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The sensitivity of the conductance of a metal to a short-range change in the scattering potential is

calculated for an arbitrary value of the disorder. The universal-conductance-fluctuation result is

reproduced when the elastic scattering rate is much larger than the inelastic scattering rate. In the

opposite limit the change in the Born-approximation elastic scattering rate produces the largest
e6'ect. These formal results are applied to the case of impurities moving within a random distribu-

tion of impurities, and the estimated conductance fluctuation is compared to those observed in

(1/f)-noise experiments on metal films.

I. ImROnUCnOZ

Quantum interference causes the low-temperature con-
ductance of small metal samples to be very sensitive to
the distribution of impurities and other elastic scatter-
ers. ' This sensitivity was first seen in magnetoconduc-
tance experiments, where the conductance oscillated
aperiodically as a function of the applied magnetic field. '

Similar oscillations have also been seen in the conduc-
tance as a function of the chemical potential. ' Both
kinds of experiments eff'ectively change the distribution of
impurities. Varying the magnetic field changes the phase
of the electrons, while varying the chemical potential
changes the electrons' wavelength. Because the change
in the conductance is in many cases of order e /h, this
e8'ect has been called the universa1 conductance Auctua-
tion. The most direct way to see this sensitivity, of
course, would be to move impurities within the sample.
It has long been postulated that elastic scatterers do
move, causing the conductance to change as a function of
time. According to recent theoretical estimates, moving
just one impurity a few Fermi wavelengths should be ob-
servable. ' Discrete switching in the conductance of
metal samples as a function of time has been seen. '

As one increases the temperature, the aperiodic oscilla-
tions as a function of the magnetic field and the chemical
potential as well as the discrete conductance switching
disappear. This is caused by the sample effectively con-
sisting of many different samples which are separated ei-
ther in space (by an inelastic length L;„)or in energy (by
an inelastic energy till;„). The conductance of each of
these smaller samples oscillates independently, so that the
total change in the conductance averages out to be very
small. Even though the above effects are no longer visi-

ble, quantum interference may still be occurring. Feng,
I.ee, and Stone have pointed out that the quantum-

interference amplification of the change in the conduc-
tance due to the motion of defects might be seen in the
power spectrum of the conductance ffuctuations as a
function of time at room temperature. In particular, they
propose that the magnitude of room-temperature 1/f
noise in disordered metals is due to the interference effect
of the universal conductance fluctuations. If this were
true, then a major problem in 1/f noise would be solved.
Unfortunately, most, though not all, of the (1/f)-noise
experiments in metals done to date have been in the re-

gime where the inelastic scattering rate I;„ is greater
than the elastic scattering rate I,i. Universal conduc-
tance fluctuation calculations assume that I,&

~& I;„.
Thus, the theory is in the wrong regime for most experi-
ments. "

The purpose of this paper is to examine the role of in-

terference effects on the sensitivity of the conductance to
impurity configuration for all values of the disorder,
I „/I;„,not just for I „/I;„»1. The efFect which is im-

portant in the clean limit is the correction to the Born-
approximation scattering rate which enters into the
Drude conductivity. Because the wave nature of the elec-
tron is implicit in the Born approximation, this is a
quantum-mechanical efFect. For the case of one impurity
moving in a random distribution of impurities considered
here this is particularly apparent, since classically there is
no effect unless the total number of scatterers changes.
Other cases within the same formalism, such as the
charging of an interfacial state, ' may be understood clas-
sically.

Since both the universal-conductance-fluctuation and
Born-approximation-scattering efFects have been treated
in detail elsewhere, the emphasis here is on showing how
the two efFects come from the same formalism and on
showing the similarities and differences between them. In
Sec. II, where the formal results are presented, the
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universal-conductance-Iluctuation result is shown to be
due to a change in an effective dephasing rate by roughly
the same amount as the change in the net scattering rate
in the clean limit. Since this change depends on the mi-
croscopics of the scattering potential, the time-dependent
universal conductance fluctuations are not universal. Es-
timates of the magnitude of the conductance change in
Sec. III show that for the same mean-square magnetocon-
duetance the time-dependent conductance fluctuations
can vary by a factor of 10. In this same section the noise
magnitudes produced by impurities moving within a ran-
dom distribution of impurities is estimated and shown to
be smaller than those typically observed in 1/f noise, but
still larger than the universal-conductance-fluctuation re-
sult until I „~101;„. In Sec. IV, I conclude and point to
some recent work which may show why the (1/f)-noise
magnitudes predicted here are too small.

II. FORMAL RESULTS

In this section the change in the conductance resulting
from a short-range change in the potential is calculated.

Short range here means that the potential only changes in
a region much smaller than a mean free path. For exam-
ple, one can imagine a point defect moving or two de-
fects rotating about one another. ' In addition to de-
pending on the change in the potential, the conductance
change also depends on the environment around the po-
tential. In this calculation the environment is put in by
averaging over the positions of point scatterers, yielding
the average or typical change in the conductance.

The linear-response expression for the conductance 6
of a sample of length L, in the direction of the electric
field and current is given by

G =
2 f d x f d x'o„(x,x') .
z

The nonlocal conductivity, 0„,is evaluated via perturba-
tion theory. Although we are interested in finite temper-
atures with inelastic scattering, it is useful for the pur-
pose of understanding the terms in the perturbation
theory to consider the largest contribution to 0„ for the
special case of free electrons at zero temperature,

. z
am(x, .~x, )am'(x, ~x, , ) (2.2)

(a') Xg (3) X1

0
~ /

This expression for 0 is just the net amphtude squared
for an electron at the Fermi energy to go from x2 to x„

~
am(x2~x, ) ~, with two sets of derivatives to indicate

the current and electric field directions. Since the net
amplitude is the sum of the amplitudes for all possible
paths to go from x2 to x&, each term in the perturbation
theory represents a particular choice of an amplitude and
a complex conjugate of an amplitude. ' In Fig. 1, I have
drawn schematically two difFerent pairs of amplitudes
and complex conjugates of amplitudes. The circles in this
figure represent the region whose potential changes from

5u to 5v', and the dots represent point defects whose posi-
tions will be averaged over in order to get the average po-
tential change.

The two kinds of paths shown in Fig. 1 yield two fun-
damentally different kinds of interference e8'ects. In Fig.
1(a) the am and am' paths are identical. Summing these
terms produces the "classical" result because we have
summed the squares of the amplitude for each path in-
stead of summing the amplitudes first and then squaring
the result. ' This result is not completely classical, how-
ever, because it still contains the information that it is an
electron wave which is being scattered. Interference does
take place on the length scales of 5u. The terms of Fig.
1(b), on the other hand, involve interference between
difFerent paths . When one averages over the positions of
the point scatterers, these terms average to zero because
of the random-phase difFerence between the two paths,
leaving only the terms of Fig. 1(a). Indeed defining G and
G' to be the conductance with 5u and 5v', respectively,
for a particular con6guration of the point scatterers and
letting angular brackets denote an average over the posi-
tions of the point scatterers, the change in the conduc-
tance for the amplitudes of Fig. 1(a) is

(2.3)

FIG. 1. Schematic of paths for the amplitudes in (a) the
Born-approximation change in the scattering rate and (b) the
universal-conductance4luctuation elect.

The terms of Fig. 1(b) are, of course, not identically zero,
but only zero on average. In order to estimate them we
must first square the conductance change, 6' —6, and
then average over the positions of the point scatterers.
Subtracting off the average result of Eq. (2.3), we get, for
the amplitudes of Fig. 1(b),



37 SENSITIVITY OF THE CONDUCTANCE TO IMPURITY. . . 8559

(56, )'= ((6 —6')') —( & 6 &
—

& 6') )' . (2.4)

V ne
(2.5)

where the net scattering rate, I „„,is the sum of the elas-
tic and inelastic scattering rates, and the volume of the
sample is V. Now if we add to our system a scatterer
represented by the local potential, 5u, and average over
its position, we will get another two-body interaction
which must be summed in the ladder approximation. In
Fig. 2(b), I show some of the new kinds of diagrams. The
line with a circle in the middle represents scattering from
5U. The resulting set of diagrams may be summed exactly

I

Summing the two conductance changes of Eqs. (2.3) and
(2.4) yields the net conductance change, ((6 —6') ).

The lowest-order current-conserving approximation
for the average conductance in the presence of impurity-
averaged elastic scattering and electron-phonon scatter-
ing is the sum of the ladder graphs. One of the relevant
diagrams is shown in Fig. 2(a). The dashed lines
represent elastic scattering from the point defects, and
the wavy lines represent electron-phonon scattering,
which has been chosen because it is the dominant form of
inelastic scattering at high temperatures. The conduc-
tance obtained by summing these diagrams is

32 432

FIG. 2. Typical diagrams for computing (a) the mean con-
ductance, (b) the mean conductance in the presence of 5v or 5u',
(c) the mean-square variation in the conductance, and (d) the
mean-square conductance variation in the presence of 5v and/or
5v'.

in the absence of inelastic scattering. In the presence of
inelastic scattering one can write a self-consistent equa-
tion to sum the diagrams, which in the case of electron-
phonon scattering reduces to the linearized quasiclassical
equation. ' This equation can then be solved approxi-
mately. ' ' If I „„is the scattering rate with 5U then
changing to 5U' can be accounted for by

I „„ I „„+51),
i
5U'(kz(k —k'))

i

—
i
5U(kF(k —k'))

i

~

5I"
i
——2vrX(0) — —', (k —k')2

4m 4m V

(2.6)

(2.7)

Using 5I, gg I „„we can expand the denominator to ob-
tain our final result:

'2
e

(2.9)

(56, ) = V ne
L' ~I net

5I,
I„„ (2.8)

This result for 5I", ean be obtained more simply using
the relation that the inverse of the elastic mean free path,
I /Uz, is the density of scatterers times their cross sec-
tion. For the one scatterer the density is just V '. Using
the Born-approximation cross section, ' one obtains Eq.
(2.7), except for the factor of —,'(k —k'), for the transport
lifetime. In the case when 5U is a function only of

~

k —k' ~, this factor is the familiar I —cos8=1 —k k'.
The diagrams for computing ( 6 ) —( 6 ) contain two

loops which are averaged together. ' Detailed analysis
using current conservation shows that to a good approxi-
mation it is only necessary to keep diagrams such as that
shown in Fig. 2(c). Since we are interested in zero mag-
netic field, both the diagrams with the directions of the
Green's functions parallel and antiparallel must be kept.
Summing these two sets of diagrams for {6 ) —(6) in
the limit where the elastic scattering rate is much larger
than the dephasing rate yields the universal-
conductance-Auctuation result,

where c~ ——4/n, 8/n, and 8 and V& is volume, area, and
length for three-, two- (or quasi-two-), and quasi-one-
dimensional samples, respectively. Samples are con-
sidered to be quasi-two- or quasi-one-dimensional if one
or two of the dimensions is much less than the dephasing
length, I. =(D/I )

' . The dephasing rate, I, is in
many cases just the inelastic scattering rate, I;„, but it
can also include other kinds of scattering, such as scatter-
ing from magnetic impurities. Since the inelastic scatter-
ing rate at room temperature is large, I will in many cases
substitute I;„ for I when estimating the conductance
fluctuations at room temperature. Also, at room temper-
ature k&T is approximately AI, so that the factor,
RI" /k& T, to account for energy averaging does not have
to be included in Eq. (2.9).

Adding the scatterer represented by 5v and/or 5U' to
the system produces additional interactions or correla-
tions, which are again denoted by lines with a circle in
the center. As shown in Fig. 2(d) these must be inserted
into Fig. 2(c) both as self-energy corrections and as corre-
lations between the two measurements. %hen this is
done, the dominant contribution to (562) of Eq. (2.4)
can be accounted for by a change in the dephasing rate
in Eq. (2.9):
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I ~I +6I z,

i
5u'(k„(k —k')) —5u(kF(k —k'))

i

'
51,=2~X(0)f "f

(2.10)

(2.11)

5I z(4-d)
I

That the change in the potential increases the efFective dephasing rate is appealing because both changing the potential
and increasing the dephasing rate reduce the correlations between the difFerent measurements, 6 and O'. Expanding
Eqs. (2.4) and (2.9) to get (562 ), we obtain as our final result

y L4 d
'

i '2 '

5~ (4 —d)/—2

(56, )'=e, Cd (2.12)

This is precisely the result of Al'tshuler and Spivak for
samples greater in length than I. and within a factor of
order unity of the result of Feng, Lee, and Stone. The
case when the sample is longer than a dephasing length is
the only relevant case for experiments because even when
the lithographical sample is smaller than I. , the efFective

sample length for the universal conductance fluctuations
is still of order L . ' ' The first line of Eq. (2.12) explic-
itly includes the saturation of 562 at the static-
conductance-fluctuation value of Eq. (2.9). This satura-
tion is important for the noise not only because it limits
the magnitude, but also because it afFects the power spec-
trum.

III. QUALITATIVE FEATURES AND ESTIMATES

There are several important difFerences and similarities
between the Born-approximation result of Eq. (2.8) and
the universal-conductance-fluctuation result of Eq. (2.12).
First, the change in the conductance in the Born approxi-
mation comes from a change in the total scattering rate
I „et, while fol the universal conductance Auctuatlons lt
comes from a change in the dephasing rate I" . These
two origins lead to different powers of 51" in (56, )2 and

(562 ) . Since in either case 51"/1 is a small number, this
might lead one to believe that the Born-approximation
result, which is proportional to (51,/I „„),is much
smaller than the universal-conductance-fluctuation result,
which is proportional to 512/I . The prefactor in the
Born-approximation result, ( 6 ), however, is much
larger than the ~refactor in the conductance-fluctuation
result, -(e /h), counteracting the different powers of
the 51 . As shown below, either efFect can dominate, de-
pending on the relative magnitudes of I and I,i.

In three dimensions both of the efFects are independent
of the volume of the sample once one has properly taken
into account the factor of the V ' hidden in the 5I"s.
For quasi-one- and quasi-two-dimensional samples the
conductance-Auctuation result does have additional
sample-size dependence, leading to an enhancement over
the three-dimensional value by I. /mt and L, /t, respec-
tively. The thickness and vridth of the samples are denot-
ed here by t and m Both of the effects are also propor-
tional to I,

The universal conductance fluctuations are strongly
dependent on the magnetic field. For example, if one had
a two-level system which switched between the potentials
5U and 6U', then for some fields the state represented by

5u would have the larger conductance while for other
fields the state represented by 5u' would have the larger
conductance. The Born-approximation result, on the
other hand, has no such 6eld dependence. One state
would always have the larger conductance. When large
numbers of switching events are happening at the same
time, such as for room-temperature 1/f noise, the mag-
netic 6eld dependence of the universal-conductance-
fluctuation efFect averages to zero because the magnetic
field afFects diff'erently the 5G associated with each micro-
scopic change in the potential.

Both efFects depend on the microscopics of the change
in the potential. For the Born-approximation result this
is not surprising, but it is also true for the universal con-
ductance fluctuations. To illustrate this I contrast the
change in the conductance due to the universal conduc-
tance Auctuations for an impurity moving in a typical
metal wire of Webb et al. ' and for the charging of an in-
terfacial site in a silicon metal-oxide-semiconductor
field-efFect transistor (MOSFET). In the MOSFET the
fluctuation is of order e /h, while for one of the metal
wires the efFect is 1-2 orders of magnitude smaller.

From Eqs. (2.10) and (2.11) the motion of a defect with
potential 5u a few Fermi wavelengths increases I" by the
scattering rate for that defect alone,

51"2—I,i/N; (3.1)

This rate can be estimated by the cross section for one
scatterer. I use the cross section of a screened Coulomb
impurity in gold, which is approximately 4n kF . The
mean-square conductance fluctuation, (56&), is equal to
the static conductance fluctuation of Eq. (2.9) times
51 z/I . Using the smallest sample length of L =2 p,m
at 40 mK (see Ref. 20), an elastic mean free path of 170 A
obtained from the resistivity of Ref. 1, and an area of the
wire of (400 A)2, this ratio is

51"
2 L

(3.2)I ~) Nt

giving a fluctuation of order 0.1e /h. At 4 K, 56z mill

be reduced by another order of magnitude due to energy
averaging. Since the motion of defects due to thermal ac-
tivation is more likely to be seen at 4 K than at 40 mK,
the motion of one atom may be diScult to detect in this
system.

Larger Auctuations are possible in silicon MOSFET's
because of the longer screening length in semiconductors.
Even at 100 K discrete s~itching due to the charging of
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an interfacial trap has been seen. ' Since from Eqs. (2.7)
and (2.11) 5I 2 is approximately equal to 51, for the ap-
pearance of a scatterer (5u =0, 5u'&0), the change in the
scattering rate at high temperatures can be used to pre-
dict the magnitude of 56 at low temperatures. The
high-temperature experiments on 0. 1 X 1-pm silicon
(100) MOSFET's with mobilities of 2000 cm /Vs saw
fractional changes of the resistance from 0.1% to 0.7%.
A fractional change in the resistance of 0.4% corre-
sponds to a change in the scattering rate of 1.5 g 10' s
The sample in which Skoqpol et al. saw switching at 2 K
was smaller than this (0.06X0.3 p,m ), so that 5I 2 is in-
creased to 8.3&10 ' s '. For the same sample the de-
phasing length was 0.7 pm, corresponding to an inelastic
scattering rate of 3.4g 10" s

(3.3)

5u (k) = u (k) + u (k)e'"'" (3 4)

The structure factor muses the cross section to depend
on the separation between the defects instead of just be-
ing the sum of their individual cross sections. Conse-
quently, changing the separation between the defects
from R to R+5R causes the net scattering rate to change
by

Substituting into Eq. (2.12) gives the observed magnitude,
awhile the Born-approximation change in the conductance
with the same 5I' is a factor of 3.5 smaller. Thus, for
MOSFET's it is possible to have 56 of order e2 lb.

For the Born-approximation effect, unlike the
universal-conductance-fluctuation effect described above,
it is essential that the moving defect lie near another de-
fect for there to be a large change in the conductance. If
two defects with potential u (k) are separated by R, then
their net potential is

kFL, ) E;
(3.8)

The factor of 9.2 is smaller than the factor of 20-200 pre-

impurities, only the small fraction of the time that the
impurity is near another impurity will there be a sizable
change in the conductance. The 51 of Martin is reduced
by the fraction of the volume of a sample which is within
a nearest-neighbor distance of an impurity. Using a
nearest-neighbor distance of 3.5kF ' and using kF ' as the
width of an atom, the relevant volume for interference
around one defect is -200kF . Multiplying this by the
total number of defects in the sample, X;, and dividing

by the volume of the sample, we get as a crude estimate
that (5I, ) is reduced by a factor of 200n; k~ 3 T.o get
a more accurate description the present author 5 has cal-
culated the average effect of moving one impurity a dis-
tance 5r:

(51,(5r) )=n; z f d R[51(R+5r)—5I (R)] . (3.7)

The integral in Eq. (3.7) was cut off for small 8 by the
nearest-neighbor distance for gold, 3.5kF ', and a
screened Coulomb potential in gold was used for 5u. The
resulting mean-square change in the conductance,
(56, ) ~ (51,), is plotted as the solid line in Fig. 3. The
mean-square change in the conductance due to the
universal-conductance-fluctuation effect for the motion of
a defect a distance 5r is also shown in Fig. 4 for the cases
of a 5-function potential (dotted line) and a screened
Coulomb impurity in gold (dashed line). With all three of
these cases a motion of a few kF ' is sufBcient to produce
the full effect, which for the Born-approximation effect is

2

&51",( )') -9.2(k; )

imp

2

5I,(5r) =I (R+5r) —I"(R), (3.5)

I (R)=2m%(0) f d'p '
cos(kFp. R) .

]p[ &2 8'
(3.6)

1.2

To get from Eq. (2.7) to Eq. (3.6), a change of variables
from k and k' to p =k —k' has been made. Equation (3.6)
is identical to an equation produced by Greene and
Kohn' and applied to this particular problem by Mar-
tin, who found that for divacancies the structure factor
led to a change in the scattering rate between one and
one-tenth the size of the scattering rate for one of the de-
fects alone. This should not be too surprising since the
unphysical situation of placing two atoms directly on top
of each other produces an enhancement of twice the cross
section of one of the scatterers. A similar argument has
been made by Robinson in the context of 1 tf noise. He
did not, however, get any of the results for noise magni-
tudes described here because he neglected the short-range
nature of the interference effect described by Eq. (3.3).
The averaging over all possible momentum transfers from
0 to 2kF restricts the region where interference is impor-
tant to R less than a few kF '.

For an impurity moving in a random distribution of

:0.8

0.6

~ O.4

0.2

0.0

FIG. 3. The mean-square change in the conductance caused
by moving one impurity a distance 5r due to the Born-
approximation effect (solid line) and the "universal"-
conductance-fluctuation e8'ect with constant potential (dotted)
and a screened Coulomb impurity (dashed).
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FIG. 4. The total conductance variation as a function of dis-

order assuming that all the impurities are active. The solid
curve is the fluctuation due to the Born-approximation elect for
impurities separated by more than a nearest-neighbor distance.
The data for the noble metals of Ref. 27 assuming three decades
of observed 1/f noise are plotted as solid circles. The
universal-conductance-fluctuation results of Ref. 9 are sho~n by
the upper dashed curve assuming no saturation, and by the
lo~er dashed curve assuming saturation.

dieted by the crude estimate because not all movements
produce the largest possible change in the scattering rate.
In the second line of Eq. (3.8} the cross section of one of
the defects has been estimated by 4rrkF to show that
5I, is reduced by approximately (kzL,&)

' over the
"best" case of two defects lying close together. Some-
times, as in the case of hydrogen hopping in metals, it is
useful to distinguish between the moving defects and the
static disorder. Denoting the scattering rate due to a to-
tal of N, „defects moving by I,„and the net elastic
scattering rate by I „, the mean-square change in the
scattering rate of Eq. (3.8) becomes 0.3(1 „/
N„, )(I,„/N, „). To get the factor of 0.3, I have set
the density of atoms equal to the free-electron density,
kF /3n i.

Assuming that the motion of the defects is incoherent,
these estimates of 5I and 56 can be related to the total
conductance fluctuation observed in (1/f)-noise experi-
ments via

SG2„=I S (f)df-N, „(5G)'. (3.9)

The power spectrum for the conductance fiuctuations is
SG(f), and N,„ is the total number of defects moving.
Since very few experiments actually see the fall olF in the
excess noise at low frequencies, it is not possible to direct-
ly evaluate the integral in Eq. (3.9}. In order to estimate
AG„„experimentally, one has two choices. The experi-
mental value can be treated as a lower bound of the quan-
tity that is calculated, or assumptions about the source of
the noise can be made which allow the noise magnitude
to be extended outside the observed range. Using the Srst
method to obtain a lower bound, the data for the noble
metals of Scofield, Mantese, and Webb (assuming three
decades in frequency of noise) are plotted as the solid
dots in Fig. 4. As an example of the second method, Dut-

ta, Dimon, and Horni assume that the relaxation times
of the objects causing the conductance fluctuations are
caused by a distribution of activation energies. With this
phenomenological model, they are able to estimate the
noise magnitude outside the observed range. The result-
ing relative conductance fluctuations multiplied by the
number of atoms for their silver and copper Alms are 0.9
and 0.3, respectively. They do not report the residual-
resistivity ratio for these films; however, for any reason-
ably disordered film the values of 0.9 and 0.3 fall slightly
above the other dots in Fig. 4.

The results for both the Born-approximation and the
universal-conductance-6uctuation effects are also plotted
in Fig. 4. Using Eq. (3.8) and assuming that there is one
electron per atom, the predicted total noise magnitude
for the Born-approximation effect is given by

2aa„„x,„r„
atolB G net imp net

~' '2

(3.10)

which is drawn as the solid curve in Fig. 4 for
N, „=N; p using the inelastic scattering rate for gold at
room temperature ( kF vF /I;„=500). Considering that
the dots are only a lower bound for b,G „„ofEq. (3.9), Eq.
(3.10) is too small by at least an order of magnitude. Us-
ing Eqs. (2.12) and (3.1) the corresponding result for the
universal conductance fluctuations is

EG„„
atom G net

~in +mov

2kFvF N;

' 2.5
el

7I„„ (3.11)

which is drawn as the upper dashed line in Fig. 4 again
for N o„=¹~„andthe inelastic scattering rate for gold
at room temperature. The lower dashed line in this figure
denotes the e jh saturation,

'2 ' 1.5aG„„
atom

net

ln el

&kF"F I net

which is the upper bound for the universal conductance
fluctuation AG„„. Roughly 10% of the impurities must
be active to cause saturation. The important point to no-
tice is that the universal-conductance-fluctuation effect is
in the wrong regime to apply to these experiments, as
well as to most (1/f )-noise experiments done to date. "i
Since the upper bound for the universal-conductance
fluctuation-effect only becomes larger than the Born-
approximation eFect for mean free paths less than 10 A
in Fig. 4, it is doubtful even for extremely disordered
61ms that the universal conductance fiuctuations will be
the dominant efrect. There is no upper bound for the
Born-approximation eSect, which is in contradiction to
the frequently stated version of the ergodic hypothesis
used in universal-conductance-fluctuation calculations
that averaging over impurity configurations is equivalent
to averaging over magnetic field. The Born-
approximation e5'ect does not have any magnetic field
dependence.

IV. CQNCI. USIGN

In this paper the role of interference effects on the sen-
sitivity of the conductance to impurity configuration has
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been examined for all values of the disorder. The dom-
inant contribution in the clean limit comes from the
change in the net scattering rate of the Drude conductivi-
ty, as opposed to an effective dephasing rate for the case
of the universal conductance fluctuations. The length
scales involved for interference in the clean limit are a
few inverse Fermi wavelengths, much smaller than those
involved in the universal conductance fluctuations. The
universal-conductance-Iluctuation is more important for
I,&~~I;„, while the Born-approximation effect is larger
for I „(I;„. Both effects depend on the microscopics of
the potential change. In particular, for the universal con-
ductance fluctuations this can lead to different values for
the change in the conductance even when the mean-
square magnetoconductance variation for static disorder
is the same. The estimated noise magnitudes for the
Born-approximation efFect for impurities moving within a
random distribution of impurities is too small to account
for the experimentally observed noise. This does not
mean, of course, that the rearrangement of atoms cannot
be the cause of 1/f noise, but only that the motion of

atoms within this particular model cannot account for
the noise magnitudes observed .Recently, using estimates
similar to those made here, Pelz and Clarke' have shown
that if defects are paired it is possible to account for
room-temperature (1/f)-noise magnitudes with less than
10 of the defects being active. It is not clear whether
this is a reasonable number or not. Other work to try to
determine the microscopic change in the potential has
been and continues to be done.
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