Absorption spectra and energy levels of Gd³⁺, Nd³⁺, and Cr³⁺ in the garnet Gd₃Sc₂Ga₃O₁₂

John B. Gruber

Department of Physics, San Jose State University, San Jose, California 95192-0106

Marian E. Hills

Chemistry Division, Naval Weapons Center, China Lake, California 93555-6001

Clyde A. Morrison and Gregory A. Turner

U. S. Army Electronics Research and Development Command, Harry Diamond Laboratories, Adelphi, Maryland 20783-1197

Milan R. Kokta

Electronics Division, Materials Group, Union Carbide Corporation, Washougal, Washington 98671 (Received 29 June 1987; revised manuscript received 4 January 1988)

Absorption spectra measured between 0.3 and 6.7 μ m are reported for Gd³⁺, Nd³⁺, and Cr³⁺ in single-crystal gadolinium scandium gallium garnet, Gd₃Sc₂Ga₃O'₁₂, at various temperatures. Energy levels split by the crystal field are identified between 1500 and 35000 cm⁻¹ for Gd³⁺(4f⁷), Nd³⁺(4f³), and Cr³⁺(3d³). The rare-earth ions occupy sites of D_2 point-group symmetry, and chromium ions are found primarily in sites of C_{3i} point-group symmetry. A Hamiltonian consisting of Coulombic, spin-orbit, and crystal-field terms is diagonalized to obtain theoretical energy levels for each symmetry. Empirical crystal-field parameters B_{km} were determined by fitting calculated energy levels to observed levels through a variation of the B_{km} ; these were compared with a lattice-sum calculation. The rms deviations between calculated and observed levels are 1.7 cm⁻¹ for Nd³⁺ (45 levels), 4.0 cm⁻¹ for Gd³⁺ (14 levels), and 87.7 cm⁻¹ for Cr³⁺ (35 levels).

I. INTRODUCTION

The spectroscopic properties of Nd³⁺ and Cr³⁺ in gadolinium scandium gallium garnet, Gd₃Sc₂(GaO₄)₃ (GSGG), have received considerable attention in recent years as the search continues for more efficient and powerful solid-state lasers.¹⁻¹¹ Several years ago we undertook a theoretical analysis of the crystal-field splitting of the energy levels of Nd^{3+} , Gd^{3+} , and Cr^{3+} in GSGG.¹²⁻¹⁴ At that time only the experimental crystalfield splitting of the ${}^{4}I_{J}$ and ${}^{4}F_{3/2}$ manifolds of Nd³⁺:GSGG had been reported.^{1,15,16} Spectra of Cr³⁺:GSGG were interpreted by Struve and Huber¹⁷ using the cubic-energy-level scheme of Sugano and Tanabe^{18,19} as an approximation. Struve and Huber concluded that spin-orbit interaction contributed to the mixing of the ${}^{4}T_{2}$ and ${}^{2}E$ energy levels.²⁰ However, to our knowledge, no crystal-field splitting calculations that use the correct symmetry for Nd³⁺, Gd³⁺, or Cr³⁺ in GSGG have been published.

We report absorption spectra obtained for Nd^{3+} , Gd^{3+} , and Cr^{3+} in GSGG crystals at various temperatures. The observed crystal-field-split (Stark) levels are compared to calculated levels which were obtained by diagonalizing a Hamiltonian consisting of Coulombic, spin-orbit, and crystal-field terms for each symmetry type. The calculations were carried out using the 11 lowest (S,L,J) states constructed from within the $4f^3$ configuration of Nd^{3+} and the 12 lowest (S,L,J) states of $Gd^{3+}(4f^7)$. We assume that Nd^{3+} substitutes for Gd^{3+} in sites of D_2 symmetry. We also assume that Cr^{3+} ions substitute for Sc^{3+} in sites of C_{3i} (S_6) symmetry. Fluorescence spectra and absorption spectra of vibronic transitions are used to assign the Stark levels of Cr^{3+} , since pure electronic electric-dipole transitions are parity forbidden between $3d^3$ states of ions residing in sites with inversion symmetry. The diagonalization of the Hamiltonian for the Cr^{3+} ion in C_{3i} symmetry with spin-orbit interaction yields energy levels different from those obtained for cubic symmetry without spin-orbit correction.

II. EXPERIMENT

The garnet GSGG is a derivative of gadolinium gallium garnet, GGG, in which gallium that is octahedrally coordinated is replaced with scandium.²¹⁻²⁴ While the growth behavior of both materials is similar in many ways there are several important differences. The congruent GGG composition used to grow single crystals contains approximately 1 at. wt. % Gd³⁺ in the Ga³⁺ octahedral sites. The amount is based on octahedral Ga³⁺. The evidence for such "spillover" into a second site is based on a comparison of lattice parameters [Gd₃Ga₂(GaO₄)₃, $a_0 = 12.376$ Å, and GGG congruent composition, $a_0 = 12.384$ Å]. In GSGG the Gd remains in the D_2 sites.

Dopant levels of Nd^{3+} and Cr^{3+} are better controlled in GSGG than in $Y_3Al_2(AlO_4)_3$ (YAG). While the same principles govern the distribution of these ions, the distribution coefficients are much more favorable to uniform doping in the GSGG host. With distribution coefficients of 0.6 and 1.0 for Nd^{3+} and Cr^{3+} , respectively, we ob-

37 8564

serve very small variations of Nd^{3+} concentration and uniform distribution of Cr^{3+} in single crystals of GSGG.

The starting chemicals were 99.999 percent pure. Crystal growth following the Czochralski method was carried out using an iridium crucible 3 inches in diameter and 3 inches high under an atmosphere of nitrogen containing 2% oxygen by volume to minimize the evaporation of gallium during growth. The crystal was pulled at a rate of 0.015 inch per hour and rotated during this time at 15 revolutions per minute (rpm). The crystals obtained were 1.5 inches in diameter and 6.0 inches long. Based on the distribution coefficients for the dopant concentration in the molten phase, the crystal contained approximately 1.56 at. wt. % Nd³⁺ and 1.2 at. wt. % Cr³⁺ based on Gd^{3+} and Sc^{3+} , respectively. Single crystals grew parallel to the (111) direction. Optical measurements were made on discs cut parallel to the [111] planes of the crystal.

The calcium impurity concentration in the starting materials was less than 3 ppm by weight of scandium oxide. This low concentration is important with respect to the absorption spectra of Cr^{3+} ions in garnets. The presence of Ca^{2+} ions appears to change the relative intensities of the ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ and ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$ bands as well as introduce a broad absorption feature between 1.2 and 0.9 μ m. Impurities such as Ca^{2+} ions along with the oxygen vacancies in the lattice can create different local environments for the Cr^{3+} ions which result in multiple sites having different symmetries. Our crystal did not exhibit the spectra associated with such impurities. We conclude that the Cr^{3+} ions occupied Sc^{3+} sites substitutionally.

A Nicolet Model 7199 Fourier-transform infrared spectrometer (FTIR) was used to obtain spectra between 1500 and 6000 cm⁻¹. The accuracy in determining the wavelength of the absorption peaks was limited by a combination of instrument resolution employed (0.5 cm⁻¹) and observed spectral linewidths. Absorption spectra between 2.5 and 0.3 μ m (4000 to 35 000 cm⁻¹) were measured using a Cary Model 17D spectrophotometer. At 0.4 μ m the accuracy is better than 2 Å based on factory calibration, and the resolution is approximately 1 Å. For data recorded at the same wavelength on both instruments, agreement is within 2 cm⁻¹.

A conduction dewar filled with liquid nitrogen or liquid helium was used to obtain crystal spectra at nominally liquid-nitrogen or liquid-helium temperatures. At least 30 min were allowed for equilibration before data were obtained. Sample temperatures were not measured. However, from previous experience in taking similar spectra we estimate the crystal temperatures as 90 and 15 K, respectively.

III. OBSERVED SPECTRA

Multiphonon absorption occurs below 1700 cm⁻¹.¹⁴⁻¹⁶ The infrared spectrum and energy levels of the Nd³⁺ ion appear in Figs. 1 and 2 and in Table I. Temperaturedependent spectra establish excited Stark levels of the ground-state manifold ${}^{4}I_{9/2}$ of Nd³⁺ as follows: 106 cm⁻¹ for Z_2 , 167 cm⁻¹ for Z_3 , and 264 cm⁻¹ for Z_4 . These levels are similar to those obtained from fluores-

FIG. 1. Absorption spectrum of ${}^{4}I_{11/2}$ manifold of Nd³⁺ recorded at liquid-helium temperature with FTIR spectrometer.

cence data of Nd³⁺:GSGG.¹

In each manifold several sharp but relatively weak absorption peaks appear, usually within 3 to 8 cm^{-1} of the strong absorption peaks assigned to Nd^{3+} ions in D_2 sites of Gd^{3+} . These peaks are probably associated with Nd^{3+} ions in sites where nearby oxygen atoms are missing.¹³ Consequently, the resulting Nd^{3+} ion site symmetry and crystal field are different. Nonstoichiometric loss of oxygen from the lattice during crystal growth is less of a problem for GSGG than it is for YAG. We have concentrated our analysis on the electronic transitions between all $J + \frac{1}{2}$ Stark levels in D_2 symmetry. Since each manifold contains the expected number of strong absorption peaks (usually representing more than 95 percent of the total absorption to the manifold), we assume that these peaks represent Nd^{3+} ion absorption in Gd^{3+} sites of D_2 symmetry.

The visible and near ultraviolet spectra of Nd^{3+} are given in Figs. 3-6 and in Table II. Temperature-

FIG. 2. Absorption spectrum of ${}^{4}I_{13/2}$ manifold of Nd³⁺ recorded at liquid-helium temperature with FTIR spectrometer.

dependent spectra establish the splitting of the ${}^{4}I_{9/2}$ manifold to within 1 cm⁻¹ of the energy levels reported in Table I. The Z_5 energy level (763 cm⁻¹) is obtained from fluorescence data of Nd³⁺:GSGG.¹

Absorption by Cr^{3+} ions appears near 0.7 μ m (14200 cm⁻¹). The detailed structure of absorption bands due to vibronic transitions is obtained only at liquid-helium temperature. Electronic electric-dipole transitions are forbidden between $3d^3$ states of the same parity. Electronic magnetic-dipole transitions are allowed, and several are observed between states that are nearly pure quartet states (Table III). The vibronic spectra of Cr^{3+} ions are intense because the coupling between the lattice and the electronic states is so strong.

The R_1 and R_2 peaks of the cubic 2E state (levels 3 and 4 in Fig. 4 and Table III) are found at 14354 and 14382 cm⁻¹. Peak R_2 (level 4) shows evidence of inhomogeneous line broadening (Fig. 4). These two peaks are due to electronic magnetic-dipole transitions. A band resolved into three peaks and four shoulders and nearly as intense as peaks 3 and 4 is found to the high-energy side between 14420 and 14470 cm⁻¹. Higher in energy is a strong, broad band due to Cr^{3+} ion absorption that begins at 0.69 μ m and contains vibronic structure up to the band edge at 0.55 μ m. Superimposed on this band is absorption due to Nd³⁺. A second strong, broad band begins at 0.50 μ m and extends to 0.45 μ m. This band also contains Cr^{3+} vibronic structure and electronic spectra of Nd³⁺.

To distinguish between the vibronic spectrum of Cr³⁺ and the electronic spectrum of Nd³⁺, we analyzed the spectra of Cr³⁺:GSGG separately and found it to be consistent with the spectrum of Cr^{3+} in the codoped crystal. Figure 7 presents the absorption spectrum of Cr³⁺:GSGG. At liquid-helium temperature, the temperature-dependent vibronic spectra of Cr³⁺ largely disappear so that if a zero-phonon electronic transition were allowed, it would be found near the low-energy side of the observed vibronic spectra of the excited electronic state. The fluorescence spectrum observed at liquidhelium temperature also helps to establish the location of the excited Stark level. Several authors describe the use of fluorescence data to establish excited Stark levels.¹⁵⁻¹⁷ Some years ago Satten and his co-workers analyzed the vibronic spectra of ions in sites of inversion symmetry.²⁴

TABLE I. Infrared energy levels; Nd³⁺. Spectra recorded using the FTIR spectrometer at room temperature (RT), liquidnitrogen (LN) temperature, and liquid-helium (LHe) temperature. ${}^{4}I_{15/2}$ manifold recorded on spectrophotometer. Where data overlap, energy levels agree within 1 cm⁻¹.

		$E ({\rm cm}^{-1})$	$E ({\rm cm}^{-1})$	$E (\rm cm^{-1})$	$E (\mathrm{cm}^{-1})^{\mathrm{a}}$	
$\frac{2S+1}{L_J}$	Label	RT	LN	LHe	Calc.	$\Delta E \ (\mathrm{cm}^{-1})^{\mathrm{b}}$
${}^{4}I_{9/2}{}^{c}$	Z_1	0	0	0	-1	-1
323 ^d	Z_2	105	106	106	106	0
	Z_3	167	167	168	168	0
	Z_4	263	264		265	
	Z_5		763°		762	
${}^{4}I_{11/2}$	\boldsymbol{Y}_1	1979	1979	1980	1981	1
2182 ^d	\boldsymbol{Y}_2	2002	2003	2004	2005	1
	Y_3	2067	2067	2068	2066	-2
	Y_4	2102	2102	2103	2103	0
	Y_5	2383	2389	2391	2392	1
	Y_6	2423	2430	2432	2432	0
${}^{4}I_{13/2}$	\boldsymbol{X}_1	3908	3908	3908	3908	0
4151 ^d	X_2	3917	3917	3917	3918	1
	X_3	4000	3999	4000	4000	0
	X_4	4013	4011	4012	4009	-3
	X ₅	4352	4357	4359	4362	3
	X ₆	4363	4371	4372	4371	-1
	X_7	4405	4411	4412	4412	0
${}^{4}I_{15/2}$	\boldsymbol{W}_1	5777	5777	5778	5778	0
6192 ^d	W_2	5810	5813	5813	5812	-1
	W_3	5910	5912	5913	5914	1
	W_4	5947	5951	5954	5957	3
	W_5	6493	6495	6497	6496	-1
	W_6	6508	6510	6510	6510	0
	W_7	6547	6553	6557	6557	0
	W ₈	6640	6642	6643	6642	-1

^aCalculated energy levels based on parameters appearing in Table VI, column 6, $Nd^{3+}(B)$.

^bDifference between calculated and observed levels at liquid-helium temperatures.

^cFluorescence spectra at LN temperature, Ref. 1, provide complete splitting of ${}^{4}I_{9/2}$ manifold as follows: $Z_{1}(0)$, $Z_{2}(107)$, $Z_{3}(168)$, $Z_{4}(263)$, $Z_{5}(763)$, all in cm⁻¹.

^dTheoretical centroid in cm^{-1} .

FIG. 3. Absorption spectrum of ${}^{4}F_{3/2}$ manifold of Nd³⁺ recorded at room temperature showing temperature-dependent transitions from Stark levels Z_2 (106 cm⁻¹), Z_3 (167 cm⁻¹), and Z_4 (263 cm⁻¹) of the ground-state manifold ${}^{4}I_{9/2}$.

Recently vibronic states in C_{3i} symmetry were analyzed and the Stark levels reported.^{25,26} The method of analysis of vibronic spectra used here is based on the detailed descriptions reported earlier.^{25,26} The observed Stark levels for Nd³⁺ are presented in Table II and those inferred from vibronic analysis for Cr³⁺ are presented in Table III. Table IV lists the energy levels of Gd³⁺. The spectrum of Gd³⁺ appears in Fig. 8.

IV. CRYSTAL-FIELD SPLITTING CALCULATIONS: Nd³⁺ AND Gd³⁺

Crystallographic data for the garnet GSGG are given in Table V. The crystal-field splitting of the $4f^{n 2S+1}L_J$ manifolds, assuming that Gd³⁺ and Nd³⁺ occupy sites of

FIG. 4. Absorption spectrum of Cr^{3+} levels 3–10 and ${}^{4}F_{9/2}$ manifold (*B* group) of Nd³⁺ recorded at liquid-helium temperature.

FIG. 5. Absorption spectrum of ${}^{2}H_{11/2}$ manifold of Nd³⁺ superimposed on the first strong Cr³⁺ band. Spectrum was recorded at liquid-helium temperature.

FIG. 6. Absorption spectrum of ${}^{4}D_{3/2}$ (*L* group), ${}^{4}D_{5/2}$ and ${}^{2}I_{11/2}$ (*M* group), and part of ${}^{4}D_{7/2}$ and ${}^{2}I_{13/2}$ (*N* group) manifolds of Nd³⁺ superimposed on the third Cr³⁺ band recorded at liquid-helium temperature.

<u>37</u>

 TABLE II. Visible and ultraviolet energy levels; Nd^{3+} . Spectra recorded on spectrophotometer at room temperature (RT), liquid-nitrogen (LN) temperature, and liquid-helium (LHe) temperature.

		$E ({\rm cm}^{-1})$	$E \ (cm^{-1})$	$E (\rm cm^{-1})$	$E (\mathrm{cm}^{-1})^{\mathrm{a}}$	
$^{2S+1}L_{J}$	Label	RT	LN	LHe	Calc.	$\Delta E \ (\mathrm{cm}^{-1})^{\mathrm{b}}$
${}^{4}F_{3/2}$	R_{1}	11 431	11 432	11 432	11 432	0
11 497°	\boldsymbol{R}_2	11 492	11 494	11 494	11 494	0
$^{4}F_{evo}$	S.	12 350	12 352	12 354	12 348	-6
12 474°	$\frac{z_1}{S_2}$	12 395	12 390	12 390	12 392	2
2 **	c.	12 205	12 404	12 405	12 405	0
$-H_{9/2}$	33 5	12 393	12 404	12 405	12 403	0
12 392	54 S-	12 580	12 584	12 586	12 590	4
	S,	12 610	12 617	12 618	12 618	0
	S_7	12 743	12 745	12 745	12 746	1
	S_8	12 790	12 791	12 793	12 791	-2
4F	4.	13 372	13 374	13 374	13 375	1
13455°	A a	13 429	13 430	13 430	13 432	2
15 455	A 3	13 550	13 553	13 555	13 556	1
40	,	12560	12 566	12 566	13 567	1
$-S_{3/2}$	A_4	13 500	13 500	13 573	13 572	-1
13 347	A 5	13 608	13 610	13 611	13 609	-2
	<i>A</i> 6	15 000	15 010			-
${}^{4}F_{9/2}$	\boldsymbol{B}_1	14 634	14 637	14 639	14 641	2
14 724°	B_2	14 669	146/1	14 6 / 3	14 0 / 5	2
	B_3	14 /80	14 / 89	14 /91	14 709	-2
	B ₄ B	14 804	14 900	14 902	14 901	-1
_	D ₅	14 077	14 500	11,502		-
${}^{2}H_{11/2}$	C_1	15 864	15 865	15 865		
	C_2	15 888	15 890	15 890		
	\mathcal{L}_{3}	15 965	15 900	15 907		
	C_4	16 105	16 109	16 1 10		
4 -	05	10105	10107	10110		
${}^{4}G_{5/2}$	D_1	16 907	16 909	16910		
	D_2	17000	17 005	17008		
${}^{2}G_{7/2}$	D_3		17 020	17 022		
	D_4	17 070	17 074	17 075		
	D_5	17 278	17 282	17 284		
	D_6	175(2	17 550	17557		
	D_7	1/ 503	1/5/0	1/5/3		
${}^{4}G_{7/2}$	\boldsymbol{E}_{1}	18 777	18 781	18 783		
	E_2	18 864	18 864	18 864		
	E_3	18 881	18 883	18 884		
	E_4	18 997	19001	19 004		
${}^{2}K_{13/2}$	F_{1}	19 203	19 205	19 207		
	F_2	19 236	19 238	19 238		
${}^{2}G_{9/2}$	F_{3}	19 330	19 334	19 335		
<i>772</i>	F_4	19 354	19 359	19 359		
	F_5	19 410	19411	19412		
	F_{6}	19 480	19 487	19 488		
	F ₇	19 518	19 520	19 521		
	F_8	19 586	19 590	19 592		
	F_9	19615	19619	19 620		
	r ₁₀ r	19070	190/2	190/2		
	F_{11}	19 890	19 895	19 895		
40	* 12 ~	20 700		20		
G _{9/2}	G_1	20 793	20 795	20 797		
	G ₂	20 824	20 828	20 828		
	03	20 042	20 040	20 840		

2S + 1	Label	$E (\mathrm{cm}^{-1})$ RT	$E (\mathrm{cm}^{-1})$	$E (\mathrm{cm}^{-1})$	$E (\mathrm{cm}^{-1})^{\mathrm{a}}$	$\Delta F (cm^{-1})^{b}$
4 _G	G	20.852	20.856	20.858	cuic.	
$0_{11/2}$	G_4	20 852	20 850	20 838		
	G.	20 977	20 980	20 980		
	06 G-	21 040	21 042	21.045		
	G.	21 055	21 0 90	21 090		
	G	21 145	21 145	21 140		
	G	21 108	21 139	21 139		
	G_{10}	21 203	21 200	21 207		
	011	21254	21250	212+0		
${}^{2}K_{15/2}$	H_1	21 609	21 610	21 611		
	H_2	21714	21714	21 714		
	H_3	21 740	21 740	21 742		
	H_4	21 772	21 773	21 774		
	H_5	21 778	21 780	21 783		
	H_{6}	21 884	21 884	21 885		
	H_7	22 004	22 005	22 006		
	${H}_8$	22 053	22 054	22 054		
${}^{2}P_{1/2}$	I_1	23 190	23 192	23 193		
${}^{2}D_{5/2}$	\boldsymbol{J}_1	23 723	23 723	23 724		
	J_2	23 778	23 779	23 780		
	J_3	23 832	23 840	23 843		
${}^{2}P_{3/2}$	K_1	26 045	26 046	26 047		
	<i>K</i> ₂		26 0 5 5	26 0 56		
${}^{4}D_{3/2}$	L_1	27 685	27 689	27 689		
	L_2	27 761	27 765	27 765		
${}^{4}D_{5/2}$	\boldsymbol{M}_1	27 880	27 880	27 882		
	M_2	28 035	28 039	28 040		
${}^{4}D_{1/2}$	M_{3}	28 105	28 1 1 2	28 113		
., -	M_4	28 145	28 1 50	28 159		
	M_5	28 280	28 283	28 284		
${}^{2}I_{11/2}$	M_{6}	28 328	28 333	28 335		
	M_7	28 409	28 4 1 3	28 4 1 3		
	M_8	28 705	28 712	28714		
	M_9	28 853	28 857	28 859		
	M ₁₀	29 014	29017	29018		
${}^{2}L_{15/2}$	N_1	29 853	29 854	29 856		
	N_2	29 963	29 960	29 958		
	N_3			29 969		
${}^{4}D_{7/2}$	N_4	29 993	29 997	30 000		
	N_5	30 05 1	30 0 56	30 0 59		
	N_6		30 070	30 073		
	N_7	30 178	30 180	30 180		
	N_8	30 209	30 2 1 0	30 2 1 0		
	N_9	30 263	30 264	30 265		
	N_{10}	30 300	30 306	30 308		
	N_{11}	30 352	30 3 56	30 3 5 9		
${}^{2}I_{13/2}$	N_{12}	30 4 2 8	30 4 30	30 4 3 1		
	N ₁₃	30 4 5 3	30 4 5 3	30 4 5 4		
	N_{14}	30 506	30 509	30 5 1 0		
	N_{15}	30 5 3 2	30 536	30 540		
	N_{16}	30 625	30 627	30 630		
${}^{2}L_{17/2}$	<i>O</i> ₁	31 413	31 413	31 414		
	<i>O</i> ₂	31 518	31 520	31 522		
	<i>O</i> ₃	31 568	31 570	31 570		
	O_4	31 610	31 610	31 612		
	<i>O</i> 5	31 660	31 662	31 662		

TABLE II. (Continued).

$^{2S+1}L_{J}$	Label	$E (cm^{-1})$ RT	$E (cm^{-1})$ LN	$E (cm^{-1})$ LHe	$E (cm^{-1})^a$ Calc.	$\Delta E \ (\mathrm{cm}^{-1})^{\mathrm{b}}$
	<i>O</i> ₆	31 751	31 753	31 755		
$^{2}H_{9/2}$	P_{1}	32 633	32 633	32 634		
772	P_2	32 684	32 686	32 686		
	P_{3}	32 708	32 710	32 713		
	P_{A}	32 770	32 772	32 774		
	P_5	32 791	32 795	32 797		

TABLE II. (Continued).

^aCalculated energy levels based on B_{km} parameters appearing in Table VI under column 6, Nd³⁺(B).

^bDifference between calculated and observed levels at LHe temperature; rms deviation for 45 levels (Tables I and II) is 1.7 cm⁻¹.

^cTheoretical centroid in cm⁻¹.

 D_2 point-group symmetry, was analyzed by diagonalizing a parametrized Hamiltonian,

$$H_{D_2} = \sum_{k,m} B_{km} C_{km} , \qquad (1)$$

in a free-ion wave-function basis involving the 11 lowest $4f^{3\,2S+1}L_J$ manifolds for Nd³⁺ and the 12 lowest $4f^{7\,2S+1}L_J$ manifolds for Gd³⁺.²³ Free-ion wave functions and reduced matrix elements of the $U^{(k)}$ unit spherical tensors were first obtained by diagonalizing the free-ion Hamiltonian using parameters reported earlier.²⁷ The nine real, even-fold (even-k) parameters in the D_2 Hamiltonian were varied to obtain agreement with observed splitting. The equations given in Ref. 14 can be used to obtain the relationships between the B_{km} parameters and the $A_k^m \langle r^k \rangle$ and \overline{B}_{km} parameters which are frequently reported; also given in Ref. 14 are the six possible equivalent sets of B_{km} parameters for D_2 symmetry.

An initial set of empirical B_{km} parameters for Nd³⁺ was used from an earlier report.²³ We extend that work by including data and calculations for the additional Nd³⁺ manifolds, ${}^{4}F_{5/2}$, ${}^{2}H_{9/2}$, ${}^{4}F_{7/2}$, ${}^{4}S_{3/2}$, and ${}^{4}F_{9/2}$. Table VI presents the final set of B_{km} parameters based on the experimental energy levels listed in Tables I and II. The calculated splittings are also listed in Tables I and II. An rms deviation of 1.7 cm⁻¹ is obtained for 45 observed levels using the final set of empirical B_{km} parameters under column Nd(B) (Table VI).

The empirical B_{km} parameters were compared with those obtained from a lattice-sum calculation.²³ The fractional oxygen positions were taken from the isostructural material Y₃Ga₂(GaO₄)₃.¹⁴ Effective charges Z_i $(q_i = eZ_i)$ were chosen to be $Z_{Gd} = Z_{Sc} = 3$, $Z_{Ga} = 1$, $Z_O = -1.5$. The polarizibility of oxygen α_0 was taken as 0.244 Å³. Table VI lists the resulting lattice sums A_{km} , which include the point-charge, point-dipole, and selfinduced contributions. The parameters A_{km} are related to the B_{km} parameters through the expression

$$B_{km} = \rho_k(\mathrm{Nd}) A_{km} , \qquad (2)$$

where $\rho_k(Nd)$ are radial factors given by Morrison, Karayianis, and Wortman.²⁸ The lattice-sum calculation predicts reasonable values for A_{km} considering our assumptions.

The set of B_{km} parameters for Gd^{3+} was obtained by

using ρ_k (Gd) and the empirical A_{km} lattice parameters from Table VI. The 14 observed energy levels for Gd³⁺ are marginal for a meaningful analysis, since D_2 symmetry requires nine crystal-field parameters. The rms deviation for these levels is 4 cm⁻¹, which is within the uncertainty associated with the data recorded in the ultraviolet region.

V. CRYSTAL-FIELD SPLITTING CALCULATIONS: Cr³⁺

A detailed analysis of the crystal-field splitting of the electronic states of Cr^{3+} in sites of C_{3i} symmetry is described here. The free-ion Hamiltonian is given by

$$H_{\rm FI} = \sum_{k=2,4} F^{(k)} \sum_{i>j}^{N} C_{kq}^{*}(i) C_{kq}(j) + \alpha L(L+1) + \gamma G(R_5) + \zeta_d \sum_{i=1}^{N} l_i \cdot \mathbf{s}_i , \qquad (3)$$

where $F^{(k)}$ are the Slater integrals, α and γ are parameters of the Tree's interactions, and ζ_d is the spin-orbit parameter. In Eq. (3), the Slater integrals are related to the Racah parameters by

$$F^{(2)} = 7(7B + C) ,$$

$$F^{(4)} = 63C/5 ,$$
(4)

and the C_{ka} are related to the spherical harmonics by

$$C_{kq}(i) = \sqrt{4\pi/(2k+1)} Y_{kq}(\theta_i, \phi_i) ,$$

$$C_{k,-q} = (-1)^q C_{kq}^* .$$
(5)

The quantity $G(R_5)$ is the Casimir operator for the rotation group R_5 , whose values for all the states of d^N are given by Judd.²⁹

For the Cr³⁺ free ion, the parameters in Eq. (3) have the following values from Uylings, Raassen, and Wyart:³⁰ $F^{(2)} = 74\,201 \text{ cm}^{-1}$, $F^{(4)} = 45\,822 \text{ cm}^{-1}$, $\alpha = 29.87 \text{ cm}^{-1}$, and $\zeta_d = 275 \text{ cm}^{-1}$. We obtained the values $F^{(2)} = 72\,389$ cm⁻¹, $F^{(4)} = 43\,044 \text{ cm}^{-1}$, $\alpha = 91.75 \text{ cm}^{-1}$, $\gamma = -129.6$ cm⁻¹, and $\zeta_d = 277.7 \text{ cm}^{-1}$, using Eq. (3) in a leastsquares fit to the data reported by Sugar and Corliss.³¹ Since our parameters agree well with those of Uylings and co-workers, we assume that Eq. (3) is an adequate representation of the free-ion interactions for transition metal ions in a solid. The principal difference between -----

our parameters and those of Uylings and co-workers is the inclusion of the Trees interaction with the parameter T and a parameter β , which multiplies the seniority operator.

The crystal-field Hamiltonian for Cr^{3+} in Sc^{3+} sites is

$$H_{\rm CF} = B_{20} \sum_{i=1}^{N} C_{20}(i) + B_{40} \sum_{i=1}^{N} C_{40}(i) + B_{43} \sum_{i=1}^{N} [C_{4-3}(i) - C_{43}(i)], \qquad (6)$$

where B_{kq} are crystal-field parameters; B_{43} is chosen as real and positive with no loss in generality. In the cubic approximation, $B_{20} = 0$ and $B_{43} = \sqrt{10/7} |B_{40}|$ in cm⁻¹. In threefold symmetry $B_{40} = -14Dq$, where we assume Dq is a positive number.

The matrix elements of the Hamiltonian given in Eqs. (3) and (6) were computed using coefficients of fractional parentage for the d^3 configuration. The notation of the free-ion levels is that given by Nielson and Koster.³² Total angular momentum wave functions are used. The Γ_4

_	λ	$\Delta \lambda^{a}$		Eobs	$E_{\rm calc}^{\rm b}$	Representation ^c	Free-ion state ^d
<u>L</u>	(A)	(A)	<i>I</i>	(cm^{-1})	(cm ⁻¹)	Γ,	(%)
1				0	- 37 ^e	4	$100 \ {}^{4}F$
2					-37	6	$100 \ {}^{4}F$
3	6965	10	0.15	14 354	14 296	6	$85 {}^{4}F + 9 {}^{2}G + 3 {}^{2}H$
4	6951	10	0.19	14 382	14 328	4	94 ${}^{4}F + 4 {}^{2}G + 1 {}^{2}H$
5	6933	8	0.15	14 420	14 436	4	79 ${}^{4}F + 13 {}^{2}G + 4 {}^{2}H$
6	6923	10	0.14	14 440	14 480	6	87 ${}^{4}F + 8 {}^{2}G + 3 {}^{2}H$
7	6909	10	0.12	14 470	14 486	4	$100 \ {}^{4}F$
8	6879	5	0.02	14 533	14 540	4	96 ${}^{4}F + 2 {}^{2}G + 1 {}^{2}H$
9	6795	10	0.04	14714	14 831	6	$45^{2}G + 26^{4}F + 15^{2}H$
10	6776	5	0.03	14 754	14 842	4	44 ${}^{2}G + 27 {}^{4}F + 16 {}^{2}H$
11	6632	8	0.03	15074	15 176	6	$39\ ^{2}G + 35\ ^{2}H + 19\ ^{2}P$
12	6535	20	0.02	15 298	15 244	4	$39 \ ^{2}G + 33 \ ^{2}H + 19 \ ^{2}P$
13	6360	500	0.43	15719	15 421	4	$38 {}^{2}G + 34 {}^{2}H + 23 {}^{2}P$
14	5043	10	0.10	19 824	19 948	4	57 ${}^{4}F$ + 42 ${}^{4}P$
15	4993	14	0.15	20014	19 964	6	57 ${}^{4}F + 43 {}^{4}P$
16	4800	20	0.18	20 700	20 830	4	50 ${}^{4}F + 48 {}^{4}P + 1 {}^{2}H$
17	4806	100	0.45	20 800	20 861	6	50 ${}^{4}P$ + 49 ${}^{4}F$
18	4783	shf		20 900	20 881	4	50 ${}^{4}P + 49 {}^{4}F$
19	4772		0.50	20 9 50	20 901	4	51 ${}^{4}P$ + 49 ${}^{4}F$
20	4650	shf		21 500	21 532	4	$33^{2}H + 25^{2}D1 + 19^{2}D2$
21	4540	100	0.45	22 020	22 014	6	$40^{2}H + 24^{2}D1 + 17^{2}D2$
22	4524	sh ^f	0.49	22 100	22 063	4	$39^{2}H + 24^{2}D1 + 17^{2}D2$
23	3665	10	0.01	27 277	27 185	4	$100^{-2}G$
24	3438	5	0.02	29 078	29 020	4	$55\ ^{2}G + 39\ ^{2}H + 3\ ^{2}D2$
25	3431	5	0.01	29 1 38	29 083	6	57 ${}^{2}G$ + 37 ${}^{2}H$ + 3 ${}^{2}D2$
26	3425	5	0.03	29 189	29 1 20	4	$53 \ ^{2}G + 43 \ ^{2}H + 3 \ ^{2}D2$
27	3408	10	0.06	29 334	29 477	4	51 ^{2}H + 29 ^{2}G + 18 ^{2}P
28	3395	7	0.02	29 447	29 592	4	$51^{2}H + 28^{2}G + 20^{2}P$
29					29 602	6	$50^{2}H + 27^{2}G + 21^{2}P$
30					31 258	4	$47^{2}H + 41^{2}D2 + 8^{2}D1$
31	3198	10	0.01	31 261	31 259	6	$48^{2}H + 42^{2}D2 + 8^{2}D1$
32	3119	5	0.04	32 0 5 2	32 068	4	$50 {}^{4}P + 49 {}^{4}F$
33	3116		0.04	32 082	32 087	6	49 ${}^{4}F + 49 {}^{4}P + 1 {}^{2}H$
34	3105	3	0.02	32 200	32 099	4	49 ${}^{4}F + 48 {}^{4}P + 2 {}^{2}H$
35	3100	10	0.07	32 249	32 107	4	50 ${}^{4}F + 48 {}^{4}P + 1 {}^{2}H$
36	3085	10	0.09	32 406	32 443	4	57 ${}^{4}P + 43 {}^{4}F$
37	3081		0.03	32 440	32 444	6	56 ${}^{4}P$ + 42 ${}^{4}F$ + 1 ${}^{2}H$

TABLE III.	Absorption s	pectra of Cr^{3+}	at liquid-helium	temperature
------------	--------------	---------------------	------------------	-------------

^aBandwidth: full width at half maximum.

^bThe parameters used in the calculation are $F^{(2)} = 54\,320$ cm⁻¹, $F^{(4)} = 43\,094$ cm⁻¹, $\alpha = 2.88$ cm⁻¹, $\gamma = -63.28$ cm⁻¹, $\zeta_d = 169.64$ cm^{-1} , $B_{20} = 1072$ cm⁻¹, $B_{40} = -22251$ cm⁻¹, and $B_{43} = 23443$, with an rms of 87.7 cm⁻¹. (B = 620, C = 3420, Dq = 1450, Dq v = -377.5, v' = 512.5.

^cThe irreducible representations are $4 = \Gamma_4 + \Gamma_5$ and $6 = \Gamma_6$ (doublet) for the group C_3 or C_{3i} (all Γ_i and Γ_i^+). The notation is from Koster et al. (Ref. 33).

^dOnly states of 1% or greater are listed.

^eThe splitting of the ground state is 0.235 cm⁻¹ with small amounts of the ⁴P and ²G mixed in.

^fShoulder of a band.

ABSORBANCE O

0

and 8000 Å recorded at room temperature with a Cary Model 17D spectrophotometer.

matrix elements³³ for C_3 symmetry are obtained by choosing the projection $M_J = \frac{1}{2} + 3q$ with q any integer and with $|M_J| < J$. For the Γ_6 irreducible representation, we use $M_J = \frac{3}{2} + 3q$, where q is any integer and $|M_J| < J$. Identical energies are calculated whether we use either $[|JM_J\rangle + (-1)^{J-M_J}|J-M_J\rangle]/\sqrt{2}$ or $[|JM_J\rangle - (-1)^{J-M_J}|J-M_J\rangle]/\sqrt{2}$ as the basis. The Hamiltonian matrices for Γ_4 and Γ_5 are 39×39 and 21×21 for Γ_6 . A priori assumptions are not made about the relative magnitudes of the various terms in the Hamiltonian. This choice of basis, while not appropriate for cubic symmetry, avoids tedious perturbation calculations for lower symmetries.

To determine approximate atomic parameters, we began by assuming cubic symmetry. From observed spec-

FIG. 8. Absorption spectrum of ${}^{6}P_{7/2}$ (A group), ${}^{6}P_{5/2}$ (B group), and ${}^{6}P_{3/2}$ (C group) manifolds of Gd³⁺ recorded at room temperature.

tra, we estimated the position of the experimental barycenters as $E({}^{4}A_{2})=0 \text{ cm}^{-1}$, $E({}^{2}E)=14368 \text{ cm}^{-1}$, $E({}^{2}T_{1})=14436 \text{ cm}^{-1}$, $E({}^{4}T_{2})=14793 \text{ cm}^{-1}$, $E({}^{4}T_{1})=20330 \text{ cm}^{-1}$, and $E({}^{4}T_{1})=32251 \text{ cm}^{-1}$. In making these selections, we used a Tanabe plot³⁴ with $Dq = 1479.3 \text{ cm}^{-1}$. This value of Dq gave $B_{40} = -20710 \text{ cm}^{-1}$ and $B_{43}=24753 \text{ cm}^{-1}$. For free-ion parameters, we started with those of Cr^{3+} in $Y_{3}Al_{2}(AlO_{4})_{3}$ (YAG),³⁵ which are $F^{(2)}=55800 \text{ cm}^{-1}$, $F^{(4)}=36800 \text{ cm}^{-1}$, and

TABLE IV. Ultraviolet energy levels; Gd^{3+} . Spectra recorded on spectrophotometer at room temperature (RT), liquid-nitrogen (LN) temperature, and liquid-helium (LHe) temperature.

2S + 1	Label	$E (cm^{-1})$	$E (cm^{-1})$	$E (cm^{-1})$	$E (\mathrm{cm}^{-1})^{\mathrm{a}}$	$\Delta E (cm^{-1})^{b}$
Lj	Label	K1	LIN	LIIC	calc.	
${}^{8}S_{7/2}$	Z_1	0	0	0	0.0	0
0.4 ^c	Z_2				0.3	
	Z_3				0.5	
	Z_4				0.6	
⁶ P _{7/2}	A_{1}	31 889	31 890	31 891	31 896	5
31 980°	A_{2}	31 926	31 927	31 927	31 922	-5
	$\tilde{A_3}$	31 958	31 960	31 961	31 966	5
	A_4	31 988	31 990	31 991	31 989	-2
${}^{6}P_{5/2}$	\boldsymbol{B}_1	32 499	32 501	32 503	32 506	3
32 573°	\boldsymbol{B}_2	32 536	32 534	32 532	32 528	4
	B_{3}	32 548	32 549	32 551	32 556	5
⁶ P _{3/2}	C_1	33 090	33 092	33 093	33 093	0
33 156°	C_2	33 118	33 119	33 120	33 1 1 9	-1
⁶ <i>I</i> _{7/2}	D_{1}			35 860	35 857	-3
35 879°	D_2			35 892	35 889	-3
	D_3			35 900	35 901	1
	D_4			35 910	35 915	5

^aCalculated energy levels based on B_{km} parameters appearing in Table VI.

^bDifference between calculated and observed levels at LHe temperature; rms deviation for 14 levels is 4 cm⁻¹.

^cTheoretical centroid in cm⁻¹.

TABLE V. Crystallographic and x-ray data of $Gd_3Sc_2(GaO_4)_3$. Cubic Ia3d, Z = 8. Lattice constant is a = 12.5668 Å from Brandle and Barns (Ref. 38) and the fractional positions for the oxygen ions are for $Y_3Ga_2(GaO_4)_3$ from Euler and Bruce (Ref. 39).

Ion	Site	Symmetry	x	У	Z
Gd	24 <i>c</i>	D_2	0	$\frac{1}{4}$	$\frac{1}{8}$
Sc	16 <i>a</i>	C_{3i}	0	0	0
Ga	24 <i>d</i>	S_4	0	$\frac{1}{4}$	$\frac{3}{8}$
0	96h	C_1	-0.0272	0.0558	0.1501

 $\alpha = \gamma = \zeta_d = 0$. With these parameters as starting values, a least-squares fit to the experimental barycenters was performed. The resulting parameters obtained were $F^{(2)} = 50\,200 \text{ cm}^{-1}$, $F^{(4)} = 40\,821 \text{ cm}^{-1}$, $\alpha = 35.09 \text{ cm}^{-1}$ $(\gamma = \zeta = B_{20} = 0 \text{ cm}^{-1} \text{ not varied}), B_{40} = -20797 \text{ cm}^{-1},$ and $B_{43} = 24857.71$ cm⁻¹. A similar fit to the limited data of Struve and Huber¹⁷ gave $F^{(2)} = 53961$ cm⁻¹, $F^{(4)} = 40782$ cm⁻¹, $B_{40} = -21882$ cm⁻¹, and $B_{43} = 26\,154\,\mathrm{cm}^{-1}\,(\alpha = \gamma = \zeta_d = B_{20} = 0).$

Proceeding now with the correct symmetry (C_{3i}) and the data given in Table V, we computed the point-charge lattice-sum parameters A_{nm} ²³, which are $A_{20}=812$ cm⁻¹/Å², $A_{40}=-11413$ cm⁻¹/Å⁴, and $A_{43}=13327$ cm⁻¹/Å⁴. We used the rotational invariants³⁶

$$S_n(B) = \left[B_{n0}^2 + 2 \sum_{m>0}^n B_{nm}^* B_{nm} \right]^{1/2}$$
(7)

which for C_{3i} symmetry gives

$$S_4(B) = (B_{40}^2 + 2B_{43}^2)^{1/2} . (8)$$

If we assume that the theoretical B_{nm} are given by $B_{nm} = \rho_n A_{nm}$, then $\rho_4 = S_4(B)/S_4(A)$. From Eqs. (7) and (8) above we have

$$\rho_4 = 1.8537 \text{ \AA}^4 . \tag{9}$$

If we assume further that $\rho_n = \langle r^n \rangle_{\rm HF} / \tau^n$ (with $\langle r^n \rangle_{\rm HF}$ given by a Hartree-Fock calculation and τ^n a radial expansion parameter), then

$$\rho_2 = \langle r^2 \rangle_{\rm HF} (\rho_4 / \langle r^4 \rangle_{\rm HF})^{1/2} . \tag{10}$$

From Fraga, Saxena, and Karwowski³⁷ we obtain values of $\langle r^2 \rangle_{\rm HF} = 0.4018$ Å² and $\langle r^4 \rangle_{\rm HF} = 0.3344$ Å⁴ which gives $\rho_2 = 0.9460 \text{ Å}^2$. Using ρ_2 , ρ_4 , and $B_{nm}^t = \rho_n A_{nm}$ we obtain

$$B_{20}^{t} = 786 \text{ cm}^{-1} ,$$

$$B_{40}^{t} = -21 \, 156 \text{ cm}^{-1} ,$$

$$B_{43}^{t} = 24 \, 704 \text{ cm}^{-1} .$$
(11)

The crystal-field parameters given in Eq. (11) were used along with the free-ion parameters obtained from the initial fitting (including $\zeta_d = 200 \text{ cm}^{-1}$) as starting values in a least-squares fit to all electronic energy levels established from the analysis of the vibronic spectra. A total of 35 levels of Cr^{3+} were involved in the final fit. The resulting parameters obtained were $F^{(2)} = 54320 \text{ cm}^{-1}$, $F^{(4)} = 43\,094 \text{ cm}^{-1}$, $\alpha = 2.88 \text{ cm}^{-1}$, $\gamma = -63.28 \text{ cm}^{-1}$, $\zeta_d = 169.64 \text{ cm}^{-1}$, $B_{20} = 1072 \text{ cm}^{-1}$, $B_{40} = -22\,251 \text{ cm}^{-1}$, and $B_{43} = 23\,443 \text{ cm}^{-1}$. The rms deviation is 87.7 cm⁻¹.

Table III gives the resulting energy levels, along with the percentage of the free-ion composition of each state (only values greater than 1% are given). The number of levels of the free-ion composition is limited to 3; the labels are in the convention of Nielson and Koster.³² Because of the spin-orbit coupling and the twofold crystal field (B_{20}) , the ²E cubic level becomes predominantly ⁴F, and the entire region from 14300-15000 cm⁻¹ is so mixed that a cubic interpretation is impossible.

A _{km}	$\frac{A_{km}(\text{calc.})^{a}}{(\text{cm}^{-1}/\text{\AA})^{n}}$	A_{km} (phenomen.) ^b Nd ³⁺ (cm ⁻¹ /Å) ⁿ	B _{km}	$\frac{\mathrm{Nd}^{3+}(A)^{\mathrm{c}}}{(\mathrm{cm}^{-1})}$	$\frac{\mathrm{Nd}^{3+}(\boldsymbol{B})^{\mathrm{d}}}{(\mathrm{cm}^{-1})}$	Gd^{3+e} (cm ⁻¹)
A_{20}	3572	2544	\boldsymbol{B}_{20}	434	416	154
A_{22}	1010	529	B_{22}	90	76	308
A_{40}	- 8.19	-115	B_{40}	-67	- 53	18
A_{42}	- 3990	-3148	B_{42}	- 1818	- 1774	-1418
A 44	-2141	- 1595	B ₄₄	-921	- 980	- 699
A 60	- 981	- 934	B ₆₀	- 1485	-1516	- 1043
A 62	- 350	-427	B ₆₂	- 679	-671	- 515
A 64	504	485	B ₆₄	771	777	514
A 66	-337	-416	B 66	-661	-641	- 693

TABLE VI. Crystalline electric field (CEF) parameters for Nd³⁺ and Gd³⁺.

^aTable II, Ref. 23.

^bValues of parameters A_{km} calculated from phenomenological B_{km} parameters; Ref. 23 from an analysis of fluorescence data for ${}^{4}I_{J}$ and ${}^{4}F_{3/2}$ manifolds reported in Ref. 1. ^cInitial set of B_{km} parameters; Ref. 23.

^dFinal set of B_{km} parameters for Nd³⁺; 45 levels; rms deviation 1.7 cm⁻¹.

^e B_{km} parameters for Gd³⁺; 14 levels; rms deviation 4 cm⁻¹.

VI. CONCLUSIONS

From temperature-dependent absorption spectra of Nd^{3+} :GSGG,¹ Cr^{3+} :GSGG,¹⁷ and Nd^{3+} , Cr^{3+} :GSGG we have analyzed over 400 zero-phonon transitions that establish the crystal-field splitting of Nd^{3+} and Gd^{3+} energy levels in the lattice. The vibronic spectrum of Cr^{3+} in C_{3i} sites has been analyzed to determine the approximate location of the electronic levels of Cr^{3+} . A Hamiltonian consisting of Coulombic, spin-orbit, and crystal-field terms corresponding to the symmetry appropriate to each ion was diagonalized to obtain theoretical energy levels. The rms deviation between calculated and observed levels is 1.7 cm^{-1} for Nd^{3+} (45 levels), 4 cm⁻¹ for Gd^{3+} (14 levels), and 87.7 cm⁻¹ for Cr^{3+} (35 levels). The lattice-sum calculations for both Nd^{3+} and Cr^{3+} are in

reasonable agreement with the empirical parameters obtained from fitting the observed energy levels. The C_{3i} point-group symmetry of the lattice must be used to interpret the energy levels of Cr^{3+} in GSGG.

ACKNOWLEDGMENTS

One of us (J.B.G.) wishes to thank the American Society for Engineering Education for their support while spectra were taken at the Naval Weapons Center, China Lake, CA. Two others (C.A.M. and G.A.T.) wish to thank Dr. R.P. Leavitt for considerable assistance with the computer programming of the d^N configuration. We also wish to thank Dr. M. Nadler, Chemistry Division, Naval Weapons Center, for recording the FTIR spectra.

- ¹A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, and S. E. Sarkisov, Phys. Status Solidi A 34, K109 (1976).
- ²B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, Appl. Phys. B28, 235 (1982); 30, 117 (1983).
- ³A. Beimowski, G. Huber, D. Pruss, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, Appl. Phys. **B28**, 234 (1982).
- ⁴D. Pruss, G. Huber, and A. Beimowski, Appl. Phys. **B28**, 355 (1982).
- ⁵E. V. Zharikov, V. V. Laptev, E. I. Sidorova, Yu. P. Timofeev, and I. A. Shcherbakov, Kvant. Elektron. 9, 1740 (1982) [Sov. J. Quantum Electron. 12, 1124 (1982)].
- ⁶E. V. Zharikov, N. N. Ill'ichev, V. V. Laptev, A. A. Malyutin, V. G. Ostroumov, P. P. Pashinin, and I. A. Shcherbakov, Kvant. Elektron. (Moscow) 9, 568 (1982) [Sov. J. Quantum Electron. 12, 338 (1982)].
- ⁷E. V. Zharikov, N. N. Ill'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osiko, V. G. Ostroumov, P. P. Pashinin, A. M. Prokhorov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, Kvant. Elektron. (Moscow) **10**, 1916 (1983) [Sov. J. Quantum Electron. **13**, 1274 (1983)].
- ⁸M. I. Demchouk, A. K. Gilev, A. M. Zabaznov, V. P. Mikhailov, A. A. Stavrov, and A. P. Shkadarevich, Opt. Commun. 55, 207 (1985).
- ⁹E. Reed, IEEE J. Quantum Electron. QE-21, 1625 (1985).
- ¹⁰M. Sekita, Y. Miyazawa, and S. Kimura, J. Appl. Phys. 58, 3658 (1985).
- ¹¹W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowskii, J. Opt. Soc. Am. B3, 102 (1986).
- ¹²C. A. Morrison, U.S. Army Harry Diamond Laboratories Report No. HDL-TR-2040, 1984 (unpublished).
- ¹³J. B. Gruber, M. E. Hills, M. P. Nadler, M. R. Kokta, and C. A. Morrison, Bull. Am. Phys. Soc. **31**, 243 (1986).
- ¹⁴C. A. Morrison and R. P. Leavitt, in *Handbook on the Physics and Chemistry of Rare Earths V*, edited by K. A. Gschneidner, Jr. and L. Eyring (Pergamon, New York, 1982).
- ¹⁵R. Reisfeld and C. K. Jorgensen, Lasers and Excited States of Rare Earths (Springer, New York, 1977).
- ¹⁶A. A. Kaminskii, Laser Crystals (Springer, New York, 1981).
- ¹⁷B. Struve and G. Huber, Appl. Phys. B 36, 195 (1985).
- ¹⁸S. Sugano and Y. Tanabe, J. Phys. Soc. Jpn. **13**, 880 (1958).
- ¹⁹S. Sugano and I. Tsujikawa, J. Phys. Soc. Jpn. 13, 899 (1958).

- ²⁰M. O. Henry, J. P. Larkin, and G. F. Imbusch, Proc. R. Irish Acad. **75**, 97 (1975).
- ²¹S. Geller, Z. Kristallogr. 125, 1 (1967).
- ²²G. I. Vetrogon, V. I. Danilenko, V. Ya. Kabanchenko, V. V. Osiko, A. M. Prokhorov, A. N. Terent'evskii, and M. I. Timoshechkin, Fiz. Tverd. Tela (Leningrad) **22**, 689 (1980) [Sov. Phys.—Solid State **22**, 1881 (1980)].
- ²³C. A. Morrison, R. P. Leavitt, and M. D. Gildner, U.S. Army Harry Diamond Laboratories Report No. HDL-TR-2035, 1984 (unpublished).
- ²⁴R. A. Satten, J. Chem. Phys. 27, 286 (1957), and references therein.
- ²⁵W. E. Bron, Phys. Rev. 140, A2005 (1965), and references therein.
- ²⁶J. B. Gruber, R. P. Leavitt, C. A. Morrison, and N. C. Chang, J. Chem. Phys. 82, 5373 (1985) and references therein.
- ²⁷W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968).
- ²⁸C. A. Morrison, N. Karayianis, and D. E. Wortman, U.S. Army Harry Diamond Laboratories Report No. HDL-TR-1816, 1977 (unpublished).
- ²⁹B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, New York, 1963), p. 162.
- ³⁰P. H. M. Uylings, A. J. J. Raassen, and J. F. Wyart, J. Phys. B 17, 4103 (1984).
- ³¹J. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 6, 137 (1977).
- ³²C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the pⁿ, dⁿ, and fⁿ Configurations (MIT, Cambridge, MA, 1963).
- ³³G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups (MIT, Cambridge, MA, 1963).
- ³⁴Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 11, 864 (1956).
- ³⁵D. T. Sviridov, R. K. Sviridova, N. I. Kulik, and V. B. Glasko, J. Appl. Spectrosc. **30**, 334 (1979).
- ³⁶R. P. Leavitt, J. Chem. Phys. 7, 1661 (1982).
- ³⁷S. Fraga, L. M. S. Saxena, and J. Karwowski, *Physical Science Data: 5. Handbook of Atomic Data* (Elsevier, Amsterdam, 1976).
- ³⁸C. O. Brandle and R. L. Barns, J. Cryst. Growth 20, 1 (1979).
- ³⁹F. Euler and J. A. Bruce, Acta Cryst. **19**, 971 (1965).