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E. A. de Andrada e Silva and I. C. da Cunha Lima
Instituto de Pesquisas Espariais/Ministerio de Cieneia e Tecnologia (11VPE/MCT), I2225 Sao Jose dos Campos,

Sao Paulo, Brazil
and Instituto de Fisica, Universidade de Sao Paulo, Ol 498 Sao Paulo, Sao Paulo, Brazil

A. Ferreira da Silva
Instituto de Pesquisas Espaeiais/Ministerio de Cieneia e Teenologia (IIVPE/MCT), l2225 Sao Jose dos Campos,

Sao Paulo, Brazil
(Received 5 November 1987&

It is shown that hydrogenlike impurities inside a quantum-well wire of Al„Gai- As-GaAs
create a band in the density of states of bound electrons at concentration of experimental interest.
In this range of concentration the impurity band occurs separated from the conducting subbands.

The density of states is obtained for several values of impurity concentrations and wire dimen-

sions.

Since 1980, when Sakaki' discussed for the first time
the possibility of fabrication of ultrathin quantum wells
many works have appeared dealing with the properties of
what i's now known as quantum-well wire (QWW). Only
recently, with combined molecular-beam epitaxy (MBE)
and other sophisticated techniques including ion implanta-
tion, has it become possible to prepare wires with dimen-
sions of the order of the electron's de Broglie wavelengths
(&500 A). Cibert et al. observed low-temperature
cathodeluminescence revealing for the first time quantum
states in these quasiwne-dimensional systems.

As occurred with two-dimensional (2D) quantum wells,
there already has been considerable interest shown in the
problem of hydrogenic impurities in QWW. As far as
we know there are as yet no experimental data on impuri-
ties in those systems. Besides, all reported calculations
are in one way or another variational solutions of the
effective mass equation. Lee and Spector3 solved the
problem of an on-axis impurity in a cylindrical GaAs/
AI, Gat —„As QWW considering infinite barrier at the in-
terface for the conduction electrons. Bryant made simi-
lar calculations considering finite barrier and found a
small decrease in binding energy together with the oc-
currence of a maximum at small radius instead of the
divergence of the strict 1D hydrogen atom. Brum5 stud-
ied the impurity position dependence of the binding ener-

gy in a rectangular wire and verified that binding energy
decreases as the impurity is moved away from the center
of the wire, as expected. The screening on the impurity
potential was treated by Kodama and Osaka. 6 The re-
markable conclusion of the works cited above is that be-
sides the overall behavior of the binding energy, which is
as expected from the works on 2D quantum wells, 7 s one
finds binding energies for the quasi-oneMimensional sys-
tems that are roughly twice that of those in 2D quantum
wells. These strong bindings of electrons in QWW's have
several consequences with regard to their optical-elec-
tronic properties.

As long as one deals with real systems, depending on
the impurity concentration, one has to consider the in-
teraction between the impurities. This interaction has the

effect of broadening the absorption line due to impurity
ionization. In this Rapid Communication we present a
first calculation of the density of states (DOS) of electrons
bound to impurities inside the QWW as a function of the
impurity concentration and of the dimensions of the wire's
cross section. We found impurity bands separated from
the conduction band, with considerable bandwidths for
the cases of experimental interest. Our results are useful
for the interpretation of various opticalwlectronic experi-
mental data as they became available.

Following similar calculations done for quasi-two-
dimensional systems'o" we start with the following
tight-binding Hamiltonian:
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where &r
~

i& e(r —R;) is the ground-state wave function
of an electron bound to an impurity at R;. Neglecting the
overlap &i ~ j& (isaj) and three center terms we have the
following hopping integral:

2
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J),
where k is the GaAs background dielectric constant, e is
the charge of the electron, and the impurity is assumed
monovalent. Finally, s; is the single-site energy which de-

pends on the impurity position on the plane XY (see Fig.
1).

The DOS can be obtained by the one-electron propaga-
tor which has to be averaged over all possible impurity
configurations. This is a very difficult problem. But, if we

consider the impurities distributed around the center of
the wire, the values of e; will present a small variation be-
cause e; has a minimum for the impurity at the center. In
this case we can take et ~const which reduces the problem
to the treatment of only the off&iagonal disorder, i.e., dis-
order in the Vtj matrix elements. Considering linear den-
sities of 10 cm ', the mean interimpurity distance along
the z axis is of 10 A which, in general, is much bigger
than L. We can, in this case, assume all impurities laying
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FIG, 1. Schematic of the model quantum-well wire with
square cross section of side I.. The impurities are randomly dis-
tributed on the z axis (dots).

on the z axis (for a detailed discussion of this approxima-
tion see Ref. 12). We now have a one-dimensional disor-
dered problem which can be solved suitably by the one-
dimensional version of the Matsubara and Toyozawals
method. The averaged diagonal elements of the propaga-
tor are given in this case by

&G,,(.+ o')) -g(.)i. , (3)

where ((e) is obtained from the following integral equa-
tion:

v'(k)
1-Ng(e) V(k)/e '

1 Ng(e) (4)
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where N is the impurity concentration per unit length and

V(k) dze'k'V(z) (5)

is the one-dimensional Fourier transform of the hopping
integral equation (2). We solve Eq. (4) numerically and
calculate the DOS by

D(E)-—x-'lm&G„(e+IO')) .

The wave functions used as a basis for the Hamiltonian
in Eq. (1) are taken from the variational solution of the
Isolated impurity problem. Using atomic units (R ~5.3
meV and ao ~103 A. which correspond to E 13.1 and
me 0.067mo) the variational solution is given by
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2 2

r

FIG. 2. Density of states (DOS) in atomic units for square
wires of different sides L N is the impurity linear concentra-
tion. The origin energy is that of the bound electron [Eq. (6)l.
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for Ix I ly I «L~2 and zero otherwise, where Is is the
variational parameter and N, a normalization constant
given so that &II I p) 1. The impurity is located in the ori-
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tion 0 we choele the following Gaussian-type wave func-
tion:

e(r) -y(x,y)II(z),
with

where V(x,y), tile confining potelltlal, ls takell ill the
infinite barrier approximation, i.e., V(x,y) ~ outside
and zero inside the wire. We consider, as in Fig. 1, square
cross-section wires with dimension L. For the trial func-

FIG. 3. DOS for diNerent impurity concentrations ¹ Verti-
cal dashed line represents the binding energy of an electron
bound to an on-center impurity which is given by Es 2(zl
L, )' —F.



gin of the coordinates. As one sees, this function is separ-
able and the Fourier transform of the hopping integral be-
comes a straightforward calculation. On the other hand,
this trial function gives extremely good energies in that
system; the error, in comparison with more exact ls-type
functions, is around 1%.

Defining Ho(x,y) —V, ,~+ V(x,y), the energy equa-
tion (6) will be given by

E Eo(o,)+a+E „(c),
where Eo-(y(Ho[y) and E „(%')-2/r[%). After
obtaining a numerically by minimizing E, for each L, we
calculate V(K), which is given by

V(Z) -(2~/e) '"(E E,—rC')—e

Finally, we insert it into Eq. (4) to obtain the averaged
DOS.

The obtained DOS's are shown in Figs. 2 and 3. The
variation of the DOS as a function of L for a typical N, as
shown in Fig. 2, is similar to that found for impurities
bound in 2D quantum wells. " The wider the wire the
sharper the band. The spreading in energy is, for in-
stance, for L 2ao, ha~2. 4R, which is of the order of
the binding energy which is 2.8R, for that value of L.
The DOS's are quite symmetrical and considerably
separated from the unperturbed first conduction subband.
In Fig. 3 we plotted the DOS corresponding to different
impurity concentrations. As the number of impurities in-
crease the DOS gets more and more asymmetric and close
to the bottom of the unperturbed conduction band, as-
signed by the vertical dashed line in the figure.

In conclusion, we saw that the interaction between im-
purities in QWW's is responsible for a large spread in the
ionization energy of, for example, ha~12.7 meV in a typ-
ical wire with L ~200 A and N 10 cm
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