(Q), divided by A,(E~), as a func-

tion of momentum transfer Q.
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I/Io =-1+0.16K . (30)

This is the factor by which the residua/ resistivity would
be increased as a consequence of electron-phonon interac-
tions.

The coefficient, 0.16, of l{, in Eq. (30) is approximately
proportional to (U/U~)' . It is rather insensitive to the
functional form of V(r), Eq. (25). For a 5-function po-
tential (isotropic scattering) it has a value of -0.11. For
scattering arising from atomic displacements surrounding
an impurity, it can exceed 0.20. Since (m /M)'
-0.005, the vertex correction to po is approximately 30
times larger than the original order-of-magnitude esti-
mates.

%hen including the vertex corrections, the residual resis-
tivity is proportional to,

I=f [ V(Q)] (1—cos8)[1+2hZ(Q)]sin8d0 . (29)

We have neglected the quadratic term, (AJ) . The ratio
of I to Io is easily evaluated from Eqs. (24)—(29):

APPENDIX

The integrals in Eqs. (5}and (9) are both singular. The
principal value is the correct interpretation of Eq. (5).
A,(E), given symbolically by Eq. (9), can only be obtained
by difkrentiation after the principal-value evaluation of
Eq. (5) has been accomplished analytically.

A simple example of the questions involved may clarify
the meaning. Consider

where
~

a
~

g l. Formally,

appears to be positive (by inspection of the integrand}.
However, the principal-value interpretation of the in-

tegral for y (a) leads to

V. CONCLUSIONS

Numerical study of vertex corrections for electron
transport reveals that they are large enough to be of
physical significance. In a subsequent work, we have
found that such corrections cause a new, measurable con-
tribution to the low-temperature resistivity, proportional
to T2ln(e/T), which arises solely from elastic scatter-
ing.
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y(a)=ln 1+9

Whereupon, by diff'erentiation,

dy
dQ

which is negative for
~

a
~

&1. Interestingly, this last
(and correct) result is also obtained if the integral for
dy/da is evaluated formally, without noticing the singu-
larity of the integrand.

The integrals displayed in this paper were evaluated
with appropriate care.
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