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During chemisorption, islands often form in which adspecies have superlattice spacing. Upon
meeting, these coalesce if in phase, and form a domain boundary otherwise. Manifestly nonequi-
librium island distributions can develop as a result of kinetic limitations, and a metastable satura-
tion state of domain boundaries may, in turn, result. We analyze irreversible cooperative filling
models for the formation of ¢(2X2) islands, where island structure is kinetically determined, and
extensive coalescence near saturation produces a “percolative” domain structure. We show that the
associated dramatic increase in domain size, and fractal domain structure, are not reflected in the

spatial pair-correlation or diffracted-intensity behavior.

Consequently, we identify quasi-one-

dimensional measures of domain size which better reflect correlation-length behavior. These are
then used to develop scaling relations for pair correlations and diffracted intensities. A special case
of our model describes metastable c (2 X2)O/Fe(001) formed after exposure of Fe(001) to H,O.

I. INTRODUCTION

Many chemisorption systems exhibit a propensity for
island formation.! Often adspecies constituting these is-
lands have superlattice spacing, in which case they reside
on one of several adsorption-site sublattices, and are
assigned a ‘“phase” accordingly. Figure 1 depicts
V2XV2R45° or c(2x2) islands on a square lattice,
which have one of two phases. Here we consider the evo-
lution of such order during chemisorption, i.e., with in-
creasing coverage, ©. Such processes involve competi-
tion between nucleation and growth of islands, as well as
coalescence of in-phase islands, and the formation of
domain boundaries between out-of-phase islands (see Fig.
1). Such adlayer states may be far from equilibrium due
to kinetic limitations of low surface mobility.? This im-
plies that the structure of the growing islands is at least,
in part, kinetically determined, and that the process may
well generate a “‘metastable saturation state,” with no
long-range order, in which only domain boundaries
separate islands of different phase.

There are available many sophisticated analyses of ad-
layer statistics for the equilibrium state.® Several non-
equilibrium studies have characterized the dynamics of
equilibration at constant coverage, O, following a rapid
quench. Various evolution mechanisms associated with
first-order transitions, as well as order-disorder transi-
tions, have been studied, focusing on the time dependence
of late-stage growth.* However there are very few treat-
ments of nonequilibrium island formation or ordering
during chemisorption,’~8 the topic of this investigation.

The statistics or structure of island formation during
chemisorption is naturally characterized in terms of three
(possibly) distinct length scales:

(i) On the scale of a few lattice vectors, probabilities of
various local configurations determine such quantities as
the sticking probability, island edge densities, etc., as
functions of the time (¢) or coverage (©).

(ii) The characteristic or correlation length measures
the rate of decay of the spatial pair correlations. It also
gives a measure of the average island size, provided
coalescence does not have a significant effect. Island
structure on this length scale, including shape, boundary
structure, and growing or active zone width, is strongly
dependent on the details of the growth process. The is-
land growth rate could be mediated either by the rate of
chemisorption from the precursor, or by diffusion. If
growth is not diffusion mediated, then local growth rules
produce regular structures. For diffusion-mediated
growth, intraisland rearrangement will probably quench
any Mullins-Sekerka—type shape instabilities,’ thus also
resulting in regular structures.

(iii) The connectivity length measures the domain ra-
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FIG. 1. Two c(2Xx2) islands of different phase separated by a
domain boundary. One atom is missing from the interior of the
island on the right, creating a “‘p (2 2) defect.”
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dius of gyration, and can be much larger than the corre-
lation length if many islands have coalesced. This is typi-
cally the case for c(2X2) islands near saturation, where
domains exhibit an interpenetrating and nested
percolation-cluster-like structure.”® The fractal-like
structure of domains, and probably their boundaries, on
this large length scale is less model dependent, being dic-
tated by the random percolation universality class for the
nonequilibrium models considered here. See Ref. 8 for
more detail.

Low-energy electron diffraction (LEED) is commonly
used to analyze adlayer and, specifically, island struc-
ture.'” The simplest island-size-broadening model
(ISBM) for kinematic scattering only from the adlayer as-
sumes no interference between the scattered intensity
from different islands in the vicinity of the superlattice
beam.? The ISBM superlattice beam peak intensity mea-
sures a certain average of the island size, and the full
width at half maximum (FWHM) reflects the linear di-
mension. The ISBM should apply for separated, regular
islands. However, near saturation, interference is un-
doubtedly significant. !""'> More fundamentally, since the
diffracted intensity is determined by the pair correlations,
it reflects structure on the correlation, not connectivity,
length scale. Correspondingly, we shall see that the su-
perlattice beam behavior does not reflect the dramatic in-
crease in domain size associated with significant coales-
cence near saturation, or the associated fractal domain
structure on the connectivity length scale. This fractal
structure, which results from the essentially random
coalescence of like-phase islands, is not visible in the pair
correlations. (Similarly, the fractal structure of random
percolation is obviously not visible in the identically zero
pair correlations.) One objective of this work will be to
identify measures of island size whose behavior better
parallels that of the correlation length, and thus of the
diffracted intensity.

Here we consider models for irreversible, immobile
chemisorption from a mobile physisorbed precursor
“source” of density, p. The chemisorption rates are as-
sumed to include p as a factor. Island formation is asso-
ciated with enhanced rates for chemisorption at island
edges (these rates determine the structure of growing is-
lands) relative to the rate for chemisorption in empty re-
gions (homogeneous island nucleation). This enhance-
ment in the rates could reflect enhancement of the pre-
cursor source density, p, near island edges. This, in turn,
is associated with an increase in the precursor binding en-
ergy J(r) at such sites r due to attractive interactions
with chemisorbed species.® Note that for a low-density
equilibrated precursor, one has p~e? ™. Such attractive
interactions could also reduce any activation energy bar-
rier to chemisorption, further enhancing island forma-
tion. Note that any time dependence in the spatial aver-
age of p would modulate all chemisorption rates, but not
affect adlayer statistics, and is thus not discussed further
here.

More specifically, we analyze irreversible cooperative
chemisorption models, wherein chemisorption occurs
filling single sites which have no occupied nearest neigh-
bors (NN’s), with rates k; depending on the number i of
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already occupied next-nearest-neighbor (NNN) sites.
Chemisorbed species are assumed immobile. These mod-
els generate ¢(2X2) ordering on a square lattice (where
NNN sites are the diagonal NN sites) or double-spaced
islands on a linear lattice, with no long-range order.
They produce a metastable saturation state with
©=06" <, where no empty sites remain with all NN’s
empty, and islands are separated only by domain
boundaries. It will be instructive here to consider classes
of models parametrized by the growth to nucleation rate
ratio a=k, /k,. Clearly, as a increases (for fixed © or at
saturation), the correlation length and any measure of is-
land size also increase. The a— o limit corresponds to
continuum models of island growth.

As indicated above, in this contribution we identify
quasi-one-dimensional measures of island size which
behave similarly to the correlation length (even for these
models with percolative ordering). These are then used
as characteristic or scaling lengths in our development of
scaling relations for the spatial pair correlations and
diffracted intensity. We are interested in the scaling be-
havior associated with self-similarity in a class of models
with various a (at fixed © or at saturation), as well as
more conventional but imprecise scaling with varying ©
or time (for a specific ). Because of the complexity of
these physical two-dimensional chemisorption models, we
begin in Sec. II with an analysis of their one-dimensional
analogues for the evolution of double-spaced islands on a
linear lattice. Here exact solutions are available, 24
and many of the basic questions concerning scaling and
the effect of coalescence can be explored. In Sec. I1I, we
return to analysis of the two-dimensional models for evo-
lution of ¢(2X%2) islands on a square lattice. Computer
simulation is now used to determine all quantities of in-
terest. Different rate choices generate islands with either
narrow or broad growing (or active) zones, which affects
our specification of the scaling length. The dramatic
effects of percolative island coalescence are described.
We also discuss the case of random filling with NN
blocking (a=1) modeling metastable c(2X2)O/Fe(001)
formed after exposure of Fe(001) to H,0.!® Finally, in
Sec. IV we review our findings, and emphasize their ap-
plicability to various other models of ¢(2X2) ordering.
We also note the reduced propensity for coalescence if is-
lands have several phases, and the increased propensity in
three dimensions.

II. EVOLUTION OF DOUBLE-SPACED
ISLANDS ON A LINEAR LATTICE

Here irreversible chemisorption o—x occurs at single
sites with both NN’s empty with rates k; depending on
the number i of occupied NNN’s. Thus k, corresponds
to island nucleation, k, to growth, and k, to coalescence.
Double-spaced islands can meet either in phase [ - - -
0X0X000X0X0 * * -, where the center o site fills if k,540],
or out of phase [ - - - oxoxooxoxo - - ], creating a per-
manent domain boundary. The saturation state contains
no empty triples, and its statistics are independent of
k,#0. Let n, denote the probability of an island
[ooxox0 - - - 0x0x00] with exactly s filled sites, so
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3, sn, =0, and 3 n; = P[x00]=P[oox]=P[oo] — P[ooo]
=1—20—Plooo]=D, the island density. Here P’s
denote subconfiguration probabilities. Average island
size can be defined as s, = 3,sn,/3,n, or
Sy =381, /3 sng (>s0,). Note that
s!,=6/D—>0*1—-20*)"! at saturation. Results below
are obtained from exact truncation of the hierarchial
form of the master equations. 2714

We shall focus on the behavior of this model in the
strongly clustering regime where the ratio of growth to
nucleation rates, a=k, /k, is large. Here fluctuations in
island growth become less significant, justifying a picture
in which islands have edges expanding at constant rate
2ak, lattice vectors per unit time (after nucleation at rate
ko). Using this picture,’ one can show that characteristic
or scaling length, & and characteristic time, 7, satisfy
E~c(®)a!'’?, where c¢~O0'% as ©-0, and
r~ks'a™12. The corresponding a'!’/? scaling of s,,,
both at fixed © and saturation, and the relation
1_©* ~L(2a/m)~!"2, have been confirmed previously.’

More complete information on the large-a self-similar
structure follows from various scaling functions, e.g.,
n,~E"'F(y =s/E ©/0*%), which establishes the
proportionality ~ of  si, ~&[dyyF/[dyF  and
saw~E[dyy*F/[dyy F. These functions are deter-
mined by a continuum two-state Johnson-Mehl model:”'¢
grains nucleate at a constant rate randomly at empty
points on the line and expand at constant rate; they are
randomly assigned one of two phases, and when grains
meet they merge if of like phase and form a domain
boundary otherwise.

We focus on the structure of the spatial pair correla-
tion C(l)=P(1)—©?, where P(l) is the probability that a
pair of sites separated by / lattice vectors are filled. These
alternate in sign, and have a large-a scaling form

Ct(l/E,©/0*)>0 for I even,
C—(1/£,06/6*)<0 forl odd ,

c(h~
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C(1)=—©?, one finds that C*(0,x)=x/2—x?/4 and
C~(0,x)=—x%/4. As x—0, one finds C~/C*—0, and
the C* correspond to intraisland correlations. 2 At satu-
ration (x=1) consecutive correlations tend to cancel for
large @,”12 so C*(y,1)+C ~(y,1)=0. Clearly we could
choose & as s,, or s,, in this discussion. To determine
how quickly low-a correlations approach the high-a scal-
ing form, in Fig. 2 we have shown C (/) versus //s,, for
a=1,2,5,10,40 at both half-saturation and saturation.
The high-a form is achieved for a R 15, and low-a C (/)
scale best at saturation. Similar behavior results using s,
rather than s,,.

Next we consider scaling of the angular distribution of
the diffracted intensity, I(g), in these models for kine-
matic scattering from the adlayer only. Here, ¢ =Ak-a,
where Ak is the momentum transfer, and a is the lattice
vector. With C(—1)=C(l), for g#0(mod 27) one has
that

eI(g)= 3" C(l), (2.2)
i

normalizing I to unity as ©—0. We must separately
scale the integral-order (1) and superlattice or half-order
(I,,,) beam intensities, centered on ¢=0(mod 27) and
q =m(mod 27), respectively. Set g’=q —m. Then, for
small g and ¢’, Eqgs. (2.1) and (2.2) imply that

I,(q)~EG*(&q, ©/0%) ,
I,,(¢')~£G~(&q',©/0%),

(2.3)

where G*(p,x)= [ 7dy cos(py)F*(y,x) and
F*=2x"[C*(y,x)=C~(y,x)]. Note that F~(0,x)=1
for all x, F*(0,x)=1—x, and F*(y,1)=0, so that I,=0
and I =1, ,, at saturation (x=1).

Behavior of I,,,/s,, versus s,, g’ at saturation for
a=1,2,5,40 is shown in Fig. 3. There is little deviation
from the high-a form. For a < «, determination of I, ,
below saturation requires first deconvoluting I =I,+1, ,
into components. Here we take I,(q) of the form
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FIG. 2. C(]) vs l/s,, for double-spaced islands on a linear lattice at half-saturation and saturation. Results are shown for k; < af

witha=1(¥%),2(+),5(Xx), 10(A),and 40 (O).
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FIG. 3. I,,,/s, (=1/s,,) vs 5,,q" for double-spaced islands
at saturation and various a (shown).

A3, GT(AMg—2mm)) determining A (A) by matching
the peak intensity (curvature) of I at ¢ =0;!" this au-
tomatically determines I, ,,. Applying this procedure for
a=2 at half-saturation (Fig. 4) reveals I, ,, scaling com-
parable to that at saturation. Note that even if the corre-
lations were to scale perfectly, the occurrence of a
discrete sum (rather than an integral) in (2.2) would pro-
duce deviations in intensity scaling.

From such analyses we can extract the coverage depen-
dence of the g-space FWHM of I, ,,, denoted Wrwym-
In Fig. 5 we have shown WgrwymSay and Wewam2S .,
versus x =0/0*. In the large-a, large-island-size re-
gime, these quantities increase smoothly from low-©
values of ~ to saturation values of ~2#. One should
contrast this with the behavior for corresponding
second-order, spatially Markovian distributions (i.e.,
equilibrium distributions for range-2 interactions incor-

porating infinite NN repulsions) where s,,=s,,(2
2.0 s ‘
2s I at Sg}'u:;hon X =2
18 4
1.5 0 // 7
0.8
> o 1/4 1 3/4 [ .‘..
"E 1.0 ci(uni's/:a' n )I ':'/ i
@
£
0.5F s /\I ﬁ
/\>\\ 7 12
I s
0 P
0.0 S L
0 1/4 1/2 3/4 1

q (units of m)

FIG. 4. Deconvolution of I(g) into integral-order (I,) and
superlattice (I, ,,) components at half-saturation for a=2. We
have also shown I(q) for double-spaced island distributions
with second-order Markovian statistics, having the same © and
s,y as the chemisorption process (dotted lines).

FIG. 5. WewumSa and Wewum2s,, vs x =60/0* for
double-spaced islands. The g-space FWHM of I, ,, is measured
in units of . Curves correspond to large-a (=40) behavior, and
some a=2 and 5 values are shown. Corresponding large s.,
equilibrium (second-order Markov) results are also shown.

'

—(s4,)"")~2s.,, as s,,— . Here these products are
constant at unity for fixed © (below saturation), but jump
to 2 at saturation (see Appendix A). Thus the nonequili-
brium behavior seems to bridge the ©=0 and ©=1 equi-
librium limits. One can also consider the coverage
dependence of the superlattice beam peak intensity for
large island sizes. For large a, I(m)/s, [I(7)/ (2s,,)]
increases roughly linearly from 0.4 (0.35) at saturation to
1.0 (0.7) for low ©. Compare this with equilibrium values
of 1 (1) at (below) saturation. Note that, in the low-© re-
gime there is no significant interference between scatter-
ing from different islands, even for large s,,. Consequent-
ly, the island-size-broadening model>'? applies here to
yield

I(g)~6"! > ngsin’(sq)/sin’q —s,, ,

as ¢ —0 or 7, compatible with our results. At this point
we also note that an exact Taylor-series expansion in ©
can be obtained for I(q), for any fixed a (see Appendix
B).

The effect of island coalescence on average island size
and diffracted intensity behavior is finally considered
here. Clearly, at low O the increase in average size is
predominantly due to the growth of separated islands,
whereas at higher © coalescence of in-phase islands con-
tributes significantly. To quantify the latter, it is con-
venient to compare island sizes for the above process
with coalescence to those for a modified filling process
where no island coalescence occurs (i.e., set k,=0).
Below, (C) and (NC) indicate values for processes with
and without coalescence, respectively. In the a— o
large-island-size regime, the diffracted intensity is noi sen-
sitive to coalescence, i.e., I(C)~I(NC). However, al-
though s,,(C)/s,,(NC)~s,,(C)/s, (NC)~1 for low O,
one finds that at saturation s,,(C)/s,,(NC)=2 exactly,
and we estimate that s,,(C)/s,, (NC)=2.6 (see Fig. 6).
Comparing Figs. 5 and 6, we see that WgyymsS,, (NC) or
WewnmSav(NC) have much weaker © dependence than
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FIG. 6. Comparison of double-spaced island-size variation
with x =0 /0%, for filling processes with (C) and without (NC)
coalescence, in the large-island-size regime.

WewnmSay(C) of Wewpmsay(C). Furthermore, in Fig. 7
we have shown that the form of I, ,,(NC)/s,,(NC) versus
5,w(NC)g’ is roughly coverage independent for
a=k,/ky=80, i.e., s,,(NC) [or s,,(NC)] is the optimum
choice for scaling length.

In summary, the decrease in the FWHM (or increase in
peak intensity) of the superlattice beam with O reflects
most accurately the component of the increase in island
size due to growth rather than coalescence.

III. EVOLUTION OF ¢ (2Xx2) ISLANDS
ON A SQUARE LATTICE

Here irreversible chemisorption o—x occurs at single
sites with all four NN’s empty with rates k; depending on
the number i of occupied NNN’s. Thus, k, corresponds
to island nucleation, k,; to growth, and k,,k;,k, to
growth or coalescence. The saturation state contains no
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FIG. 7. Scaling of I,,, with x =6 /0* for a process with no
coalescence of double-spaced islands (k,; /k, =80, k, =0).

J. W. EVANS, R. S. NORD, AND J. A. RABAEY 37

empty sites with all NN’s empty, and its statistics are in-
dependent of k,540.

There are many ways to characterize ¢ (2<2) island or
domain statistics here. First, we indicate two choices of
connectivity rules defining individual domains:!® Filled
sites in the same domain must be connected either direct-
ly or indirectly by (i) NNN bonds, or (ii) either NNN or
third-NN bonds. Type-(ii) islands may be larger, but
these definitions become equivalent in the strongly clus-
tering regime. Numerical results following are for rule (i).
Given a choice of connectivity rule, let n; denote the
probability of a c(2X2) domain {s} of s filled sites.
Average domain size (number of filled sites) is defined as
Say = Zsznm / 3 sny. Average radii of gyration can
also be determined from the n ;. All these quantities are
very sensitive to island coalescence. Alternatively, one
can take one-dimensional cuts through the adlayer. Let
m, denote the probability of finding a horizontal (or ver-
tical) string ooxoxo * - * oxoxoo of s adatoms, and set

m,, = 2sms/2ms
=0 /P[00x]=6(1—-20—P[oo0]) !

and

m,, = ZSZmS/zsms .

One can also consider the distribution of adatoms in diag-
onal strings consecutive filled sites, and define
m,,4=06/P[,*]=6(0—P[,°])"" and m,, , analogous-
ly. We shall make use of these and other measures of
domain size.

Again we mostly focus on behavior in the strongly
clustering regime where the ratio of growth to nucleation
rates, a=k, /k, is large. Here the scaling of the charac-
teristic length, &, with a, and its relationship to the
above-mentioned island-size measures, depends on the
choice of k,, k3, and k,. Two special cases are discussed
below, but first we provide a general description of the as-
sociated pair correlation and diffracted intensity scaling.

The spatial pair correlations are defined as
C(1)=P(1)—6?, where P(l) is the probability of finding
a pair of filled sites separated by I =(/,,1,) lattice vectors.
These are positive (negative) when I connects sites on the
same (different) c (2X2) sublattices. In the strongly clus-
tering regime, they should exhibit the scaling form

C*(1/§,0©/6%*)>0 for I, +1, even ,
T |CT(1/6,0/6*)<0 for I, +1, odd ,

(3.1a)

ca) (3.1b)

associated with self-similarity for various a, at fixed
x =0/6*. This scaling assumes regular rather than
fractal islands before coalescence, since, in the latter case,
intraisland correlations do not satisfy (3.1).'° Since
C(0,00=6—6> and C(0,1)=—6?% one has
C*(0,x)=x/2—x%/4 and C ~(0,x)=—x2/4. As x —0,
one finds that C~ /C* —0, and the C* correspond to in-
traisland correlations.!?> At saturation, where C(l) for
adjacent [ tend to cancel for large a,”'? one finds that
C*(y,1)+C~(y,1)=0 (cf. Sec. II).
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Next consider the diffracted intensity, 1(q), for kine-
matic scattering from the adlayer only. Here q=a Ak,
where Ak is the lateral momentum transfer and a is the
lattice constant. With C(—1)=C(l) and q#(2mm,
2n ), then one has that

el(q)= Y ev'cu), (3.2)
!

normalizing I to unity as ©—0. We must separately
scale the integral-order (I;,) and superlattice or half-
order (I, ,,,) beam intensities centered at q=0 and
q'=q—(m,m)=0, respectively. Equations (3.1) and (3.2)
imply that

Io0(q)~£°G *(£q, ©/6%) ,
I,,,,,(q)~EG(&q, ©/6%),

where
Gt(p,x)=f fdyx"[C*(y,x)i(,‘*(y,x)]eim _

Clearly, one has I,,=0, so I =I,,,,,, at saturation.
Below saturation, we deconvolute [ into 0,0 and 1, + com-
ponents mimicking the one-dimensional procedure.
Where practical, I, is taken as a periodic form of G *
scaled in amplitude and width to fit the full 7 around
q=0. The residual part of I is taken as I, ,, | ;.

Finally, we note that in the low-© regime the ISBM
applies even for strongly clustering systems, and C~C*
correspond to intraisland correlations. !> Let

z eiq-r

r€{s}

I]S‘<q)= 2

denote the diffracted intensity for a single island {s}, so
I, —s2as q—(0,0) or (7, 7). In the ISBM one has

I(q)=9_121“|(q)nm——+sav

as q—(0,0) or (m, 7). (3.4)

Remember that s,, becomes independent of the choice of
island-connectivity rule in the strongly clustering regime
where (3.4) holds. We also note here that exact Taylor-
series expansions in © can be obtained for I(q), for any
choice of k; (see Appendix B).

All numerical results presented below are obtained
from computer simulation, specifically by averaging over
20 chemisorption trials on a 400 X 400 lattice with period-
ic boundary conditions. We thus obtain very-high-
quality statistics for the C(/), which allow accurate cal-
culation of I(q), even for strongly clustering systems
where statistical fluctuations are larger.

A. Islands with narrow growing zones:
Multiplicative rates k; < a’

First, we indicate why, for large a, ¢ (2X2) islands be-
fore coalescent tend to be diamond-shaped here. Consid-
er the island in Fig. 8. Chemisorption along the kinked
edge of O(m) occupied sites occurs quickly via O(m)
filling events at rate k,=ak,. Initiation of chemisorp-
tion on a smooth side occurs with rate k, at any of O (m)
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FIG. 8. Development of diamond-shaped c (2 2) islands for
chemisorption with multiplicative rates, and large a.

sites. Thus sides tend to remain smooth if O(k,/m)
>>0(mk,),or m <<O(1)a'”2

Large-a scaling behavior is elucidated by the following
picture neglecting fluctuations in island growth: islands
nucleate continuously in empty regions at rate k,; they
grow with a diamond shape having edges accelerating
outwards at rate V'2k,m (where m is the number of
atoms on an edge); impinging in-phase islands rapidly
form a larger diamond-shaped island encompassing both
via filling at rate k,;?° when out-of-phase islands meet, a
domain boundary forms, and accelerating growth contin-
ues with the larger island tending to engulf the smaller.
Some island-edge roughening is expected for higher O,
but simulations still show a propensity for diagonal
domain boundaries in the saturation state (Fig. 9).

Here the characteristic or scaling length, &, satisfies
E~c(©)a'’? for large a, where ¢ ~0'72, as ©—0." Cor-
responding a!/? scaling of m ., both at fixed © and at sat-
uration, as well as a ~!/? scaling of 1 —©*, have also been
confirmed.” In fact, m,,, m.,, m,,,, and m/, ; all scale
like @!/?, and any is a reasonable candidate for the scal-
ing length. We shall see later that this is only true below
saturation because here islands have a “‘narrow” growing
(or active) zone.

We now analyze spatial-correlation and diffracted in-
tensity behavior for a=1,2,5,40 to assess how quickly the
high-a scaling form is achieved. Figure 10 shows C(/,0)
versus [ /m,, ; both at half-saturation and at saturation.
The high-a form is achieved for a R 15 at saturation, and
scaling is generally poorer below saturation. C(l,/)>0
versus / /m,, ; behaves similarly. Replacing m,,, by m,,
produces poorer scaling below saturation. Figure 11
shows 11/2,1/2/mazwd versus m,, 4| q'[, for q'=(q’,q"),
both at half-saturation [using the above-mentioned
deconvolution procedure, except for a=1 (Ref. 21)] and
at saturation. Except for larger undulations when a=1,
corresponding q'=(q’,0) behavior is very similar. Re-
placing m,,;, by m,,, m,, 4, or m_, has little effect on the
quality of low-a intensity scaling at saturation (m,, gives
the poorest results), but these replacements greatly
reduce the quality below saturation.



8604

FIG. 9.

J. W. EVANS, R. S. NORD, AND J. A. RABAEY 37

Computer simulation of c(2X2) island formation for chemisorption with multiplicative rates, k; <40, for

x=0/6%= },%,l‘ X and Y denote filled sites in domains of different phase; O denoting empty sites are only shown within ¢(2X2)

domains for contrast.

Next, we analyze the coverage dependence of the
FWHM for diagonal cross sections [i.e., along
qQ'=(g".g") ] of I, 51 2. WewnmMaya and Wewam2m,, g
versus x =60/60*, shown in Fig. 12, increase smoothly
from ~, when x=0, to ~27, when x=1, for large a.
The FWHM for horizontal (or vertical) cross sections are
very similar. We find m,,,/m, ~m,, ,/m_, has only
weak coverage dependence, so interchange of diagonal
for horizontal domain-size measures makes little
difference. Finally, we analyze the coverage dependence
of the superlattice beam peak intensity (Table I). For
large @, I(mm)/m?2,, [I(mm)/Qm.,4)*] decreases
more than fourfold with O to its saturation value of 0.29
(0.24). The ISBM result I(m,7)/s,,—1, as 60, is
compatible with the former since s,, >m?2, ; for distribu-
tions of diamond-shaped islands.?> A discussion of the
effects of coalescence is left to subsection C. However,
we note here that I,,,,,/I(m,7) as a function of
I(m,m)"/2q’ is almost coverage independent for a =40.

0.20
q . .
] Pair Correlations
0.15 at Half—Saturation §
o
0.10 | i
~
(@] °
¢ 0.05} .
o L
o 09 o
0.00 — % S
0'
O 4
-0.05} o " .
_0.10 1 1 1 1 1 . . .
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
‘/movd

B. Islands with broad growing zones:
Eden rates k; =ak, fori > 1

Here, ¢ (2X2) islands before coalescence are Eden clus-
ters?® on one of the V2XV2R45° square sublattices.
Consequently, these have a roughly circular, large-size
shape. (This is only apparent for very large a.) Also their
growing (or active) zone width, w, scales like their radius,
R, to a power p between ~0.32 and } depending on R.B
For very large a, where fluctuations in island growth are
less significant, one obtains the following picture: islands
nucleate continuously in empty regions at rate k,; rough-
ly circular islands have radii expanding at a rate ~2ak,
lattice vectors per unit time; when in-phase islands meet,
they coalesce; when out-of-phase islands meet, a domain
boundary is formed; in either case, growth continues at
the same rate perpendicular to the free perimeter. For
perfectly circular islands, the domain boundaries formed
would be sections of hyperbolae.!'® Here they are per-
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FIG. 10. C(1,0) vs I/m,, for c(2X2) islands at half-saturation and saturation. Results are shown for k; < a’ with a=1 (¥, 2

(4+),5(X),and 40 (O).
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FIG. 11. I,,,,,/m2 4 vs m,,|q’'| at half-saturation and
saturation for ¢(2X2) islands formed by chemisorption with
rates k, < &', and various a (shown).

turbed from this form by lattice effects, noncircularity of
islands, and fluctuations at island perimeters on a (small)
length scale O (w) [see Fig. 13, and Fig. 18(b) below].

Using this picture’ one can show that the characteris-
tic or scaling length, £, and characteristic time, 7, satisfy
E~c(©)a'?, where ¢~0!'7? as ©-0, and
7~kg'a”?3. Complete information on the large-a
self-similar structure, including scaling functions, is
determined by a continuum two-state Johnson-
Mehl-type model:”'® grains nucleate at constant rate at
empty points in the plane, and are randomly assigned one
of two phases; they have nearly circular shape and ex-
pand at a constant rate; when grains meet, they merge if
of like phase, and form a domain boundary otherwise,
and growth at free boundaries continues at the same rate.
We caution that this limiting structure is only achieved
for very large a (cf. Fig. 13), but we shall see that large-a
scaling forms for the correlations and diffracted intensity
are achieved relatively quickly.

We have previously shown that m,, scales like a,
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FIG. 12. WrwumMavq and Wewpm2ma,, vs x =60 /0* for
¢(2X2) island formation with rates k; < a’. Curves correspond
to large-a (=40) behavior, and some a=2 and 5 values are
shown. The FWHM is measured along q'=(g’,q’), and values
for a=2 were taken where I was midway between its maximum
and minimum values (more sophisticated deconvolution was
ambiguous here).

where v:% at saturation, and v~{ below saturation (at
least for a$200) at fixed ©. Also, a~'/? scaling of
%—6* was demonstrated.” To understand these results,
consider first the low-© regime of separated islands with
R =0(£)~0(a™1?). We expect that the defects (i.e.,
holes, overhangs) encountered in any one-dimensional
cross section of the island are mainly in the growing
zone, but increase in number with increasing R perhaps
like O(w). These have the effect of reducing m,, (or
m,, ) from O(R) to something like O (R /w)=0(R'~?)
~a''=P73 (These arguments are crude since we do not
distinguish between “intrinsic” width, and that due to
long-wavelength fluctuations.?> The former relates more
to defects, and use of an associated effective p, for the
“small” clusters analyzed here, may be appropriate.)

TABLE 1. Island-size measure and peak superlattice beam intensity behavior for ¢ (2 2) island for-
mation with multiplicative rates k; < a’. See Table III for a=1.

a 6/6* my, (my,) My (my,4) I(m,m)
40 % 3.77 (2.37) 5.65 (3.56) 30
% 6.00 (3.50) 8.98 (5.45) 55
3 8.29 (4.69) 12.5 (7.43) 75
1 10.8 (6.09) 17.5 (9.8) 88
5 % 1.51 (1.26) 2.08 (1.55) 3.7
1 2.30 (1.66) 3.35 (2.22) 7.3
3 3.32 (2.18) 4.94 (3.06) 10.5
1 4.62 (2.86) 7.27 (4.25) 14.1
2 % 1.25 (1.13) 1.46 (1.23) 1.89
% 1.68 (1.34) 2.16 (1.58) 3.20
% 2.38 (1.69) 3.30 (2.16) 5.23
1 3.53 (2.27) 5.46 (3.23) 7.51
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FIG. 13.
x=6/6%=111. X, Y, and O asin Fig. 9.

Such scaling is also expected for higher © where island
coalescence is significant, but broad growing zones still
are present. However, at saturation the defects in the
growing zone have been “filled in” so m,, (or m, )
again scales like £~a!”®. Thus m., (or m., ) is a suit-
able candidate for the scaling length, &, at saturation, but
not below. Although defects should not cause m,, (or
m,, ;) to scale differently from £ for large a (these aver-
ages have an additional length weighting), their effect will
still be significant for the a range considered here.

These remarks suggest that a more appropriate mea-
sure of island size, i.e., number of atoms, associated with
one-dimensional cross sections would ignore any defects
associated with individual growing c(2X2) islands.
These new size measures which we denote by
Piay,M 4y ..., corresponding to m,,,m,,, ..., are
clearly larger than the latter below saturation and, in
fact, scale like £~Ca!’/?. Of course, at saturation where
there are no defects within ¢(2X2) domains, one has
m,, =m,,, etc. We also set m, =m,, etc., for a=1
where we interpret all defects to be between domains.
Figure 14 contrasts the coverage dependence of these
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FIG. 14. Coverage (©=x6*) dependence of various quasi-
one-dimensional island-size measures for ¢ (2 2) island forma-
tion with Eden rates, k; =200k, i > 1.

Computer simulations of ¢(2x2) island formation for chemisorption with Eden rates k;=200k,, i>1, for

various size measures for a =200.%* These new size mea-
sures can be used for the scaling length below (and at)
saturation.

We now analyze spatial-correlation and diffracted in-
tensity behavior for a=1,3,9,200 to assess how quickly
the high-a scaling form is achieved. Note that a=1
Eden and multiplicative rate choices coincide. Figure 15
shows C(1,0) versus //m,, at saturation. The high-a
form is achieved for a2 50. C(l,])>0 scales similarly.
Figure 16 shows (I =1, ,,)/ml,, versus m,,|q'|,
for q'=(q’,q’), at saturation. Behavior for q'=(q’,0) is
similar, except for larger a=1 undulations. Replacing
m,,q by m,, (m,,, or m,,) produces equally (almost as)
good low-a scaling. We have checked that corresponding
correlation and diffracted intensity scaling (using m,,,
m,, 4, etc.) breaks down below saturation, as explained
above. On the other hand, using 7, , as the scaling
length seems to produce a dramatic improvement. For
example, at half-saturation, the ratio of I(w,7) for
a=200 to a=1 equals ~ 19, whereas the corresponding
ratio of i 2,, (m2,,) equals ~21 (~11). Also, the prod-
uct of the FWHM of I, ,, ,,, for diagonal cross sections
with m,, 4 (m,,,) equals 1.27 (0.867), for «=200, and
both equal 1.57, for a=1. Scaling at half-saturation for
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FIG. 15. C(1,0) vs I/m,, for c(2X?2) islands at saturation.
Results are shown for k; =akg, i > 1, with a=1 (%), 3 (+), 9
(%), and 200 (0O).
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I/mcvdz at Saturation

FIG. 16. I,,,,/m%, vs m,,|q | at saturation for
c(2X?2) islands formed by chemisorption with rates k; =ak,,
i > 1, and various a (shown).

a=200 using ,,, m ,, 4, OT /A ,, is much poorer, but still
improved over using m,,, m,, 4, or m,,, respectively. Fi-
nally, we note that choosing the scaling length as
I(m,m)""? produces excellent low-a scaling for fixed
©/0*, and at saturation (as well as excellent scaling with
varying O, for fixed a). The coverage dependence of the
FWHM of I, ,, | ,,, as well as the peak intensity, and the
corresponding /m quantities, are given in Table II for
a=200. Behavior is similar to that seen in subsection A
(Fig. 12 and Table I). A discussion of effects of coales-
cence follows in subsection C.

C. Effect of coalescence on island-size measures

Clearly, at low ©, the increase in island size is predom-
inantly due to growth of separated islands, whereas near
saturation the contribution from coalescence is significant
(the chance two islands coalesce upon meeting is ~ ).
The quantitative effect of coalescence depends greatly on
the size measure, and is best analyzed by comparing
“parallel” processes with and without coalescence, denot-
ed (C) and (NC), respectively. We focus on the strongly
clustering regime, where I(C) ~I(NC).

Here the ratios m ,(C)/m [ (NC) and m ,,,(C)/
i ., 4(NC) approach 1, as ©—0, and equal 2 at satura-
tion. Corresponding unprimed ratios vary from 1, at low
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©, to nontrivial limits (probably somewhat above 2) at
saturation. The M quantities can be replaced by m quan-
tities for islands with narrow growing zones. Thus, from
the above discussion, we see that the decrease in the
FWHM (or increase in peak intensity) of the superlattice
beam with © seems to reflect quite accurately the in-
crease in the 7 quantities, particularly m,,, (to within a
“coalescence factor” of ~2) (cf. Sec. II).

Clearly the effect of coalescence on s,,, or average radii
of gyration, will be much more dramatic near saturation.
Consequently, s,, will increase much more quickly than
I(m,7m) near saturation, and the superlattice beam
FWHM will decrease much more slowly than the re-
ciprocal of the average radius of gyration. We now give a
more concise analysis of these effects for the Eden rate
choice, focusing on the structure of the saturation state.
First, note that c(2X2) percolation is not possible here
for reasons of topology and symmetry.!® However, as
the clustering propensity, i.e., a, gets larger, the satura-
tion state becomes ‘“‘closer to percolating” (see Ref. 8 for
a concise definition), and its domain fractal dimension ap-
proaches the random percolation value of 1.89. Thus as
a increases, the average domain radius of gyration, and
size, increase relative to the correlation length, &, and 52,
respectively. The a— o« strongly clustering limit is de-
scribed by a two-state Johnson-Mehl-type grain growth
model, as mentioned above. See Ref. 7 and Fig. 18(b) for
a picture of the saturation state. Arguments from ran-
dom lattice and continuum percolation theory, as well as
some lattice-model calculations,® suggest that the satura-
tion state may even be at the percolation threshold here,
i.e., s,, and the average radius of gyration have actually
diverged.

D. Random filling with NN blocking (a=1):
A model for metastable c (2 X 2)0/Fe(001)

Exposure of Fe(001) to water vapor at temperatures
from 298 to 473 K produces a disordered ¢ (2X2) oxygen
overlayer. It was proposed that evolution of this oxygen
adlayer, and its saturation state, could be described by
random filling with NN blocking.'* We have discussed
the kinetics of this model previously.'® Table III con-
trasts the coverage dependence of I (m,7), the FWHM of
the superlattice beam along q'=(q’,q’) (d) and
q'=(q’,0) (h), and measures of domain size, m,,, etc.
The correlation is reasonable. On the other hand, in this
model, s,, (~1 for ©~0) increases to ~165,% and the
average domain radius of gyration (~0 for ©~0) in-

TABLE II. Island-size measure and diffracted intensity behavior for ¢ (2Xx2) island formation with
a=200 Eden rates. Superlattice beam FWHM values in q space (in units of ) are measured along

q'=(q',q"') (d) and q'=(q’,0) (h).

e/6* My, (M,,) Figg (g 4) I(m,m) Wewam(d) [Wewnm(h)]
1 3.4 (2.4) 49 3.2) 23 0.201 (0.200)
% 5.2 (3.3) 7.5 (4.6) 38 0.160 (0.155)
3 7.6 (4.6) 10.9 (6.4) 54 0.139 (0.135)
1 11.4 (6.4) 16.7 (9.4) 73 0.132 (0.127)
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TABLE III. Island-size measure and diffracted intensity behavior for random filling with NN block-
ing modeling c(2X2)O/Fe(001). Superlattice beam FWHM values in q space (in units of 7) are mea-
sured where I is midway between its maximum and minimum values along the chosen directions.

6/6* m,, (mg) My g (Mayy) I(m,m) Wewum(d) [Wewam(h)]
0 W 1w 1 1.41 (1.00)
7:— 1.22 (1.11) 1.23 (1.12) 1.38 1.15 (0.84)
% 1.53 (1.27) 1.63 (1.31) 2.01 0.92 (0.79)
% 2.04 (1.52) 2.44 (1.72) 3.20 0.71 (0.69)
1 3.07 (2.03) 4.62 (2.76) 5.46 0.57 (0.54)

creases to ~22, at saturation® (see Fig. 17). Clearly the
dramatic increase in these quantities is not reflected in
diffracted intensity behavior. Recall that effects of
coalescence here (for ¢=1) should be less than for a > 1,
where saturation states are “closer to percolating.”

Finally, we note that for the lattice-filling models con-
sidered here, and no doubt others, spatial pair-correlation
behavior should exhibit a crossover from its scaling form,
on length scales O(£), to a faster superexponential
asymptotic decay for larger separations.'® The latter is
most easily seen for random filling with NN blocking
(a=1) where & is smallest and where, at saturation,
©*=0.364, and we find that — (I +2)C(I/ +1,0)/C(1,0)
equals 1.14,1.17,1.09,0.96, ..., for [ =0,1,2,3,... .
This fast asymptotic decay does not influence the large-a
scaling forms for pair correlations or diffracted intensity,
and seems to have little influence for finite a.

IV. CONCLUSIONS AND EXTENSIONS

For nonequilibrium ¢(2X2) ordering during chem-
isorption, we have identified quasi-one-dimensional mea-
sures of island size which can be used as scaling lengths.
We have analyzed the scaling of pair correlations and
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FIG. 17. Computer simulation of the saturation state for ran-
dom filling with NN blocking (a=1) modeling
¢(2X2)O/Fe(001). X, Y, and O as in Fig. 9.

diffracted intensities associated with self-similarity for a
class of models with varying island sizes, for fixed cover-
age or at saturation. For any one of these chemisorption
processes, we have shown that the variation with cover-
age of the superlattice beam FWHM and peak intensity
reflect only the component of the increase in c¢(2X2)
domain size not associated with coalescence. Thus they
do not reflect the dramatic increase in domain size near
saturation where island coalescence is significant, or the
associated percolative domain structure. Near saturation
we observe a dramatic diminution in the integral-order
beam intensity (for scattering from the adlayer only).
The associated cancellation in the sum over correlations
is also reflected in the scaling theory.2®

Although we have analyzed only one type of model for
¢(2X2) ordering during chemisorption, we expect that
our conclusions are general, since there will always be
significant coalescence near saturation. Here we briefly
remark on some other possible models. Suppose ¢ (2X?2)
clusters are nucleated only at randomly distributed ‘‘de-
fects” of density €, and then grow with Eden rates. Then
for € <<1 the process is described by a two-phase cell-
type model:'® at 1=0, nearly circular grains start to grow
at constant rate about seeds randomly distributed in the
plane; they are randomly assigned one of two phases;
when grains meet, they merge if of like phase, and form a
domain boundary otherwise. The corresponding satura-
tion state is represented in Fig. 18(a). In a quite different
model, one might assume that c(2X2) islands are nu-
cleated at constant rate from density fluctuations in a
“gas” of chemisorbed particles, and thereafter grow a
constant rate. However, one might anticipate depletion
of the “‘gas” density near growing clusters, which would
inhibit nucleation in that region.?’ Thus the continuum
picture is the same as in Sec. III C, except that now nu-
cleation is forbidden in a depletion zone surrounding
growing grains. See Fig. 18(c) for the saturation state.
Other models with modified growth rates?’ would also
produce percolative saturation states. The similarity of
large-scale structure of all these saturation states reflects
a presumably universal percolation class. 3

We also mention the “eight-site model” involving the
random filling of NNN pairs of empty sites for which all
six NN’s are empty.?® Such a model, with either limited
or no subsequent adatom mobility, has been proposed to
describe the formation of metastable ¢ (2x2)0/Pd(100)
under conditions of low temperature and high pres-
sure.'#2° For the immobile model, in the saturation
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FIG. 18. Saturation states for two-phase versions of (a) the cell model (growth of circular grains about defects), (b) the Johnson-
Mehl model (continuous nucleation of circular grains), and (c) the Johnson-Mehl model with a nucleation-free zone around each
growing grain of width 0.24'/%, where A is the final grain area. Grain expansion always occurs at constant rate. These grain pat-
terns, from Ref. 27, show all nuclei as points, and boundaries as light lines. Each grain is randomly assigned one of two phases, and

domains of one phase are shown cross-hatched.

state, one finds that!'®?>3% ;=35 m, =223,
m,,.=4.8,m,, ,=30,s, ~280, R, (2)=28, R, (1)=18,
I(1'r,7r)=9.7, WFWHM(d)=O367T’ and WFWHM(h)
=0.357. Behavior here is very similar to that seen in-
cluding limited mobility, or for random filling of single
sites with NN blocking (Sec. III D). For example, due to
coalescence, s,, is always much larger than I (7, 7) at sat-
uration.

Finally, we comment on nonequilibrium ordering pro-
cesses analogous to those considered here, but where is-
lands have more than two phases [e.g., fourfold degen-
erate p(2X 1) ordering]. Scaling relations for the spatial
correlations and diffracted intensity could be developed
analogous to those discussed here for ¢(2X2) islands.
However, the effect of coalescence on domain sizes would
be substantially less dramatic. On the other hand, for
analogous processes in three dimensions with two-phase
domains (e.g., the two-state Johnson-Mehl model), a per-
colation transition will no doubt occur before saturation.
Here the domain size diverges, but the diffracted intensity
behaves smoothly.
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APPENDIX A: SECOND-ORDER SPATIALLY
MARKOVIAN DISTRIBUTIONS IN 1D

Here the state of a site 0 =o0 or x is influenced by the
state of the pair 0,0, to the right (or left), but not more
distant sites. Thus 22 conditional probabilities P[x|o 0]
(or Plo|o,0,]) of finding x (o) given the adjacent pair,
0,0, specify the model. Note that
Plo|o,0,]+P[x|o,0,]=1. Define the 2?x2? matrix
()s,0,040,=Ploy|0,03]P[0;]030,], which trivially
has an eigenvalue A=1 corresponding to an equal-

component dual eigenvector. Then the pair probability

P(l)= 3 P[x|0,0,]P[o|0y05] - Plo, ,|0,_x],

9

and various other quantities, can be conveniently written
in terms of powers of T. We adopt previously used termi-
nology for this “extended geometric” model,*' and write
y,=Plo|xx], y,=P[x|oo], o,=P[o|x0], and o ,= P[x|ox].

We restrict our attention to the special case of no
neighboring pairs of filled sites (xx), so y,=1, o,=1,
¥,=06(1-20)"/s. (=v,say),and o0,=1—1/s., (=0,
say). T trivially has eigenvalues A=0 and 1, and the two
nontrivial eigenvalues, A=, satisfy

At =20 =2y +y2ty(do —dy +yH)12 .
One can show that, for / >0, here

O P2 +1)=(Ts0.0x »

07 P2 +2)=0(T") s ox+7(T")

00,0X *

Thus, I(g)=60"'3,e“P (1), for g0(mod 27), satisfies
1(g)—1=¢e"S(q),, ox +0e?S(q)

0X,0X
+7€*98(q)go oxFC-C.

where c.c.
__eZin)— ].

Now consider specifically the large-island-size regime,
s,v >>1. First, consider distributions for fixed 9<%.

Here we find that
At ~1—1/s;, A" ~1—-[(1-20)s;,17",

Cllm +(—) Qe 1) -(23—(1—26)e

denotes complex conjugate, and S=(1

—1
—1—20)" /s )

for even (odd) [ ,
2(1—20)%!, 25,
~ ; and [, ~
1+[2(1-28)gs,,]

I — .
0 1+(2g's,)?
Second, consider distributions at saturation where no
triples of empty sites exist, so s;v:6(1—26)'1 and
¥ =1. Here we find that
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At ~1—=2/s0,, A" ~(sh,)72

a)

C(I)~+(—-)%e“m”v for even (odd) / ,

’
av

1+(g'sy)?

N
Io~0 and I, ,,~

One could extend these calculations to nth-order Mar-
kovian distributions, where T becomes a 2" 2" matrix.
Eigenvalues satisfy |A| <1, and include A=1."* If there
are no neighboring filled pairs, then T has an m-fold de-
generate eigenvalue A=0, where m is the number of dis-
tinct configurations of n consecutive sites which include a
filled pair. In the large-island-size limit, A=1 becomes
degenerate. Degenerate Raleigh-Schrodinger perturba-
tion theory can be readily extended to analyze the near-
unity eigenvalues of the non-self-adjacent T3

APPENDIX B: TAYLOR EXPANSIONS IN ©
FOR C(1) AND I(q)

Taylor expansions in © for the pair correlations im-
mediately yield a corresponding expansion for the
diffracted intensity. For the nonequilibrium irreversible

J
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cooperative filling models considered here, such expan-
sions can be determined directly,>3* and a diagrammatic
characterization of the coefficients is even available for
the multiplicative rate choice k; «@’.*® In general, it is
most efficient to determine these via auxiliary ¢ expan-
sions for the © and C (I), finally eliminating ¢.'® The last
procedure applies to general lattice adsorption models
(including desorption and hopping). Clearly, the order of
the lead term will increase with separation, 7.3

For the linear lattice model of Sec. II, we find that

C(0)=6-0?% C(1)=—06?% C(2)=(a—1)0*+2a(3
—2a)0%/3+ -+, C(3)=—8(a—1)0*/3+ -+, and
C(4)=4a—1)0%/3+ --- . C(2]) and C(2] —1) are
0(©!), for 1>2, so these results determine

©I(q)=C(0)+2 3, C(I)cos(lg) to within O(6*). For
the square-lattice model of Sec. III, we find that
C(0,00=6-0%, C(1,00=—0% C(1,1)—(a—1)6?
=a(16—9a)0%/3 - - - for multiplicative (M) rates and
4a(2—a)0’/3+ - -+ for Eden (E) rates; also, C(2,0)
=2(a’—4a+3)0%/3+ - -, C(2,1)=—4a—1)0%/
34 -+, and C(2,2)=2(a—1)?©%/3+ - -- for both M
and E rates, but differences appear in higher-order terms.
Other C(l) are O(0"), with n>4,3* so these results
determine

©1(q)=C(0,0)+2C(1,0)(cosq, +cosg,)+4C(1,1)cosq,cosg,

+4C(2,1)[cosg,cos(2g, ) +cos(2g, Jcosg, ] +4C(2,2)cos(2g, )cos(2g, )+ - -

to within O (6*).

Finally, note that if we replace a by e , then the
C (1) expansions for multiplicative rates correspond to
C (1) virial expansions for an equilibrated lattice gas (on a

—e/thkgD

square lattice, with NN infinite repulsions and NNN in-
teractions €, at temperature T) up to 0(6?), but there
are discrepancies in O (6*) terms. *

*Present address: Department of Chemistry, Eastern Michigan
University, Ypsilanti, Michigan 48197. Formerly at Depart-
ment of Chemistry, Iowa State University, Ames, IA 50011.
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